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Abstract: Nanocomposites were prepared by adding graphene nanoplatelets (GNP) into epoxy
with a variety of loadings. The thickness of GNPs used in this study was in a range of 1 nm to
10 nm. Nanocomposite film was deposited on the aluminum (Al) substrate via a spinning coating
process. Tensile tests were carried out to determine the elastic modulus, ultimate strength and fracture
strain of the nanocomposites. Theoretical prediction of the fracture toughness of the film/substrate
composite structure with an interfacial crack under mode I loading was derived utilizing linear
elastic fracture mechanics theory. Four-point bending tests were performed to evaluate the mode
I fracture toughness. It was observed that the performance of the nanocomposite, such as elastic
modulus, ultimate strength, and fracture toughness, were significantly enhanced by the incorporation
of GNPs and increased with the increase in GNP concentration. The elastic modulus and mode I
fracture toughness of the epoxy reinforced with 1 wt.% of GNPs were increased by 42.2% and 32.6%,
respectively, in comparison with pure epoxy. Dispersion of GNPs in the epoxy matrix was examined
by scanning electron microscope (SEM). It can be seen that GNPs were uniformly dispersed in the
epoxy matrix, resulting in the considerable improvements of the ultimate strength and fracture
toughness of the nanocomposite.

Keywords: graphene nanoplatelet; nanocomposite film; fracture toughness; interfacial crack

1. Introduction

Since the discovery of graphene in 2004 by Novoselov and Geim [1,2], graphenes have
received tremendous attention from both academia and industry due to their excellent
electrical, mechanical, and thermal properties. Graphene consists of carbon atoms laid in a
single layer with a thickness of one atom, bonded by sp2 to form a hexagonal structure,
leading to extraordinary in-plane functional and mechanical properties. It has been consid-
ered as a promising nanofiller for reinforcement. Graphene exhibits better performance
in comparison with other fillers such as carbon black, carbon nanotube and nano-silica
owing to its outstanding mechanical strength and electrical conductivity. Rafiee et al. [3]
investigated mechanical properties of epoxy based nanocomposites with multi-walled
carbon nanotube (MWCNT), single-walled carbon nanotube (SWCNT) and GNP additives.
They reported that the tensile strength of the nanocomposites reinforced with 0.1 wt.%
of MWCNT, SWCNT, and GNP was improved by 14%, 11%, and 40%, respectively, in
comparison with pristine epoxy. Rafiee et al. [4] studied the buckling of nanofillers rein-
forced nanocomposite beam. They found that incorporation of 0.1 wt.% MWCNT, SWCNT,
and GNP into the epoxy resin, the critical buckling load was increased by 6.2%, 15%, and
52%, respectively, in comparison with neat epoxy. Chandrasekaran et al. [5] reported the
increases in fracture toughness for MWCNT/epoxy and GNP/epoxy nanocomposites
with 0.5 wt.% of nanofillers were 8% and 25%, respectively, while compared with pure
epoxy. Polymer based nanocomposites have been successfully used in many industries
especially in the fields of aerospace, automobile, electronic, and wind turbine. Graphene
exhibits a larger surface to volume ratio in comparison with CNT, making it more effective
for enhancing the electrical, thermal, and mechanical properties of the polymer based
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matrices [6]. Moreover, the cost of GNP is less expensive than that of CNT, since GNP can
be easily fabricated from a graphite in a large quantity. Polymer/graphene nanocomposites
have attracted a great attention in scientific community due to significant improvement of
mechanical property at very low fractions [7–9]. Liang et al. [10] reported an increase of
76% in ultimate strength accompanied by an increase of 62% in elastic modulus for poly
(vinyl alcohol) epoxy composite incorporation with 0.7 wt.% of graphene. Zhao et al. [9]
illustrated an increase of 150% in ultimate strength with 1.8 wt.% of graphene in poly (vinyl
alcohol) nanocomposites.

