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Abstract: As an atomically thin semiconductor, 2D molybdenum disulfide (MoS2) has demonstrated
great potential in realizing next-generation logic circuits, radio-frequency (RF) devices and flexible
electronics. Although various methods have been performed to improve the high-frequency charac-
teristics of MoS2 RF transistors, the impact of the back-gate bias on dual-gate MoS2 RF transistors is
still unexplored. In this work, we study the effect of back-gate control on the static and RF perfor-
mance metrics of MoS2 high-frequency transistors. By using high-quality chemical vapor deposited
bilayer MoS2 as channel material, high-performance top-gate transistors with on/off ratio of 107 and
on-current up to 179 µA/µm at room temperature were realized. With the back-gate modulation,
the source and drain contact resistances decrease to 1.99 kΩ·µm at Vbg = 3 V, and the corresponding
on-current increases to 278 µA/µm. Furthermore, both cut-off frequency and maximum oscillation
frequency improves as the back-gate voltage increases to 3 V. In addition, a maximum intrinsic f max

of 29.7 GHz was achieved, which is as high as 2.1 times the f max without the back-gate bias. This
work provides significant insights into the influence of back-gate voltage on MoS2 RF transistors and
presents the potential of dual-gate MoS2 RF transistors for future high-frequency applications.

Keywords: MoS2; radio-frequency transistors; contact resistance; dual-gate

1. Introduction

Since the first exfoliation of atomically thin graphene [1], two dimensional (2D) mate-
rials have demonstrated a wide range of remarkable properties for applications in future
ubiquitous electronics [2,3]. Compared to bulk materials, their atomic-scale thickness pro-
vides a greater degree of electrostatic control, demonstrating the possibility of ultra-short
channel devices with low power consumption [4]. As the most widely studied 2D mate-
rial, graphene has shown great potential for device applications including high-frequency
electronics, flexible electronics, spintronics, nanoelectromechanical systems, and energy
storage due to its unique physical properties [5–12]. However, graphene does not have a
band gap to limit its application in digital logic devices, and it also limits the maximum
oscillation frequency of graphene radio-frequency (RF) transistors. Although band gap can
be opened in graphene by artificial nanostructuring, chemical functionalization, etc., those
processes add extra complexities with respect to practical applications [13]. Alternatively,
another class of 2D material, called transition metal dichalcogenides (TMDCs) (MoS2, WS2,
MoSe2, and WSe2), not only exhibits many graphene-like properties, such as mechanical
flexibility, electrical properties, chemical stability, and the absence of dangling bonds, but
also possesses a substantial band gap. TMDCs benefit from a rich pool of elements, and
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thus they can significantly adjust their electrical properties from metal to semiconductor by
forming different compounds. A distinct feature of TMDC semiconductors is that the cor-
responding energy band structure changes from an indirect band gap to a direct band gap
when the material thickness decreases from bulk material to monolayer. They show a wide
range of bandgap modulation capability because of rich choices of chemical components,
which enables the electronic application of various kinds. As the most studied TMDC
material, MoS2 has a non-zero band gap structure similar to bulk silicon, making it an ideal
choice for making next-generation electronic and optoelectronic applications [4,14–20].

With technological advancements, the high-frequency performance of MoS2 devices
has attracted tremendous attention [16,18,21–24]. The high-frequency performance of MoS2
RF transistors has been improved through optimizing structure such as self-aligned gate,
embedded gate and edge-contacted, etc. [24–26]. In 2014, exfoliated MoS2 RF transistors
with self-aligned gate demonstrated intrinsic cut-off frequency f T of 42 GHz and maximum
oscillation frequency f max of 50 GHz were reported [25]. In 2015, Krasnozhon et al. intro-
duced edge-contacted in exfoliated trilayer MoS2 RF transistors, obtaining a high extrinsic
f T of 6 GHz and intrinsic f T of 25 GHz [26]. In 2017, with an optimized embedded gate
structure, chemical vapor deposition (CVD) monolayer MoS2 transistors with extrinsic
f T of 3.3 GHz and f max of 9.8 GHz were fabricated [24]. In 2018, based on high-quality
CVD bilayer MoS2, high-frequency MoS2 transistors with extrinsic maximum oscillation
frequency of 23 GHz were demonstrated [16]. Gigahertz frequency mixer and amplifier
based on MoS2 high-frequency transistors were also constructed for potential RF circuit
applications [16,27]. Those works demonstrated the potential of 2D MoS2 for future novel
high-frequency electronics. Although the high-frequency performance of MoS2 RF transis-
tors has made exciting advances, its cutoff frequency and maximum oscillation frequency
are still lower than those of modern Si transistors, and the high-frequency performance of
dual-gate MoS2 transistors has not yet been reported.

