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Abstract: K0.5Na0.5NbO3 is considered as one of the most promising lead-free piezoelectric ceramics
in the field of wearable electronics because of its excellent piezoelectric properties and environmental
friendliness. In this work, the temperature-dependent longitudinal piezoelectric coefficient d∗33
was investigated in K0.5Na0.5NbO3 single crystals via the Landau–Ginzburg–Devonshire theory.
Results show that the piezoelectric anisotropy varies with the temperature and the maximum of
d∗33max deviates from the polar direction of the ferroelectric phase. In the tetragonal phase, dt∗

33max
parallels with cubic polarization direction near the tetragonal-cubic transition region, and then
gradually switches toward the nonpolar direction with decreasing temperatures. The maximum of
do∗

33 in the orthorhombic phase reveals a distinct varying trend in different crystal planes. As for the
rhombohedral phase, slight fluctuation of the maximum of dr∗

33 was observed and delivered a more
stable temperature-dependent maximum dr∗

33max and its corresponding angle θmax in comparison
with tetragonal and orthorhombic phases. This work not only sheds some light on the temperature-
dependent phase transitions, but also paves the way for the optimization of piezoelectric properties
in piezoelectric materials and devices.

Keywords: piezoelectric; anisotropy; K0.5Na0.5NbO3; phase; temperature

1. Introduction

With the gradual deepening and prosperity of the smart wearable industry revolu-
tion, piezoelectric-based flexible electronics have attracted considerable attention because
of their promising applications in robotics [1], human–machine interaction (HMI) [2],
energy harvesters [3], and internet of things (IOT) [4]. Lead-based perovskites, such as
Pb(ZrxTi1−x)O3 (PZT) [5] and Pb(Mg,Nb)O3 (PMN) [6] ceramics, possess huge piezoelectric
properties but cause severe environmental and health concerns owing to their toxicity.
As a promising alternative to lead zirconate titanate (PZT), the K0.5Na0.5NbO3, a lead-
free ferroelectric material, has exhibited outstanding piezoelectric performance near the
polymorphic phase boundary (PPB) [7] and attracted massive attention worldwide in
recent years due to its environmental friendliness [8–13]. Owing to its unique merits of
a high piezoelectric coefficient (d33), excellent ferroelectric properties, and a high Curie
temperature (Tc = 420 ◦C), KNN has been widely utilized in energy-harvesting devices,
transducers, actuators, and sensors [14–21]. Although pristine KNN ceramics possess
relatively low piezoelectricity (d33~80 pC/N), they can be remarkably improved by tuning
sintering conditions [22], domain engineering [23], phase boundary engineering [24,25],
texturing [26], and so on. Furthermore, since the intrinsic piezoelectric response is inti-
mately associated with spontaneous polarization rotation, the anisotropy of piezoelectric
capability plays a crucial role in the application of piezoelectric materials [27]. Anisotropy
of piezoelectric properties had attracted massive attention in the 1980s, and unprecedented
large piezoelectric anisotropy was observed in lead titanate ceramics with random grain

Nanomaterials 2021, 11, 1753. https://doi.org/10.3390/nano11071753 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-1702-1903
https://doi.org/10.3390/nano11071753
https://doi.org/10.3390/nano11071753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11071753
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11071753?type=check_update&version=2


Nanomaterials 2021, 11, 1753 2 of 14

orientations [28,29]. However, limited works have focused on the piezoelectric anisotropy
of K0.5Na0.5NbO3 single crystals.

The main purpose of this work is to study the piezoelectric anisotropy of K0.5Na0.5NbO3
single crystals as a function of temperature and to unravel the impact of phase transitions
on the orientation and amplitude of the longitudinal piezoelectric coefficient. Landau–
Ginzburg–Devonshire (LGD) theory was utilized to calculate the three-dimensional surface
of the longitudinal piezoelectric coefficient d∗33 for KNN single crystals in three ferroelectric
phases as a function of temperature. Temperature-dependent free energy and spontaneous
polarization of KNN has also been investigated to interpret the derivation of piezoelectric
coefficients stemmed from temperature variation.

2. Materials and Methods

The ferroelectric capabilities of KNN single crystals were systematically investigated
through the Landau–Ginzburg–Devonshire (LGD) function. To achieve more convenience
in expressing piezoelectric coefficients in light of the coordinate system for each ferroelectric
phase, the cubic paraelectric phase was selected as the reference. The thermodynamic
potential function G of the KNN single crystal can be written as [30,31]:

G(σ, E, T) = fLGD + felastic + felectric (1)

where the Landau energy density is given by

fLGD = α1(P2
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Here, α denotes the Landau coefficients determined under the stress-free condi-
tion [28], σi denotes the ith component of stress in Voigt notation, s11, s12, and s44 denote
the elastic compliance constants of a cubic phase [29–31], and Q11, Q12, and Q44 denote the
corresponding electrostrictive coefficients between polarization and stress [32,33].