Epoxy has been extensively used in many engineering applications including wear
protection, adhesives, encapsulation for electronic devices, and as a polymer matrix for
nanofillers reinforced nanocomposite [11]. Epoxy based nanocomposites reinforcing with
GNPs have been experimentally studied by many researchers [5,12,13]. The results depict
significant improvement in fatigue, mechanical, and thermal properties. It was observed
that the degree of dispersion of GNPs in the epoxy resin is a critical issue in the determina-
tion of nanocomposite properties. GNP has an intrinsic tendency of agglomeration due
to van der Waals force in conjunction with a large surface area. Moreover, π-π bonding
interactions among the carbon atoms enhance the stacking of GNPs. The agglomeration of
GNPs in the polymer matrix due to the poor dispersion not only considerably reduces their
reinforced efficiency but also causes slippage between the neighboring graphene, resulting
in a decrease in load transfer. In recent years, a variety of surface modification technologies
of graphene have been proposed to enhance the dispersion and interfacial interaction
of graphene in polymer matrix. Fang et al. [14] modified GNPs with aromatic amines
functional group which were covalently bonded on graphene to prepare graphene/epoxy
nanocomposites, resulting in remarkable enhancements in flexural strength and modulus
by 54% and 60%, respectively. Teng et al. [7] used pyrene molecules non-covalent stacking
on the surface of graphene through the π-π bonds, leading to a significant improvement
of the thermal conductivity for the epoxy matrix. Epoxy exhibits superior mechanical
properties, corrosion, and chemical resistance owing to the high crosslink between the
epoxy and curing agent. The high degree of crosslink makes epoxy brittle and easy to break.
A variety of reinforcements such as liquid rubbers [15], hydroxyl-terminated poly (ether
ether ketone) [16], silica [17], and clay [18] have been introduced to enhance the fracture
toughness of epoxy matrix. Although the incorporation of rubbers and thermoplastic
polymers significantly improved the fracture toughness of the epoxy matrix, the high
loadings of these reinforcements can reduce the other mechanical and thermal proper-
ties, such as stiffness, strength, and glass transition temperature [11]. To overcome this
issue, high stiffness nanofillers such as CNTs [19] and GNPs [20] have been employed to
toughen epoxy.

Most of existing literatures focused on the improvements of Young’s modulus and
tensile strength for GNP reinforced nanocomposites. Fracture toughness is rarely studied,
in particular for the interfacial fracture toughness of a nanocomposite film/substrate
composite structure. Epoxy deposited on a substrate has a great potential application in
adhesive bonding and protective coating. Debonding between the film and substrate is
critical and required intensive study to meet the structural safety requirement. The novelty
of present work is that a theoretical model in combination with experimental test were
proposed to reveal the reinforcement effect of GNP on the interfacial fracture toughness of
the nanocomposite film/substrate composite structure. Adhesively bonded joint between
two components is a practical application of film/substrate composite structure which can
be subjected a variety of loadings including tension, compression, and bending in service.
In this work, the graphene/epoxy nanocomposite was prepared via a surfactant assisted
process. Triton X-100 was employed to modify the GNPs to increase the compatibility and
wettability within epoxy resin. Geng et al. [21] has demonstrated the effectiveness of Triton
X-100 for the dispersion of CNTs in epoxy resin. Moreover, the dispersion of GNPs in the
epoxy resin was conducted using a tip sonication. Nanocomposite film was deposited
on the Al substrate via a spinning coating process. Theoretical prediction of the fracture
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toughness of the film/substrate composite structure with an interfacial crack under mode I
loading was derived utilizing linear elastic fracture mechanics theory. The mode I fracture
toughness was experimentally determined using a four-point bending test. The influence
of GNP concentration on the fracture toughness, elastic modulus and ultimate strength of
the nanocomposite was investigated.

2. Materials and Methods
2.1. Nanocomposite Preparation

The graphene nanoplatelets (GNP) were purchased from Uchess Co. (New Taipei City,
Taiwan). The thickness of GNP was varying from 1 nm to 10 nm, while the lateral dimension
was in a range of 0.5 µm to 20 µm. The epoxy used in this work was Mungo 4200A part
A and hardener 4200B part B provided by Golden Root Co., Ltd. (Taipei City, Taiwan).
The mixed ratio between the epoxy resin and hardener was 2:1 in weight according to the
recommendation of the manufacturer. To decrease the viscosity of the liquid epoxy, ethanol
was added into the epoxy. After incorporation of GNPs into the liquid epoxy, the dispersion
was performed by a sonicator (Q700, Qsonica L.L.C., Newtown, CT, USA) through a horn
sonication process. The sonication prob was immersed in the mixture and worked at a pulse
mode with 10 s on and 20 s off for 20 min. Consequently, the hardener was incorporated
into the mixture, and manually mixed for 20 min. After that, the GNP/epoxy mixture was
placed in a vacuum chamber at a constant temperature of 25 ◦C for 60 min to degas the
trapped air due to the stirring. The degassed nanocomposite was poured into an aluminum
mold, as illustrated in Figure 1, to prepare the tensile testing specimen. In addition, the
degassed nanocomposite was deposited on the Al substrate as depicted in Figure 2 which
was held on a spinning coating machine (RMT-SC 150SS, Reliable-Mate Technology Co.
Ltd., Shin-Chu City, Taiwan). The film thickness of the nanocomposite deposited on the Al
substrate can be modulated by varying the rotating speed of the spinning coating machine.
The nanocomposite was cured in a thermal chamber at a constant temperature of 40 ◦C for
24 h. In this work, the film thickness deposited on the Al substrate was kept at a constant
of 0.3 mm. Nanocomposites with four different GNP concentrations varying from 0.3
to 1 wt.% were prepared to investigate the effect of GNP content on the mode I fracture
toughness and tensile mechanical properties.
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Figure 2. Nanocomposite deposited on Al substrate.

