# Efficient Biexciton Preparation in a Quantum Dot—Metal Nanoparticle System Using On-Off Pulses

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Coupled SQD-MNP System

## 3. Biexciton State Preparation Using on-off Pulses

## 4. Numerical Results for the Coupled SQD-MNP System

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

SQD | Semiconductor Quantum Dot |

MNP | Metal Nanoparticle |

## References

- Tame, M.S.; McEnery, K.R.; Ozdemir, S.K.; Lee, J.; Maier, S.A.; Kim, M.S. Quantum plasmonics. Nat. Phys.
**2013**, 9, 329–340. [Google Scholar] [CrossRef][Green Version] - Szychowski, B.; Pelton, M.; Daniel, M.C. Preparation and properties of plasmonic-excitonic nanoparticle assemblies. Nanophotonics
**2019**, 8, 517. [Google Scholar] [CrossRef] - Cheng, M.-T.; Liu, S.-D.; Zhou, H.-J.; Hao, Z.-H.; Wang, Q.-Q. Coherent exciton–plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex. Opt. Lett.
**2007**, 32, 2125–2127. [Google Scholar] [CrossRef] - Sadeghi, S.M. The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems. Nanotechnology
**2009**, 20, 225401. [Google Scholar] [CrossRef] - Sadeghi, S.M. Plasmonic metaresonances: Molecular resonances in quantum dot–metallic nanoparticle conjugates. Phys. Rev. B
**2009**, 79, 233309. [Google Scholar] [CrossRef] - Sadeghi, S.M. Tunable nanoswitches based on nanoparticle meta-molecules. Nanotechnology
**2010**, 21, 355501. [Google Scholar] [CrossRef] [PubMed] - Sadeghi, S.M. Coherent control of metallic nanoparticles near fields: Nanopulse controllers and functional nanoamplifiers. Phys. Rev. B
**2010**, 82, 035413. [Google Scholar] [CrossRef] - Nugroho, B.S.; Iskandar, A.A.; Malyshev, V.A.; Knoester, J. Bistable optical response of a nanoparticle heterodimer: Mechanism, phase diagram, and switching time. J. Chem. Phys.
**2013**, 139, 014303. [Google Scholar] [CrossRef] [PubMed][Green Version] - Carreño, F.; Antón, M.A.; Paspalakis, E. Nonlinear optical rectification and optical bistability in a coupled asymmetric quantum dot-metal nanoparticle hybrid. J. Appl. Phys.
**2018**, 124, 113107. [Google Scholar] [CrossRef] - Antón, M.A.; Carreño, F.; Melle, S.; Calderón, O.G.; Cabrera-Granado, E.; Cox, J.; Singh, M.R. Plasmonic effects in excitonic population transfer in a driven semiconductor–metal nanoparticle hybrid system. Phys. Rev. B
**2012**, 86, 155305. [Google Scholar] [CrossRef][Green Version] - Antón, M.A.; Carreño, F.; Melle, S.; Calderón, O.G.; Cabrera-Granado, E.; Singh, M.R. Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle. Phys. Rev. B
**2013**, 87, 195303. [Google Scholar] [CrossRef][Green Version] - Paspalakis, E.; Evangelou, S.; Terzis, A.F. Control of excitonic population inversion in a coupled semiconductor quantum dot–metal nanoparticle system. Phys. Rev. B
**2013**, 87, 235302. [Google Scholar] [CrossRef] - Yang, W.X.; Chen, A.X.; Huang, Z.; Lee, R.K. Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems. Opt. Express
**2015**, 23, 13032. [Google Scholar] [CrossRef] - McMillan, R.J.; Stella, L.; Grüning, M. Projected equations of motion approach to hybrid quantum/classical dynamics in dielectric-metal composites. Phys. Rev. B
**2016**, 94, 125312. [Google Scholar] [CrossRef][Green Version] - Qi, Y.; Shu, C.-C.; Dong, D.-Y.; Petersen, I.R.; Jacobs, K.; Gong, S.-Q. Fast quantum state transfer in hybrid quantum dot-metal nanoparticle systems by shaping ultrafast laser pulses. J. Phys. D Appl. Phys.
**2019**, 52, 425101. [Google Scholar] [CrossRef] - Smponias, A.; Stefanatos, D.; Paspalakis, E. Fast and robust exciton preparation in a coupled semiconductor quantum dot–metal nanoparticle system using shortcuts to adiabaticity. J. Appl. Phys.
