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Abstract: Upconversion nanoparticles (UCNPs) are a class of inorganic fluorophores that follow the
anti-Stokes mechanism, to which the wavelength of emission is shorter than absorption. This unique
optical behavior generates relatively long-lived intermediate energy levels of lanthanides that stabilize
the excitation state in the fluorescence process. Longer-wavelength light sources, e.g., near-infrared
(NIR), penetrate deeper into biological materials such as tissue and cells that provide a larger working
space for cell biology applications and imaging, whereby UCNPs have recently gained increasing
interest in medicine. In this report, the emission intensity of a gadolinium-based UCNP was screened
by changing the concentrations of the constituents. The optimized condition was utilized as a
luminescent nanoprobe for targeting the mitochondria as a distinguished subcellular organelle within
differentiated neuroblastoma cells. The main goal of this study is to illustrate the targeting process
within the cells in a native state using modified UCNPs. Confocal microscopy on the cells treated
with the functionalized UCNPs indicated a selective accumulation of UCNPs after immunolabeling.
To tackle the insolubility of as-synthesized particles in water-based media, the optimized UCNPs
were surface-coated with polyamidoamine (PAMAM) dendrimers that due to peripheral amino
groups are suitable for functionalizing with peptides and antibodies. Ultimately, we concluded that
UCNPs are potentially versatile and ideal tools for NIR bioimaging and capable of making adequate
contrast against biomaterials to be detectable in electron microscopy (EM) imaging.

Keywords: upconversion nanoparticles; near-infrared; surface modification; organelle targeting

1. Introduction

Nanomedicine is a developing field where materials science is partially integrated
with biochemistry [1–3]. Improving the impact of theranostics and efficient therapeutics is
the main goal of nanomedicine, and numerous novel treatments have already been reported
to support the implementation of advanced nanomaterials in medicine [4,5]. The output of
quick progress in the manufacturing and design of materials in the nanometer-scale has
resulted in different types of nanoparticles (NPs) with different physical/chemical prop-
erties, shapes, and sizes. Lanthanide-doped NPs, so-called upconversion NPs (UCNPs),
are a class of fluorophore NPs that convert near-infrared (NIR) wavelengths to visible
(Vis) or ultraviolet (UV) wavelengths with the assistant of dopant activators or emitter
elements in the core of nanocrystals [6–8]. Using UCNPs in bioimaging provides various
advantages in comparison with other common fluorophores such as quantum dots (QDs),
gold NPs, and organic dyes. Foremostly, low cytotoxicity with UCNPs has attracted the
attention of biochemists to take advantage of the unique properties of these materials.
If synthesizing and modifying methods are accomplished optimally, the surface of these
nanocrystals might be well designed for the loading of bioprobes such as peptides and
antibodies, as it has been always a concern in nanomedicine to provide better platforms
for biolabeling [9]. In addition to the suitable surface of nanocrystals, the fluorescence
efficiency of fluorophores is another crucial factor for manufacturing efficacious NPs.
Improving the quantum yield (QY) of UCNPs remains one of the major considerations
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for scientists to enhance the efficiency of light microscopy in an aqueous environment.
Recent studies have exemplified the intensity optimization of UCNPs for faster, easier,
and more economical synthesizing methodologies [10,11].

Several elements can affect the QY of UCNPs, and regarding this, the core–shell strategy
with the energy migration-mediated upconversion (EMU) mechanism has produced efficient
and tunable upconversion luminescence (UCL) by employing migrators, such as gadolinium
(Gd) and ytterbium (Yb) doped within sublattices [12,13]. Luminescence transition in core–
shell UCNPs occurs between the nearest neighbors in the crystal lattice and optimal
spectral overlaps [14]. Gd3+ and Yb3+, due to having large energy gaps, 6P7/2 − 8S7/2,
32 × 103 cm−1, and 2F5/2 − 2F7/2, 10 × 103 cm−1, respectively, might be supreme energy
mediators to immigrate the energy between the layers of lanthanide-doped nanocrystals,
which possess allowed absorption bands close to Gd3+- and Yb3+-exciting levels, such as
Er3+, Tm3+, Eu3+, and Tb3+ [15–17]. Mai et al. showed that the concentration of activators
is significantly effective at UCL, and it plays a major role in the quenching coefficient [18].
In our previous work, we showed that the concentration optimization of sublattice elements
such as sensitizers within epitaxial layers can influence UCL intensity; therefore, rather than
laser, UCNPs can be excited by LED lamps that do not irradiate a focused light beam,
and this might ease wide-range in vitro and in vivo imaging [19]. Studies in previous
decades have indicated that the concentration of host lattices either in core or in shell
influence the crystal lattice structure and consequently the luminescence property [20].
However, the electron transmission in the core plays a key role in the luminescence behavior
with NIR-responsive NPs. Optimization in the structure and precursors of the crystal lattice is
one of the main factors for the manufacturing of UCNPs with high QY luminescence [21,22].