2.2. Fracture Surface Morphology

It is well known that carbon based nanofillers such as carbon nanotube (CNT) and
graphene nanoplatelet (GNP) have a tendency of agglomeration owing to van der Waals
force and π-π bond. Dispersion of GNPs in the matrix is a critical and challenging issue.
The performance of the nanocomposite is heavily relied on the dispersion of nanofillers in
the matrix. The dispersion of GNP in the epoxy matrix can be investigated through the
morphology of the fracture surface. In this work, the morphology of the fracture surface
of the nanocomposite was characterized via SEM (JSM 7600F, Jeol Co.,Tokyo, Japan). The
specimen was coated with platinum and operated at an accelerated voltage of 10 kV. SEM
images of the fracture surfaces for the neat epoxy, nanocomposites reinforced with 0.5 wt.%
and 1.0 wt.% GNPs are illustrated in Figure 3a–c, respectively. It can be seen that the
fracture surface for the neat epoxy exhibits a smooth morphology in comparison with
GNP reinforced nanocomposites. This demonstrates that neat epoxy has a low resistance
to the crack propagation. In addition, uniform dispersion of GNPs in the epoxy matrix
can be conformed from the SEM images of the fracture surface. Thus, tensile mechanical
properties of the nanocomposite can be enhanced by incorporation of GNPs into the epoxy
matrix. Conversely, poor dispersion due to the GNP agglomeration leads to the formation
of voids or defects, may reduce their reinforcement effect on the mechanical properties.
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2.3. Mode I Fracture Toughness

The mode I interfacial fracture toughness of film/substrate composite structure with
a crack along the interface was derived based on the linear elastic fracture mechanics.
Figure 4 illustrates the theoretical model of this study. To prepare an interfacial crack of the
film/substrate composite structure, silicone oil was deposited on the central area of the Al
substrate before the nanocomposite was poured onto the Al substrate. After the curing of
nanocomposite, debonding between the nanocomposite film and Al substrate occurred
in the central area where the silicone oil was deposited results in an interfacial crack. A
notch was introduced to the middle of nanocomposite film so that a four-point bending
loading exerted on the composite beam with interfacial crack can induce opening fracture
mode. The film/substrate composite beam was under a four-point bending loading. The
interfacial crack region which is located in the middle of the composite structure is subjected
to a constant moment, leading to a mode I opening mode. The strain energy release rate
of the composite beam exhibits in a steady state while the crack length is much longer
than that of the thickness of the film. Utilizing the symmetric condition, the right half
of the composite structure was subjected to a bending moment of M = Pd as depicted in
Figure 5. As the crack grows from a to a + δa, the variation of the strain energy stored in the
composite structure after the crack propagation can be calculated as follow.

δW =
∫ δa

0

M2

2EI
dx−

∫ δa

0

M2

2Es Is
dx (1)

E I =
b

12

E f h3
f + Esh3

s + 3E f Esh f hs

(
h f + hs

)2

E f h f + Eshs

 (2)

where Es and E f denote the elastic moduli of the substrate and nanocomposite film, re-
spectively; hs and h f represent the thicknesses of the substrate and nanocomposite film,
respectively; b is the width of the composite beam; E I is the flexural rigidity of the
composite beam.
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Strain energy release rate considered as the energy available for an increment of crack
propagation is defined as follow.

GI = lim
δA→0

∣∣∣∣ δW
δA

∣∣∣∣ = lim
δa→0

∣∣∣∣ δW
bδa

∣∣∣∣ (3)

Substituting Equation (1) into Equation (3) leads to the mode I strain energy release
rate as follow.