In this work, Pc
ijP, ηc

ijP, and dc
ijP denote the polarization, dielectric susceptibility, and

piezoelectric coefficient in the KNN single crystal for each phase, respectively. For studying
the orientational dependence of piezoelectric coefficients, Euler angle (ϕ, θ, ψ) is utilized to
quantitatively describe the rotation in terms of ferroelectric phase coordinates.

The Landau coefficients, elastic compliance constants, and electrostrictive coefficients
are taken from Jianjun’s previous work [34]. The dielectric constant possesses a positive pro-
portional relationship with relative dielectric stiffness (εp

ij = 1 + η
p
ij ≈ η

p
ij). K0.5Na0.5NbO3

endures a series of phase transition (cubic→tetragonal→orthorhombic→rhombohedral) in
the process of cooling from the paraelectric phase. The following relations were utilized
to calculate the temperature-dependence of piezoelectric coefficients dp

ij and dielectric

susceptibility coefficients η
p
ij of KNN crystals as a function of spontaneous polarization,

χij = ε0∂2 fLGD/∂Pi∂Pj(i, j = 1, 2, 3) (3)

ηij = Aji/∆(i, j = 1, 2, 3) (4)
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gij = −∂2 fLGD/∂Pi∂σj (5)

dij = ε0ηikgkj (6)

where Aji and ∆ refer to the cofactor and determinant of the χij matrix.

3. Results and Discussion

The LGD-free energy density fLGD of the tetragonal phase, orthorhombic phase, and
rhombohedral phases, respectively, is plotted as a function of polarization at various
temperatures, as shown in Figure 1a–c.
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Figure 1. The Calculated LGD-free energy as a function of polarization (Ps) in (a) tetragonal phase, (b) orthorhombic phase,
(c) rhombohedral phase at various temperatures.

Figures 2 and 3, respectively, elucidate the calculated dielectric susceptibility coeffi-
cients η

p
ij and piezoelectric coefficients dp

ij for K0.5Na0.5NbO3 single crystals as a function of
temperature in all three ferroelectric phases, respectively.
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Figure 3. Calculated piezoelectric coefficients for K0.5Na0.5NbO3 single crystals as functions of
temperature in all three ferroelectric phases.

According to the Landau–Ginsburg–Devonshire theory, the polarization, i.e., the
second derivative of thermodynamic potential function G, can be acquired as a function
of temperature by minimizing the total free energy in terms of polarization. Figure 4
illustrates the temperature-dependent spontaneous polarization of K0.5Na0.5NbO3 single
crystals in the three phases. It can be clearly seen that polarization goes up with the cooling
process for all the ferroelectric phases. Sudden rises were observed at the regions of phase
transitions, where 648 K for cubic to tetragonal, 469 K for tetragonal to orthorhombic,
and 130 K for orthorhombic to rhombohedral, which is consistent with the experimental
results of 694 K, 468 K and 125 K, respectively, from Egerton et al. [35]. It is worth noting
that the calculated polarization becomes zero when the temperature is approaching Curie
temperature, implying that the system switches to paraelectric phase. Figure 5 displays
the free energy (∆G) of K0.5Na0.5NbO3 single crystals in the three phases as a function of
temperatures.
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Figure 5. Free energy (∆G) of K0.5Na0.5NbO3 single crystals in the three phases as a function of
temperatures.

The piezoelectric properties are proportional to the flattening of the free energy profile.
It can be clearly seen that the tetragonal-cubic phase transition causing an enhanced dt

33
(Figure 3) can also be explained by the flattening of the free energy profile (Figure 1a).
Consequently, the delayering of the free energy profile favors the enhancement of dielectric
susceptibility. It is obvious that in the orthorhombic phase, the increasing temperature
flattens the LGD-free energy well and makes it shallower with the heating-up process
(Figure 1b), giving rise to the increase in dielectric susceptibility, and thus the increase in
its piezoelectric response (Figure 1b). As for the temperature-dependent free energy for
the rhombohedral phase in Figure 1c, the delayering of the free energy arising from the
temperature rising also contributes to the enhancement of piezoelectric coefficients lying
along a no-polar direction (Figure 3).
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In the tetragonal phase, the value of dt
33 for K0.5Na0.5NbO3 crystals in the rotated

coordinate along an arbitrary direction can be expressed as:

dt∗
33(θ) = cos θ(dt

15 sin2 θ + dt
31 sin2 θ + dt

33 cos2 θ) (7)

where angle θ denotes rotation always from [100]t. In the tetragonal phase, (P1 = P2 = 0,
P3 = Pc