Aside from having an appropriate crystal structure and potent UCL, concern has been
expressed about the water solubility and biocompatibility of the biological application of
UCNPs [23]. To this end, several techniques, utilizing epitaxial and nonepitaxial coatings,
have been developed for improving the implementation of NPs in biomedical applica-
tions [24]. Appropriate surface modification of NPs is essential for accurate and efficient
targeting. NPs larger than 20 nm in diameter are capable of being loaded by the most com-
mon types of bioprobes such as antibodies and nucleic acids, and intriguingly, NPs smaller
than 100 nm are capable of passing through cell membranes by different pathways without
rigid prevention [25]. Numerous studies have shown that specific protein targeting plays
a prominent role in reducing the risk of elimination by the innate immune system and
boosting cellular uptakes [26].

Cellular imaging has been remarkably promoted by integrating electron microscopy
(EM) as an indispensable tool to the field. The wavelength of an electron at 100, 200,
and 300 keV in electron microscopes is 3.70, 2.51, and 1.96 pm, respectively, which makes
EM the most powerful technique with the highest resolution in imaging mode in compari-
son to the other available methods such as light and X-ray microscopies [27]. The devel-
opment of three-dimensional (3D) structure information of tissues, cells, and organelles
using cryo-electron tomography has been reached to a few nanometers, and this evolution
might be promotive in cellular imaging for characterization of the explicit structure of
biological samples [28–30].

2. Materials and Methods
2.1. Synthesizing of Core–Shell UCNPs

Boosting the luminescence efficiency and the QY of fluorophore NPs is one of the
main concerns for researchers, especially in deep-tissue light imaging. Several studies
have reported the luminescence size dependency of UCNPs [23,31], according to which,
Xue et al. indicated that the quantum efficiency of particles (LiYF4:Yb3+,Er3+) decreases
with the reduction of size from microscale to nanoscale, which is mainly due to higher
surface-quenching effects [32]. Equal efforts have been paid to reduce nonradiative decay
rates of UCL by tuning the crystal lattice of UCNPs [33], toward which Xu et al. designed a
systematic optimization approach by doping different doses of host lattices to optimize
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the size, morphology, and UCL of KLu2F7:Yb3+,Er3+ UCNPs [34]. Herein, a facile thermal
decomposition-based method is reported for enhancing the UCL intensity of core–shell
β-NaGdYF4:Yb,Er@NaGdYF4,Yb@NaGdYF4:Yb NPs (Figure S2a). Details of the protocol
are described in the Supplementary Materials. In this protocol, by adjusting the ratio of two
host lattices (Y3+ and Gd3+), different sizes of grain NPs were obtained, and subsequently,
the emission efficiency was affected. Based on our previous study, the Yb3+ concentration
was optimally fixed at 20% of the mole in each layer, and according to that, the concentration
of Y3+ and Gd3+ was proportionally altered [19]. Four different rational concentrations
were examined, and the result was four different sizes of hexagonal-phase NaGdYF4-
based nanocrystals (Figure 1a). Wide field-of-view transmission electron microscopy
(TEM) of as-synthesized UCNPs indicated high homogeneity in the size of each batch.
High-magnification TEM of a single nanocrystal indicated heterogeneity in the orientation
of crystal planes, and the investigation of this phenomenon is beyond the scope of this
paper (Figure S2b).