In this dual-gate structure, the source and drain contact resistances can be modulated
via the back-gate voltage, and the influence of the contact resistance on the direct-current
(DC) and high-frequency performance of the device can be clearly resolved [28]. Bolshakov
et al. presented a near-ideal subthreshold swing of ~60 mV/dec and a high field effect
mobility of 100 cm2/Vs based on dual-gate MoS2 transistors with sub−10 nm top-gate di-
electrics [29]. Lee et al. modulated the contact resistance and threshold voltage of dual-gate
MoS2 transistors with h-BN as gate dielectric through back-gate electrostatic doping [30].
Li et al. demonstrated a high photoresponsivity of 2.04 × 105 AW−1 with dual-gate MoS2
phototransistors [31]. The dual-gate structure could also be used to investigate the effect of
different dielectric interface on the device performance [32]. In addition, based on the dual-
gate structure, graphene RF transistors with improved high-frequency performance by
reducing the contact resistance using electrostatic doping have been demonstrated [33,34].
Thus, the influence of back-gate voltage on the high-frequency performance of MoS2 RF
transistors needs further investigation, which is of great significance for further improving
the RF performance of MoS2 transistors.

In this study, we fabricated dual-gate MoS2 RF transistors with a top-gate length of
190 nm based on the CVD grown bilayer MoS2. The static and high-frequency charac-
teristics of dual-gate devices were systematically investigated. The contact resistances
of the fabricated dual-gate devices under different back-gate voltages were extracted. A
clear modulation of contact resistance Rc under the electrostatic doping of back-gate was
demonstrated. Both DC and RF performance were improved under the electrostatic doping
of back-gate. The electrical measurement of our dual-gate high-frequency MoS2 transistors
at Vbg = 3 V demonstrated a large current density of 278 µA/µm, a high intrinsic cut-off
frequency of 19 GHz and maximum oscillation frequency of 29.7 GHz.

2. Materials and Methods

Chemical-vapor-deposited bilayer MoS2 was used as the channel material in the dual-
gate MoS2 RF transistors as it has higher carrier mobility, lower contact resistance and
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improved low-frequency noise when compared with CVD monolayer MoS2 [16,27,35].
Additionally, the CVD method is one of the most promising methods for synthesizing
large areas and high-quality MoS2. The CVD bilayer MoS2 films were grown on soda-lime-
silica glass substrates with 1.4 g sulfur and 1.5 mg MoO3 as the precursors at atmospheric
pressure. The details about the CVD bilayer growth process, material imaging and crystal
structure characterization have been reported in our previous works [16,27]. After the
CVD growth process, bilayer MoS2 films were transferred onto highly resistive Si sub-
strates with atomic-layer-deposited (ALD) 20-nm HfLaO. Here, high-resistance Si was
used as the back-gate electrode and ALD HfLaO as the back-gate dielectric. As reported
in previous work [16,36,37], HfLaO with high dielectric constant could provide improved
interface quality and better electrostatic control with the MoS2 channel, which is helpful
for improving the DC and RF performance of the MoS2 transistors. Figure 1 illustrates
the fabrication process of dual-gate MoS2 transistors. The fabrication of the MoS2 devices
typically starts after the MoS2 films are transferred on top of the HfLaO/Si substrates.
Figure 2a presents the MoS2 films on HfLaO/Si substrates after being transferred. Then, as
shown in Figure 1b, 20/60 nm Ni/Au metal stacks were deposited by electron beam evap-
oration (EBE) as the source and drain contact electrodes of MoS2 dual-gate transistors. In
this process, the samples were loaded into the E-beam evaporator (ALPHA-PLUSCO.Ltd.,
Ebeam-500S Pohang, Korea), and it was waited until the system reaches the pressure lower
than 9 × 10−6 torr to start the deposition. The deposition rate of 20 nm Ni and 60 nm Au
was used as 1 Å/s for both materials. The electrical isolation between different transistors
was achieved by performing O2 plasma etching for 30 s under an RF power of 50 W with a
mixed gas flow of 20 sccm O2 and 80 sccm Ar.
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Figure 1. Process for fabricating the dual-gate MoS2 field-effect transistors. (a) Bilayer MoS2 is first transferred on HfLaO/Si
substrates. (b) Source and drain contact metal deposition. (c) Top-gate dielectrics of Al2O3/HfO2 deposition. (d) Top-gate
metal pattern and deposition. S: source, D: drain, G: gate.
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Figure 2. (a) The transferred bilayer MoS2 on HfLaO/Si substrates. (b–d) SEM images of the 190 nm MoS2 RF transistor
with two-fingers structure showing excellent alignment.