3T 6= 0).
Therefore, by using Equation (7), the three-dimensional profile of calculated dt∗

33(θ)
of the tetragonal phase for three selected temperatures 500, 550, and 600 K is displayed
in Figure 6a–c, respectively. As the temperature goes down from the cubic phase to the
orthorhomibic phase, the surface of dt∗

33(θ) varies during the cooling process. The direction
of the largest dt∗

33max(θ) lies along [001]c direction at 600 K then switches to θmax = 32.5◦ at
550 K, and finally to θmax = 48.6◦ at 500 K.
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Attributed to the expression of dt∗
33(θ) in Equation (7), it is obvious that dt∗

33(θ) is
determined by three parameters dt

33, dt
31, and dt

15.
As shown in Figure 3, dt

33 and dt
15 changes rapidly near the temperature range of

tetragonal-cubic and tetragonal-orthorhombic phase transitions, respectively, while little
change in dt

31 was observed in comparison with dt
33 and dt

15. The dt
15 behaves like the

dielectric permittivity (ηt
11,ηt

22) in the cubic phase as a function of temperature and increases
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with the process of cooling down toward the ferroelectric phase. When the temperature
rises toward to the cubic phase (Figure 3), dt

33 surpasses dt
15 obviously.

As shown in Figure 2, calculated dielectric constants ηt
11 and ηt

33 vary in opposite
tendencies in the whole tetragonal phase temperature range, which gives rise to a max-
imum dt∗

33max(θ) along the polar direction in the high-temperature range. As displayed
in Figures 7 and 8, the corresponding angle θ for the maximum value of dt∗

33 varies as a
function of temperatures, which clearly demonstrates the influence of temperature on the
phase transition. It can be seen that the maximum dt∗

33max(θ) stays along [001]t at high
temperatures but deviates from [001]t to the nonpolar direction when the temperature
goes down, near the orthorhombic-tetragonal point. At the temperature T = 450 K, the
maximum dt∗

33max(θ) = 521.9 pC/N lies along the direction defined by θmax = 52.98◦. The
maximum dt∗

33max(θ) decreases at first, and then rises with increasing temperature, leading
to a minimum at 550 K. This is because dt

15 keeps increasing while dt∗
33(θ) keeps decreasing

during the cooling process, leading to the orientation variation and amplitude change of
maximum dt∗

33max(θ). It is reported that the pure KNN at 433 K exhibits a piezoelectric
coefficient of 108 pC/N [36], which is similar to our calculated results (Figure 7) along the
polar direction at 500 K. As shown in Figure 8, the angle θmax for the maximum dt∗

33max(θ)
in tetragonal K0.5Na0.5NbO3 deviates away from 0◦ once the temperature is below 560 K.
It should be noted that the dt∗

33max(θ) of KNbO3 (KNO) single crystals follows a similar
tendency as that for the KNN single crystal because they have the same phase transition
sequences and structures [37]. As for the PbTiO3 single crystal [38], the maximum dt∗

33max(θ)
lies along the polar direction at all temperatures because its shear coefficient is too small at
all temperatures to rotate d33 away from the polar direction, which is quite different from
the change trend for KNN.
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Figure 8. Maximum of piezoelectric coefficient and its corresponding angle θmax as a function of
temperature for the tetragonal K0.5Na0.5NbO3.

In the orthorhombic phase, more complex behaviors were observed in the variation
of piezoelectric coefficients as a function of temperature in K0.5Na0.5NbO3 (Figure 3).
Compared with do

31, do
32, and do

33 that are relatively insensitive to temperature, the two
different shear coefficients play a key role in piezoelectricity, where the shear piezoelectric
coefficient do

15 declines with increasing temperature, while do
24 follows an opposite tendency,

as shown in Figure 3. As a consequence, the piezoelectric coefficient do∗
33 in K0.5Na0.5NbO3

exhibits a more sophisticated temperature-dependent trend compared with the tetragonal
phase:

do∗
33(φ, θ) = cos θ[(do

15 + do
31) sin2 θ sin2 φ + (do

24 + do
32) sin2 θ cos2 φ + do

33 cos2 θ)] (8)

For the orthorhombic phase with P1 = 0, P2 = P3= Pc
3O 6= 0, the surface of the

piezoelectric coefficient at four chosen temperatures of 200 K, 250 K, 300 K, and 350 K are
respectively shown in Figure 9a–d. With a decreasing temperature, the direction of the
maximum do∗

33 was slightly changed from the polar direction [001]◦. The distinct changing
tendencies of do

15 and do
24 are apparently responsible for the 90◦ rotation of the direction

of the maximum do∗
33 in the cooling process. For instance, at 200 K, the maximum do∗