2.2. Functionalization of the UCNPs

In a classic chemical experiment, 50 mg of oleate-capped UCNPs (Figure S3a) dis-
persed in cyclohexane/ethanol (1:2) solution were mixed with 20 mL of 0.1 M HCl solution
and stirred for 2 h. After that, the aqueous solution was centrifuged to pellet the UC-
NPs and separate them from the supernatant. To avoid wasting the NPs, the pellet was
washed two times with 1× PBS and dispersed by pipetting in an ultrasonic water bath.
The resulting ligand-free UCNPs (Figure S3b) were incubated with 4 mL of thioglycolic
acid/water (1/2) and stirred overnight. The resulting carboxyl-terminated UCNPs were
activated by EDC (100 mg) and NHS (20 mg) in 5 mL of water for 1 h and then mixed
with 4 mL of PAMAM/water (5 mg/mL) solution for overnight stirring. The resulting
PAMAM-NH2-modified UCNPs (Figure S3c) were centrifuged and washed 3 times to
remove unconjugated PAMAMs and reacting reagents. Amino groups can react and
conjugate with the carbonyl group of the antibodies (hard chain) and carbon domain of
peptides. The PAMAM-modified UCNPs and 1 mg of peptide Pep-1 were stirred along
with HATU/DIPEA in 4 mL of aqueous solution for 1 h. The resulting peptide-conjugated
UCNPs were centrifuged at 10,000 rpm and washed to be prepared for conjugation with
antibodies. The formed peptide-labeled UCNPs were dispersed in 0.5 mL of PSB1 and
5 µL of VDAC-1 antibody along with EDC (10 mg) and NHS (2 mg) in 0.5 mL Eppendorf
tubes and incubated in an Eppendorf thermomixer with a 300 rpm speed at 18 ◦C for 2 h.
The antibody-peptide-labeled UCNPs with high dispersion in aqueous solution (Figure S3d)
were diluted and suspended in 1× PBS and stored at 4 ◦C until the moment of use.

2.3. Cell Culture

Differentiation of the SH-SY5Y human neuroblastoma cell line was accomplished
within quartz-bottom dishes. This cell line allows us to provide an appropriate in vitro
system to study the translational models for human disease, especially in neurobiology;
however, the main purpose of using differentiated cells in this work was to get thin exten-
sions for cryo-EM analysis. Culturing and differentiation of SH-SY5Y cells were performed
by following the protocol of [35]. Briefly, one aliquot of the frozen SH-SY5Y neuroblastoma
cells was rapidly thawed at 37 ◦C in a water bath, and after removing the old media by
centrifugation, the cells were plated onto a T-25 flask. The cells were incubated at 37 ◦C,
5% CO2, to reach the confluence of 75–85% in basic grow media. The healthy cells were
afterward detached from the T-25 flask using warmed 0.05% Trypsin-EDTA and seeded
onto 35 mm quartz-bottom Petri dishes, which were coated with poly-D-lysine with a
population density of 50 K cells/mL. The procedure took 18 days in total, and 3 differenti-
ating media were required that contained retinoic acid as the key factor for differentiating.
Figure S9a shows the unmatured differentiated cells at Day 1, and Figure S9b shows the
matured cells at Day 18 with long and thin elongated neuritic extensions.
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2.4. Differentiation of SH-SY5Y Cells on Gold-Coated TEM Grids