The top gate dielectric of the transistors is an important medium for static control of
the channel through the top gate electrode, and it has a very important influence on the
static and high-frequency performance of the device. The top-gate dielectric is similar to the
substrate dielectric, which will scatter the MoS2 channel carriers, and the dielectric defects
will also capture and release channel electrons. Because of the lack of dangling bonds on the
surface of 2D materials, growing high-quality dielectrics on top of MoS2 has always been a
challenging process [38,39], due to the adsorption of the ALD precursors on a 2D MoS2
surface often being more difficult than on conventional semiconductors with a 3D lattice,
where plenty of dangling bonds are able help the adsorption during the ALD process. In
this work, a two-step seed and growth processes were used in the formation of high-k top-
gate dielectrics. First, a 2-nm Al layer was deposited on the MoS2 surface by EBE and then
naturally oxidized in the air to form a 6-nm Al2O3 layer. Then, 11 nm of HfO2 was deposited
by ALD using O3 as the O source and tetrakis-ethylmethylaminohafnium (TEMAHf) as the
Hf source. Finally, the top-gate metal was formed with 20 nm Ni/60 nm Au metal stack by
EBE. In the above fabrication process, the patterns of the source, drain and gate electrodes
were written using electron beam lithography. In this process, poly(methylmethacrylate)
(PMMA) 950 A4 was spin-coated on the substrates at 3000 rpm for 60 s and baked at 180 ◦C
for 180 s. The electron beam was set to a 3 nA current with an exposure dose of 800 µC/cm2.
Then, the pattern was developed in a 3:1 ratio of isopropyl alcohol (IPA) to methyl isobutyl
ketone (MIBK) for 50 s, rinsed with IPA for 60 s, and dried with nitrogen gas. After the
EBE deposition of electrodes, lift-off was performed in a beaker of acetone heated to 50 ◦C
for 30 min. Then, the sample was rinsed with IPA and dried with a nitrogen flow. Figure
2b–d display the top scanning electron microscope (SEM) views of the dual-gate MoS2 RF
transistors with 190 nm top-gate length. The width of the two-fingers top-gate is 30 µm.
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3. Results and Discussion
3.1. DC Characterization

Figure 3a,c show the transfer characteristics of the dual-gate MoS2 transistor from both
the back and top-gate configuration. High on/off ratios greater than 107 were achieved for
both the back and top-gate modulation. Compared to graphene transistors, this superior
on/off ratio is due to the larger band gap [40]. Figure 3b,d show the output characteristics
under varied back and top-gate voltages. The gate voltages were varied from −3 V to
3 V with a 0.5 V step. Maximum on-current densities were observed at Vds = 4 V are
277 µA/µm and 179 µA/µm for back-gate and top-gate modulation, respectively. The
achieved maximum on-current density from back-gate is about 1.6 times the magnitude
of that from the top-gate. This comes from the different configuration of back-gate and
top-gate devices. As shown in Figure 1d, it can be seen that the highly resistive Si substrate
has global control over the entire bilayer MoS2 film. Since the channel carriers in the bilayer
MoS2 films accumulate with increasing back-gate voltage, it can be assumed that the bilayer
MoS2 is electrically doped under the effect of the back-gate voltage, which further leads to
a reduction in the contact resistance between the source/drain (Ni/Au) and the bilayer
MoS2 film. In the case of top-gate configuration, the gate can only modulate the MoS2
films underneath the gate metal [28,33,34]. In addition to the different gate structures, the
different top and bottom dielectric layer may also play a critical role in determining the
difference of DC measurement [19,32,41] and which need further investigation. In addition,
a field-effect mobility of 15.8 cm2/Vs was obtained from back-gate measurement by using
the relation µFE = gm L

WCoxVds
, where the back-gate capacitance Cox is 0.8 µF/cm2.
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Figure 3. (a,b) Transfer and output characteristics of the MoS2 dual-gate transistors from the back-gate controls.
(c,d) Transfer and output characteristics of the MoS2 dual-gate transistors from the top-gate controls.