GI =
6M2

b2

 1
Esh3

s
−

E f h f + Eshs(
E f h3

f + Esh3
s

)(
E f h f + Eshs

)
+ 3E f Esh f hs

(
h f + hs

)2

 (4)

3. Results and Discussions
3.1. Tensile Mechanical Properties

Tensile tests were employed to determine the mechanical properties including the elas-
tic modulus, fracture strain, and tensile strength of the GNPs reinforced nanocomposites.
In this work, experimental tests were conducted according to the ASTM standard D638
with a constant loading rate of 5 mm/min at room temperature by a tensile testing machine
(H10KS, Hounsfield Test Equipment Ltd., Surrey, UK). Figure 6 shows the stress vs. strain
curves of the nanocomposites with four different GNP concentrations in a range of 0.3 wt.%
to 1 wt.% from the tensile tests. In addition, the stress vs. strain curve of the neat epoxy was
also presented for the comparison. Utilizing the stress vs. strain curve, the elastic modulus
of the nanocomposite was obtained from the slope of the linear elastic region, while the
yield strength can be extracted using the 0.2% offset. Tensile mechanical properties of
the nanocomposites incorporated with various contents of GNPs are listed in Table 1. It
appears that the tensile properties such as the ultimate strength, yield strength, and elastic
modulus are increased with the increasing of GNPs as illustrated in Figure 7, while the
fracture strain exhibits in an opposite trend as shown in Figure 8. The tensile testing results
demonstrate that the strength properties of the nanocomposite are enhanced by the incor-
poration of GNPs at the expense of ductility, i.e., low strain to fracture. The elastic modulus,
yield strength, and ultimate strength of the nanocomposite reinforced with 1.0 wt.% of
GNPs are improved by 42.2%, 27.2%, and 26.9%, respectively, in comparison with neat
epoxy, while the fracture strain is decreased by 35.3%. The performance of nanocomposite
is significantly affected by its individual components (nanofillers and polymer matrix).
Lee et al. [22] reported a tensile strength of 130 GPa for GNP. The reinforced effect of
GNPs in epoxy matrix is a complex issue. It involves several factors such as load transfer,
stress concentration, and agglomeration. Among them, load transfer from GNP to epoxy
matrix is a key issue to improve the elastic modulus and ultimate strength. Tang et al. [12]
investigated the interface between the graphene and epoxy matrix using TEM. They found
that GNP agglomeration due to a poor dispersion induced gap and debonding between the
graphene and epoxy matrix, leading to stress concentration and reducing load transfer. The
poorly and highly dispersed RGO (reduced graphite oxide) at 0.2 wt.% content increased
24% and 52% in stress intensity factor, respectively. It is well known that a strong interfacial
interaction between the GNP and epoxy matrix play an important role to improve the load
transfer. On the contrary, stress concentration and agglomeration reduce the reinforcement.
Poor dispersion causes the formation of micro voids, leading to the stress concentration in
the epoxy matrix. Stacking behavior of GNPs owing to a large surface area in conjunction
with the van der Waals force make GNPs tend to agglomerate. Slippage of the overlapped
GNPs can be occurred while the tensile load is applied. As a result of the load transfer from
the GNP to the epoxy matrix is reduced. Thus, the improvements in the elastic modulus
and ultimate strength of the GNP reinforced nanocomposite are attributed to the strong
interfacial interaction and uniform dispersion of GNPs in the epoxy resin.
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3.2. Fracture Toughness