33 of
157.204 pC/N lies along the direction defined by θ = 52.4◦ and ϕ = π/2 (Figure 9a), but
switches to the direction defined by θ = 52.9◦ and ϕ = 0 at 350 K with an amplitude of
291 pC/N (Figure 9d). Note that the do∗

33 reaches up to 223.87 pC/N at 300 K, which is very
closed to the experimental results of 218 pC/N, indicating the accuracy and reliability of
our modeling and calculation [39].
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As unraveled in Figures 10–13, the temperature-dependent maximum do∗
33max and its

corresponding angle θmax are illustrated in planes of ϕ = 0 and ϕ = π/2 to systematically
indicate the piezoelectric anisotropy of the orthorhombic K0.5Na0.5NbO3, where the di-
rection of the maximum do∗

33max is rotated by 90◦ with an increasing temperature, and its
amplitude attains the largest value in the high-temperature range when approaching the
tetragonal phase.
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According to the calculated LGD-free energy-polarization relationship as plotted in
Figure 1b, the flattening of the LGD-free energy well arising from temperature growth
enhances dielectric susceptibility, as well as piezoelectric response. This tendency fur-
ther endows stronger effects on the piezoelectric response of KNN single crystals in the
tetragonal-orthorhombic transition instead of the orthorhombic-rhombohedral transition.

As for the low-temperature rhombohedral phase, the orientation dependence of dr∗
33

can be given by

dr∗
33(θ, ψ) = dr

15 cos θ sin2 θ − dr
22 sin3 θ + dr

31 sin2 θ cos θ + dr
33 cos3 θ (9)

As displayed in Figure 14a–c, similar three-dimensional surfaces of dr∗
33 were observed

at temperatures of 50 K, 75 K and 100 K, implying that the temperature variation in the
rhombohedral phase causes less impact on the three-dimensional surface of dr∗

33 in com-
parison with those for the tetragonal and orthorhombic phase. Since no lower-symmetry
phase exists as the temperature is approaching toward 0 K, the rhombohedral phase is the
most stable one, and the three-dimensional surface of dr∗

33 remains unchanged when the
K0.5Na0.5NbO3 single crystal was gradually frozen during the cooling process.
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It is found that dr
15, dr

22 (negative value) are proportional to the temperature, while dr
32

and dr
33 are almost temperature independent in the rhombohedral phase (Figure 3). As a

result, the three-dimensional surface of dr
33 slightly varies with varying temperatures, as

shown in Figure 14a–c. At 50 K, the maximum dr∗
33 of 284.444 pC/N lies along the direction

defined by θ = 60.9◦ and ϕ = 0 (Figure 14a), while at 100 K, the maximum dr∗
33 switches to the

direction defined by θ = 61.1◦ and ϕ = 0 with an amplitude of 327.5 pC/N (Figure 14c). The
dependence of the piezoelectric coefficient dr∗

33 in KNN on the θ under various temperatures
is revealed in Figure 15. The direction of the maximum value of dr∗

33 varies with rising
temperatures from 0 K to 130 K in the rhombohedral phase (Figure 16). Both maximum
dr∗

33max and its corresponding angle θmax are proportional to the temperature. The angles θ
are higher than θ = 54.73◦, which is consistent with the [001]c (or [111]r) direction.
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Figure 16. Maximum and its corresponding angle θmax as a function of temperature for the rhombo-
hedral K0.5Na0.5NbO3.

According to the expression of dr∗
33 in Equation (9), dr∗

33 reveals an asymmetry attribute
with respect to the axis defined by θ = 90◦. It is obvious that the enhanced dielectric suscep-
tibility, which is perpendicular to the polar direction, renders the large change in dr

15. The
polarization rotation near the phase transition region gives rise to the increase of piezoelec-
tric response upon the heating process, which brings about the rotation of the maximum
dr∗

33max and the slight variation in dr
33. Furthermore, with respect to the LGD-free energy

profile (Figure 1c), the delayering of the free energy well with increasing temperatures
indicates that the piezoelectric coefficients enhance toward a no-polar direction.

4. Conclusions

In summary, LGD thermodynamic theory was utilized to investigate the temperature-
induced phase transition and evolution of three-dimensional d∗33 surface in KNN single
crystals. The dielectric softening along the direction perpendicular to the polarization axis
is responsible for the direction change of the maximum d∗33 under various temperatures.
During the ferroelectric phase transition, the increase of shear piezoelectric coefficients
renders a significant enhancement in d∗33 along the non-polar direction. This work not only
looks into the fundamental understanding of the temperature-dependent phase transitions,
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but also paves the way for the optimization of piezoelectric properties in ferroelectric
materials.
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