**2021**, 129, 123107. [Google Scholar] [CrossRef] - Zhang, W.; Govorov, A.O.; Bryant, G.W. Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett.
**2006**, 97, 146804. [Google Scholar] [CrossRef][Green Version] - Yan, J.-Y.; Zhang, W.; Duan, S.-Q.; Zhao, X.-G.; Govorov, A.O. Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects. Phys. Rev. B
**2008**, 77, 165301. [Google Scholar] [CrossRef][Green Version] - Mohammadzadeh, A.; Miri, M. Optical response of hybrid semiconductor quantum dot-metal nanoparticle system: Beyond the dipole approximation. J. Appl. Phys.
**2018**, 123, 043111. [Google Scholar] [CrossRef][Green Version] - Artuso, R.D.; Bryant, G.W. Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects. Phys. Rev. B
**2010**, 82, 195419. [Google Scholar] [CrossRef] - Malyshev, A.V.; Malyshev, V.A. Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer. Phys. Rev. B
**2011**, 84, 035314. [Google Scholar] [CrossRef] - Hatef, A.; Sadeghi, S.M.; Singh,, M.R. Coherent molecular resonances in quantum dot–metallic nanoparticle systems: Coherent self-renormalization and structural effects. Nanotechnology
**2012**, 23, 205203. [Google Scholar] [CrossRef] [PubMed] - Kosionis, S.G.; Terzis, A.F.; Sadeghi, S.M.; Paspalakis, E. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field. J. Phys. Condens. Matter
**2013**, 25, 045304. [Google Scholar] [CrossRef] [PubMed] - Zhao, D.-X.; Gu, Y.; Wu, J.; Zhang, J.-X.; Zhang, T.-C.; Gerardot, B.D.; Gong, Q.-H. Quantum-dot gain without inversion: Effects of dark plasmon-exciton hybridization. Phys. Rev. B
**2014**, 89, 245433. [Google Scholar] [CrossRef][Green Version] - Schindel, D.; Singh, M.R. A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system. J. Phys. Condens. Matter
**2015**, 27, 345301. [Google Scholar] [CrossRef] - Kosionis, S.G.; Paspalakis, E. Control of self-Kerr nonlinearity in a driven coupled semiconductor quantum dot–metal nanoparticle structure. J. Phys. Chem. C
**2019**, 123, 7308. [Google Scholar] [CrossRef] - You, Y.; Qi, Y.-H.; Niu, Y.-P.; Gong, S.-Q. Control of electromagnetically induced grating by surface plasmon and tunneling in a hybrid quantum dot-metal nanoparticle system. J. Phys. Condens. Matter
**2019**, 31, 105801. [Google Scholar] [CrossRef] - Singh, M.R.; Yastrebov, S. Dipole—Dipole interaction in two-photon spectroscopy of metallic nanohybrids. J. Phys. Chem. C
**2020**, 124, 12065. [Google Scholar] [CrossRef] - Flissikowski, T.; Betke, A.; Akimov, I.A.; Henneberger, F. Two-photon coherent control of a single quantum dot. Phys. Rev. Lett.
**2004**, 92, 227401. [Google Scholar] [CrossRef] - Akimov, I.A.; Andrews, J.T.; Henneberger, F. Stimulated emission from the biexciton in a single self-assembled II-VI quantum dot. Phys. Rev. Lett.
**2006**, 96, 067401. [Google Scholar] [CrossRef] [PubMed][Green Version] - Stufler, S.; Machnikowski, P.; Ester, P.; Bichler, M.; Axt, V.M.; Kuhn, T.; Zrenner, A. Two-photon Rabi oscillations in a single In
_{x}Ga_{1-x}As/GaAs quantum dot. Phys. Rev. B**2006**, 73, 125304. [Google Scholar] [CrossRef] - Hui, H.Y.; Liu, R.B. Proposal for geometric generation of a biexciton in a quantum dot using a chirped pulse. Phys. Rev. B