Figure 4a shows the transfer curves of a dual-gate MoS2 transistor with sweeping top-
gate voltage at varied back-gate voltages. With the back-gate voltage increasing from 0 V
to 3 V, the on-current density increases from 166 to 278 µA/µm, and the threshold voltage
Vth negatively shifts from 1.1 to 0.1 V. To estimate contact resistances of dual-gate MoS2
transistors under different back-gate voltages, an interpolation method reported in previous
work was adopted [35,42]. In this interpolation method, contact resistances at different Vbg
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were extracted by extrapolating the drain-to-source resistance vs. 1/(Vtg − Vth), which
contains the contribution from metal/MoS2 contact and the regions between top-gate and
source/drain electrodes. The dependence of the contact resistances versus Vbg is shown
in Figure 4b. The extracted contact resistance is 5.5 kΩ·µm at Vbg = 0 V, and decreases
to 1.99 kΩ·µm at Vbg = 3 V. The reduced Rc and increased on-current at larger Vbg can
be attributed to the increased electrostatic doping carriers of bilayer MoS2 in both the
MoS2/metal contact region and channel region [28,31,33,34].
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3.2. RF Characterization

The high-frequency performance of dual-gate MoS2 transistors can be evaluated by
the cutoff frequency (f T) and the maximum frequency of oscillation (f max), which can
be obtained from the measured S-parameters [43,44]. The cutoff frequency is where the
short-circuit current gain |h21| equals unity. The short-circuit current gain |h21| can be
defined as:

h21 =
−2S21

(1− S11)(1 + S22) + S12S21
. (1)

Similarly, the maximum frequency of oscillation was found when the unilateral power
gain U was unity, where the U can be defined as:

U =

∣∣∣ S21
S12
− 1
∣∣∣2

2K
∣∣∣ S21

S12

∣∣∣− 2Re( S21
S12

)
, (2)

where K is the stability factor and K = 1+|S11×S22−S12×S21|2−|S11|2−|S22|2
2×|S12×S21|

. On-chip mi-
crowave measurements from 100 MHz to 30 GHz of the dual-gate MoS2 RF transistors
were carried out using vector network analyzers (N5225A, Agilent (Keysight), Colorado
Springs, CA, USA). Before the S-parameter measurement, the on-chip measurement system
was calibrated according to the short-open-load-through (SOLT) method using standard
impedance calibration samples. Then S parameters of the MoS2 transistors were mea-
sured, and the short-circuit current gain and the unilateral power gain can be calculated
by Equations (1) and (2). As shown in Figure 5a,c, the f T and f max of the 190 nm MoS2 RF
transistors with back-gate floating were 4.6 and 11.9 GHz, respectively. The achieved f T of
4.6 GHz and f max of 11.9 GHz were also further verified using Gummel’s method [45] and
maximum available power gain (MAG) [46], as shown in Figure 5b,d. The obtained cut-off
frequency and maximum oscillation frequency were consistent with our previous reported
work [16], demonstrating the potential of CVD bilayer MoS2 for large-scale high-frequency
circuit applications [27,35].
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Although the implementation of the standard calibration method can move the mea-
surement reference plane from the internal receiver of the vector network analyzer to the tip
of the ground–signal–ground (GSG) probe, the parasitic capacitance, inductance, and resis-
tance of the test electrodes also have a significant effect on the obtained S-parameters [27,47].
To eliminate the influence of the test electrodes on the measured S-parameters and to ob-
tain the intrinsic RF performance of the MoS2 RF transistor, this work uses the standard
“open” and “short” structures for de-embedding [25]. Then, the measured S-parameters
were converted to Y-parameters, and the de-embedding process was performed under the

following equation: Yint = [(YDUT −Yopen)
−1 − (Yshort −Yopen)