The theoretical derivation of the mode I fracture toughness for the film/substrate com-
posite beam with an interfacial crack was presented in Section 2.3 as shown in Equation (4).
In this work, experimental tests were conducted to determine the mode I fracture toughness
based on the four-point bending test. The geometrical dimensions of the test specimen
were 200 mm in length and 19 mm in width. The thicknesses for the Al substrate and
nanocomposite film were 2 mm and 0.3 mm, respectively. The length of the interfacial
crack was 50 mm. The as prepared composite beam is illustrated in Figure 9, consisting
of a nanocomposite film on the Al substrate with an interfacial crack. The film/substrate
composite beam was under a four-point bending test as depicted in Figure 10. The test
specimen was placed on a four-point bending fixture. There is a ruler on the top and
bottom of the fixture as shown in Figure 10. Thus, the test specimen can be adjusted and
placed on the correct position with the aid of rulers. The distance between the two outer
loadings was 180 mm, while the distance between the two simply supports was 80 mm.
A bending moment of M = P × d was applied on the middle region of the composite
beam where P is the applied load and d = 50 mm. The load was slowly increased to
reach a critical load Pcr which initiates the propagation of the interfacial crack. Since the
GNP/epoxy nanocomposite exhibits a black color even at a very low concentration of GNP,
it is difficult to identify the crack tip. To overcome this issue, red ink was dropped into the
unbonded region where the interfacial crack was occurred as shown in Figure 11. The crack
and uncrack regions can be distinguished by the red and black colors, respectively. The
contrast in colors make the observation of crack propagation easier. The interfacial crack
propagation was initiated at the critical load Pcr as shown in Figure 12. The mode I strain
energy release rate GIc is readily to be evaluated by substituting the critical load Pcr into
Equation (4). Three test specimens were prepared and performed the four-point bending
tests for each GNP concentration. The average of the three test results was presented in this
work. The mode I fracture toughness of nanocomposite film reinforced with GNPs ranging
from 0 wt.% to 1 wt.% are presented in Table 2. It can be observed that the mode I interfacial
fracture toughness of film/substrate composite structure is increased with the increasing
of GNP concentration in nanocomposite film as depicted in Figure 13. The mode I fracture
toughness of the nanocomposite film reinforced with 1.0 wt.% of GNP is enhanced by 32.6%
while compared with pure epoxy. Fracture toughness is considered as a measurement of
energy required to initiate crack propagation which is an important property relative to
the structural safety. The toughening effect of GNPs in the epoxy resin may be attributed
to: (i) excellent strength of GNP; (ii) good dispersion in epoxy resin; (iii) strong interfacial
interaction between the GNPs and epoxy. Two-dimensional geometry of GNP exhibits a
large aspect ratio and surface area. This makes GNP more accessible to share loads and
prevent crack propagation in comparison with other nanofillers, such as CNT and carbon
black. The morphology of the fracture surface of neat epoxy is very smooth, as shown in
Figure 8a. It demonstrates brittle fracture characteristics with rapid crack propagation after
the crack initiation. On the contrary, the fracture surface of nanocomposite reinforced with
GNPs appears in a coarser morphology as shown in Figure 3b,c. It is noted that GNPs
provide obstacles to the crack propagation. Crack path in the epoxy matrix can be affected
by the incorporation of GNPs. When crack propagation proceeds to meet GNPs, crack is
deflected and continue to propagate along three possible paths: (1) crack wraps around
the GNP; (2) crack splits into two cracks to detour GNP; (3) crack penetrates in between
the layers to split the agglomerate GNPs in two. These damage mechanisms were also
reported by Mefford et al. [23] and Chandrasekaran et al. [24]. Thus, these crack propaga-
tion processes cause the crack to take more tortuous paths, leading to a rough surface and
consuming more fracture energy for free surface energy according to Griffith model. Thus,
incorporation of GNPs into epoxy matrix can effectively prevent the crack propagation and
consume more energy, leading to a remarkable enhancement of the fracture toughness.
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Table 2. Mode I fracture toughness of the nanocomposite film reinforced with various GNP concentrations.

GNP wt.%

Specimen 1 Specimen 2 Specimen 3
Average Strain
Energy Release
Rate GI (J/m2)

Critical Load
Pcr (N)

Strain Energy
Release Rate Critical Load

Pcr (N)

Strain Energy
Release Rate Critical Load

Pcr (N)

Strain Energy
Release Rate

GI (J/m2) GI (J/m2) GI (J/m2)

0% 68.6 216.14 72.8 218.12 70.6 216.66 216.97 ± 0.83
0.3% 75.2 233.52 74.4 231.25 77.5 232.65 232.47 ± 1
0.5% 83.2 251.63 86.5 251.21 86.1 253.39 252.07 ± 0.86
0.8% 89.5 266.21 89.2 265.83 92.5 266.47 267.17 ± 1.34
1% 103.1 285.65 99.5 288.56 101.2 285.52 286.58 ± 1.98
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4. Conclusions

In this work, GNP reinforced nanocomposite was prepared and successfully deposited
on an Al substrate using horn sonication in combination with spinning coating technologies.
The thickness of GNPs was ranging from 1 nm to 10 nm. Theoretical prediction of mode I
fracture toughness of nanocomposite film on an Al substrate was derived utilizing linear
elastic fracture mechanics theory. Tensile and bending tests were carried out to evaluate
the tensile properties and mode I fracture toughness of the nanocomposite, respectively.
It was observed that the tensile strength and fracture toughness of the nanocomposite
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incorporated with 1.0 wt.% of GNPs were increased by 26.9% and 32.6%, respectively, in
comparison with pure epoxy. The reinforced effect of GNP may be attributed to uniform
dispersion in conjunction with good interfacial interaction between the GNP and epoxy
matrix for enhancing the load transfer and preventing crack propagation. SEM images
of the fracture surfaces demonstrated a good dispersion of GNPs and also confirmed the
toughen mechanism for the improvement of the fracture toughness. Adhesively bonded
joint between two components is a practical application of film/substrate composite struc-
ture which can be subjected a variety of loadings including tension, compression, and
bending in service. Present approach provides a theoretical model and experimental test to
evaluate the fracture behavior of adhesively bonded joints.
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