**2006**, 78, 155315. [Google Scholar] [CrossRef][Green Version] - Machnikowski, P. Theory of two-photon processes in quantum dots: Coherent evolution and phonon-induced dephasing. Phys. Rev. B
**2008**, 78, 195320. [Google Scholar] [CrossRef][Green Version] - Paspalakis, E. Controlled preparation of a biexciton state in a quantum dot. J. Comput. Theor. Nanosci.
**2010**, 7, 1717. [Google Scholar] [CrossRef] - Glässl, M.; Barth, A.; Gawarecki, K.; Machnikowski, P.; Croitoru, M.D.; Lüker, S.; Reiter, D.E.; Kuhn, T.; Axt, V.M. Biexciton state preparation in a quantum dot via adiabatic rapid passage: Comparison between two control protocols and impact of phonon-induced dephasing. Phys. Rev. B
**2013**, 87, 085303. [Google Scholar] [CrossRef][Green Version] - Debnath, A.; Meier, C.; Chatel, B.; Amand, T. High-fidelity biexciton generation in quantum dots by chirped laser pulses. Phys. Rev. B
**2013**, 88, 201305(R). [Google Scholar] [CrossRef] - Bensky, G.; Nair, S.V.; Ruda, H.E.; Dasgupta, S.; Kurizki, G.; Brumer, P. Highly efficient biexciton preparation for quantum-dot entangled photon generation. J. Phys. B At. Mol. Opt. Phys.
**2013**, 46, 055503. [Google Scholar] [CrossRef] - Reiter, D.E.; Kuhn, T.; Glässl, M.; Axt, V.M. The role of phonons for exciton and biexciton generation in an optically driven quantum dot. J. Phys. Condens. Matter
**2014**, 26, 423203. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ardelt, P.-L.; Hanschke, L.; Fischer, K.A.; Müller, K.; Kleinkauf, A.; Koller, M.; Bechtold, A.; Simmet, T.; Wierzbowski, J.; Riedl, H.; et al. Dissipative preparation of the exciton and biexciton in self-assembled quantum dots on picosecond time scales. Phys. Rev. B
**2014**, 90, 241404(R). [Google Scholar] [CrossRef][Green Version] - Quilter, J.H.; Brash, A.J.; Liu, F.; Glässl, M.; Barth, A.M.; Axt, V.M.; Ramsay, A.J.; Skolnick, M.S.; Fox, A.M. Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation. Phys. Rev. Lett.
**2015**, 114, 137401. [Google Scholar] [CrossRef][Green Version] - Bounouar, S.; Müller, M.; Barth, A.M.; Glässl, M.; Axt, V.M.; Michler, P. Phonon-assisted robust and deterministic two-photon biexciton preparation in a quantum dot. Phys. Rev. B
**2015**, 91, 161302(R). [Google Scholar] [CrossRef][Green Version] - Kaldewey, T.; Lüker, S.; Kuhlmann, A.V.; Valentin, S.R.; Ludwig, A.; Wieck, A.D.; Reiter, D.E.; Kuhn, T.; Warburton, R.J. Coherent and robust high-fidelity generation of a biexciton in a quantum dot by rapid adiabatic passage. Phys. Rev. B
**2017**, 95, 161302(R). [Google Scholar] [CrossRef][Green Version] - Stefanatos, D.; Paspalakis, E. Rapid biexciton-state preparation in a quantum dot using on-off pulse sequences. Phys. Rev. A
**2020**, 102, 052618. [Google Scholar] [CrossRef] - Jayakumar, H.; Predojević, A.; Huber, T.; Kauten, T.; Solomon, G.S.; Weihs, G. Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett.
**2013**, 110, 135505. [Google Scholar] [CrossRef] - Müller, M.; Bounouar, S.; Jöns, K.D.; Glässl, M.; Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon.
**2014**, 8, 224. [Google Scholar] [CrossRef][Green Version] - Heinze, D.; Breddermann, D.; Zrenner, A.; Schumacher, S. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission. Nat. Commun.
**2015**, 6, 8473. [Google Scholar] [CrossRef] [PubMed][Green Version] - Winik, R.; Cogan, D.; Don, Y.; Schwartz, I.; Gantz, L.; Schmidgall, E.R.; Livneh, N.; Rapaport, R.; Buks, E.; Gershoni, D. On-demand source of maximally entangled photon pairs using the biexciton-exciton radiative cascade. Phys. Rev. B
**2017**, 95, 235435. [Google Scholar] [CrossRef][Green Version] - Huber, D.; Reindl, M.; Huo, Y.-H.; Huang, H.-Y.; Wildmann, J.S.; Schmidt, O.G.; Rastelli, A.; Trotta, R. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun.
**2017**, 8, 15506. [Google Scholar] [CrossRef] [PubMed] - Chen, Y.; Zopf, M.; Keil, R.; Ding, F.; Schmidt, O.G. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat. Commun.
**2018**, 9, 2994. [Google Scholar] [CrossRef] - Michler, P. (Ed.) Quantum Dots for Quantum Information Technologies; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-331-956-377-0. [Google Scholar]
- Matsuzaki, K.; Vassant, S.; Liu, H.-W.; Dutschke, A.; Hoffmann, B.; Chen, X.; Christiansen, S.; Buck, M.R.; Hollingsworth, J.A.; Götzinger, S.; et al. Strong plasmonic enhancement of biexciton emission: Controlled coupling of a single quantum dot to a gold nanocone antenna. Scient. Rep.