−1]
−1

, where YDUT stands
for the Y-parameter of the measured transistors. The short-circuit current gain, unilateral
power gain, and maximum available power gain versus frequency after de-embedding of
the MoS2 transistors with gate length of 190 nm are shown in Figure 6. Intrinsic f T and
f max of 18 and 14.1 GHz were achieved, respectively.
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To improve the high-frequency performance of MoS2 RF transistors, we can derive
the dependence of f T and f max on the physical parameters of the device through the
small-signal equivalent circuit model, and write them as Equations (3) and (4).

fT =
gm

2π
∗ 1
(Cgs + Cgd)[1 + gds(Rs + Rd)] + Cgdgm(Rs + Rd)

(3)

fmax =
fT

2
√

gds(Rs + Rd) + 2π fTCgRg

(4)

where gm is the transconductance and represents the channel current controlling capability
of the gate voltage, gds is the output conductance, Cgs and Cgd is the gate-to-source and gate-
to-drain capacitance, respectively. Rs, Rd and Rg are the source, drain, and gate resistances.
From Equations (3) and (4), we can see that gm, gds, Rs and Rd play an important role
in the high-frequency performance of RF transistors. Therefore, back-gate modulation
could be an effective approach for improving the high-frequency performance of MoS2
RF transistors. Figure 7 shows the intrinsic and extrinsic cut-off frequency and maximum
oscillation frequency of the device as a function of the back-gate voltage. As shown in
Figure 7a,c, when the back-gate voltage changes from 0 V to 3 V, the extrinsic and intrinsic
cut-off frequencies before and after de-embedding increase from 4.6 to 6 GHz and from
18 to 19 GHz, respectively, demonstrating an obtained peak fT increase as the increase
of back-gate voltage. The improvement of f T can be attributed to the reduced contact
resistance thus improve transconductance and on-current with increasing Vbg, as shown in
Figure 4. From the intrinsic f T of 19 GHz at Vbg =3 V, a saturation velocity of 2.3 × 106 cm/s
is obtained, which is comparable with previously reported works [16,25]. Similarly, when
the back-gate increases from 0 to 3 V, the extrinsic and intrinsic maximum oscillation
frequencies before and after de-embedding increase from 12 to 27 GHz and from 13.4 to
29.7 GHz, respectively. Because the dependence of f max on output conductance is more
sensitive, the increase of f max with increasing Vbg is larger than f T [34]. Furthermore, a
comparison between reported MoS2 RF transistors with comparable gate length [22–24] is
listed in Table 1, below, demonstrating the advantage of dual-gate MoS2 RF transistors.
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Table 1. Comparison of reported MoS2 RF transistors with comparable gate length.

MoS2 Substrate Lg (nm) f T,intrinsic f max,intrinsic References(GHz) (GHz)

Exfoliated SiO2/Si 240 6 8.2 [22]
CVD SiO2/Si 250 6.7 5.3 [23]
CVD SiO2/Si 150 20 11.4 [24]
CVD HfLaO/Si 190 19 29.7 This Work

4. Conclusions

In summary, for the first time, a systematic investigation of a dual-gate MoS2 RF
transistor based on CVD bilayer MoS2 was performed. Improved on-current and contact
resistance performance by optimizing the back-gate voltage were demonstrated. A high
on-current of 278 µA/µm and a low contact resistance of 1.99 kΩ·µm were achieved at
Vbg = 3 V. The cut-off frequency and maximum oscillation frequency can be improved
by back-gate modulation. Extrinsic and intrinsic cutoff frequency of 6 and 19 GHz were
demonstrated for a gate length of 190 nm at Vbg = 3 V. The intrinsic maximum oscillation
frequency can become 2.1 times as high as the f max without a back-gate bias. The results
presented here indicate that tuning the back-gate voltage provides an effective way to boost
f T and f max and give an insight into the high-frequency performance of MoS2 RF transistors.

Author Contributions: Conceptualization, Q.G. and C.Z.; methodology, Q.G., P.L., Y.H., K.Y. and
X.P.; validation, Q.G. and Z.Z.; formal analysis, Q.G., P.L., Z.Z. and X.P.; investigation, Q.G, Y.H.;
resources, C.Z., Z.Y., J.Y., F.C. and L.L.; data curation, Q.G.; writing—original draft preparation, Q.G.
and C.Z.; writing—review and editing, Q.G. and C.Z.; visualization, Q.G.; supervision, Q.G. and
C.Z.; project administration, Q.G. and C.Z.; funding acquisition, Q.G., Z.Y. and C.Z. All authors have
read and agreed to the published version of the manuscript.
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