**2017**, 7, 42307. [Google Scholar] [CrossRef] [PubMed][Green Version] - Krivenkov, V.; Goncharov, S.; Samokhvalov, P.; Sanchez-Iglesias, A.; Grzelczak, M.; Nabiev, I.; Rakovich, Y. Enhancement of biexciton emission due to long-range interaction of single quantum dots and gold nanorods in a thin-film hybrid nanostructure. J. Phys. Chem. Lett.
**2019**, 10, 481. [Google Scholar] [CrossRef] [PubMed] - Maksymov, I.S.; Miroshnichenko, A.E.; Kivshar, Y.S. Plasmonic nanoantennas for efficient control of polarization-entangled photon pairs. Phys. Rev. A
**2012**, 86, 011801. [Google Scholar] [CrossRef][Green Version] - Nugroho, B.S.; Iskandar, A.A.; Malyshev, V.A.; Knoester, J. Plasmon-assisted two-photon Rabi oscillations in a semiconductor quantum dot–metal nanoparticle heterodimer. Phys. Rev. B
**2019**, 99, 075302. [Google Scholar] [CrossRef][Green Version] - Paspalakis, E.; Smponias, A.; Stefanatos, D. Coherent preparation of the biexciton state in a semiconductor quantum dot coupled to a metallic nanoparticle. J. Appl. Phys.
**2021**, 129, 223104. [Google Scholar] [CrossRef] - Nugroho, B.S.; Malyshev, V.A.; Knoester, J. Tailoring optical response of a hybrid comprising a quantum dimer emitter strongly coupled to a metallic nanoparticle. Phys. Rev. B
**2015**, 92, 165432. [Google Scholar] [CrossRef][Green Version] - Sadeghi, S.M.; Hatef, A.; Fortin-Deschenes, S.; Meunier, M. Coherent confinement of plasmonic field in quantum dot–metallic nanoparticle molecules. Nanotechnology
**2013**, 24, 205201. [Google Scholar] [CrossRef] - Stefanatos, D.; Paspalakis, E. Speeding up adiabatic passage with an optimal modified Roland–Cerf protocol. J. Phys. A Math. Theor.
**2020**, 53, 115304. [Google Scholar] [CrossRef][Green Version] - Rana, S.; Kabi, S.; Misra, K.P.; Chattopadhyay, S. Exciton and biexciton binding energy calculation in a core shell quantum dot. IOP Conf. Ser. Mater. Sci. Eng.
**2021**, 1080, 012012. [Google Scholar] [CrossRef] - Schneebeli, L.; Feldtmann, T.; Kira, M.; Koch, S.W.; Peyghambarian, N. Zeno-logic applications of semiconductor quantum dots. Phys. Rev. A
**2010**, 81, 053852. [Google Scholar] [CrossRef] - Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B
**1972**, 6, 4370. [Google Scholar] [CrossRef] - Grabert, H.; Nalbach, P.; Reichert, J.; Thorwart, M. Nonequilibrium response of nanosystems coupled to driven quantum baths. J. Phys. Chem. Lett.
**2016**, 7, 2015. [Google Scholar] [CrossRef] [PubMed] - Stefanatos, D.; Karanikolas, V.; Iliopoulos, N.; Paspalakis, E. Fast spin initialization of a quantum dot in the Voigt configuration coupled to a graphene layer. Phys. E Low Dimens. Syst. Nanostruct.
**2020**, 117, 113810. [Google Scholar] [CrossRef] - Stefanatos, D.; Karanikolas, V.; Iliopoulos, N.; Paspalakis, E. Fast optically controlled spin initialization of a quantum dot in the Voigt geometry coupled to a transition metal dichalcogenide monolayer. Phys. E Low Dimens. Syst. Nanostruct.
**2020**, 118, 113935. [Google Scholar] [CrossRef] - Stefanatos, D.; Karanikolas, V.; Iliopoulos, N.; Paspalakis, E. Rapid optical spin initialization of a quantum dot in the Voigt geometry coupled to a two-dimensional semiconductor. Appl. Sci.
**2020**, 10, 1001. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**(

**a**) Coupled semiconductor quantum dot (SQD)-metal nanoparticle (MNP) nanosystem. (

**b**) Energy levels for the biexciton system.

**Figure 2.**Left-column top to bottom: (

**a**) Logarithm of the squared error between the two sides of transcendental Equation (27) as a function of the duration ${t}_{2}$ of the intermediate (off) pulse. The negative resonance indicated with red star corresponds to the solution. (

**c**) Corresponding on-off pulse-sequence. (

**e**) Time evolution of biexciton population ${\sigma}_{22}\left(t\right)$ (blue solid line) obtained by simulating the full Equation (6) with input the above pulse-sequence. For comparison, the red dashed line shows ${\sigma}_{22}\left(t\right)$ if relaxation is ignored from the system equations. These results are obtained for interparticle distance $R=14$ nm and biexciton energy shift ${E}_{B}=5$ meV. In the right-column (

**b**,

**d**,

**f**) we display similar plots for the case with the same $R=14$ nm but larger ${E}_{B}=8$ meV.

**Figure 3.**Left-column top to bottom: (

**a**) Logarithmic squared error (28), (

**c**) pulse-sequence, and (

**e**) time evolution of ${\sigma}_{22}\left(t\right)$, for $R=13$ nm and ${E}_{B}=2.5$ meV. In the right-column (

**b**,

**d**,

**f**) we display similar plots for the case with a larger interparticle distance $R=30$ nm but the same biexciton energy shift ${E}_{B}=2.5$ meV.

**Figure 4.**Left-column top to bottom: (

**a**) Logarithmic squared error (28), (

**c**) pulse-sequence, and (

**e**) time evolution of ${\sigma}_{22}\left(t\right)$, for $R=15$ nm and ${E}_{B}=1$ meV. In the right-column (

**b**,

**d**,

**f**) we display similar plots for the case with a larger interparticle distance $R=30$ nm but the same biexciton energy shift ${E}_{B}=1$ meV.

**Figure 5.**(

**a**) Pulse-sequence duration as a function of biexciton energy shift ${E}_{B}$, for four values of the interparticle distance, $R=13$ nm (blue solid line), $R=14$ nm (red dashed line), $R=15$ nm (black dashed-dotted line), $R=30$ nm (green dotted line). (

**b**) Pulse-sequence duration as a function of interparticle distance R, for four values of the biexciton energy shift, ${E}_{B}=1$ meV (blue solid line), ${E}_{B}=2.5$ meV (red dashed line), ${E}_{B}=5$ meV (black dashed-dotted line), ${E}_{B}=6$ meV (green dotted line).

**Figure 6.**(

**a**) Final value of the population ${\sigma}_{22}\left(T\right)$ from the numerical solution of Equation (6) using the pulse-sequence obtained for each pair of values $({E}_{B},R)$ in the range shown. (

**b**) ${\sigma}_{22}\left(T\right)$ for the pulse timings obtained with the fixed reference value ${R}_{0}=15$ nm and variable ${E}_{B}$, when applied to system Equation (6) with variable R in the range ${R}_{0}\pm 1$ nm and the corresponding ${E}_{B}$. (

**c**) ${\sigma}_{22}\left(T\right)$ for the pulse timings obtained with the fixed reference value ${E}_{B}^{0}=4$ meV and variable R, when applied to Equation (6) with variable ${E}_{B}$ in the range ${E}_{B}^{0}\pm 0.5$ meV and the corresponding R. (

**d**) ${\sigma}_{22}\left(T\right)$ for the pulse-sequence obtained with fixed ${R}_{0}=15$ nm and ${E}_{B}^{0}=4$ meV, when applied to Equation (6) with variable R in the range ${R}_{0}\pm 1$ nm and ${E}_{B}$ in the range ${E}_{B}^{0}\pm 0.5$ meV.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Smponias, A.; Stefanatos, D.; Paspalakis, E.
Efficient Biexciton Preparation in a Quantum Dot—Metal Nanoparticle System Using On-Off Pulses. *Nanomaterials* **2021**, *11*, 1859.
https://doi.org/10.3390/nano11071859

**AMA Style**

Smponias A, Stefanatos D, Paspalakis E.
Efficient Biexciton Preparation in a Quantum Dot—Metal Nanoparticle System Using On-Off Pulses. *Nanomaterials*. 2021; 11(7):1859.
https://doi.org/10.3390/nano11071859

**Chicago/Turabian Style**

Smponias, Athanasios, Dionisis Stefanatos, and Emmanuel Paspalakis.
2021. "Efficient Biexciton Preparation in a Quantum Dot—Metal Nanoparticle System Using On-Off Pulses" *Nanomaterials* 11, no. 7: 1859.
https://doi.org/10.3390/nano11071859