Cryo-EM on frozen cells was performed by the FEI Tecnai Spirit (120 kV) electron
microscope. The cell culturing and differentiation procedure was performed as described
above with one additional grid preparation step onto the Petri dish prior to the cell culture.
As shown in Figure S11a, gold-coated Quantifoil Holey Carbon 2/2 TEM grids were glow-
discharged for 10 s and placed onto coverslip-bottom Petri dishes, facing carbon-side up,
and coated with poly-D-lysine for 1 h. The poly-D-lysine was rinsed gently using dd-H2O
without disturbing the grid and dried under the cell culture hood after aspirating the
dd-H2O. The grids with intact integrity, which were adequately adhered to the bottom of
the Petri dish, were employed for culturing the cells. It should be noticed that a tiny gap
between the grid and the Petri dish might lead the cells to move below the grid, as the cells
prefer to sit on the top of the poly-lysine-coated glass rather than the grid. The SH-SY5Y
cells after differentiation and treatment with UCNPs were physically fixed by freezing in
liquid ethane that preserved enough cold temperature by liquid nitrogen while the fixation
procedure was running. Vitrobot is a plunge freezer that is widely used for cryo-EM studies.
By setting the plunging number to zero and manual blotting from the backside of the grid
(reverse blotting), we were able to remove the extra solution from the grid. The grids with
the mature differentiated cells on top (Figure S11b) needed to be rinsed with adequate
pure water before freezing to remove all the salts and extra proteins from the cell culture
media. Once the frozen-hydrated grid was prepared, it was inserted in the cryo-holder of
the electron microscope and kept at approximately −180 ◦C throughout the experiment.

2.5. Cell Imaging by Confocal Microscopy

Differentiated SH-SY5Y cells were treated with functionalized UCNPs with an anti-
VDAC-1 antibody to target the membrane protein on the surface of mitochondria. The mod-
ified UCNPs were dispersed in 1× PBS and mixed with the cell media with a final concen-
tration of 5 µg/mL. Staining was performed 3 times, each time after 1 h, followed by rinsing
the cell media to ensure the adequate penetration of UCNPs into the cells and no excess
particles remaining in the matrix. Adding a low concentration and timewise NPs along
with proper washing prohibits overloading and clumping of NPs on the cell membrane
and all over the Petri dish. Serial imaging of the treated cells along the Z-axis assists with
manifesting different heights of the cell body and extensions that bear accumulated UCNPs.

3. Results and Discussion

The UCL intensity of the Gd3+-sensitized UCNPs is significantly affected by the Yb3+

ions, which enable excitation energy migration from sensitizer to activator. UCL efficiency,
QY, and the lifetime could reach the maximum at the concentration of 50% Y3+ and 28%
Gd3+ in the core and 50% Y3+ and 30% Gd3+ within the shells (Figure 1b). The UC spec-
troscopy measurements (steady-state emission, lifetime, and QY) were accomplished by an
Edinburgh Automated FLS980 steady-state and time-resolved fluorescence spectrometer
under excitation of 980 nm and a power density of 25 W cm−2 for QY. The photographs of
the as-synthesized UCNPs resolved in cyclohexane under irradiation of a continuous wave-
length (CW) laser also obviously indicate that the emission of larger UCNPs is remarkably
higher (Figure 1c).
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Figure 1. (a) TEM micrographs of as-synthesized UCNPs composed of different ratios of identical precursors of various sizes;
pertinent sizes and QYs are noted. Room-temperature (b1) upconversion emission spectra and (b2) lifetime of core–shell β-
NaGdα1YβF4:Yb,Er@NaGdα2YβF4:Yb@NaGdα3YβF4:Yb NPs (black: α1, 2, and 3, respectively = 68, 70, and 70%/β = 10%;
red: α1, 2, and 3, respectively = 48, 50, and 50%/β = 30%; blue: α1, 2, and 3, respectively = 28, 30, and 30%/β = 50%;
green: α1, 2, and 3, respectively = 8, 10, and 10%/β = 70%; 20 mg/mL) under excitation of 980 nm; (c) photographs of
as-synthesized UCNPs composed of different ratios of identical precursors that produce various fluorescence intensities
against a 980 nm CW laser. Scale bars: 50 nm.

As-synthesized UCNPs were coated with oleic acid (OA), which is not water soluble
and difficult to bind to biological materials; consequently, it was substituted with an appro-
priate water-soluble linker with chemically active groups (—NH2) at the terminal sides for
binding to the C-domain (—COOH) of antibodies and peptides. Polyethylene glycol (PEG)
with different molecular weights has been used very frequently for the surface modification
of inorganic and organic NPs, but as a result of our empirical trials, PEG could not pro-
vide adequate solubility in aqueous solutions for our NPs with larger sizes in typical cell
media and buffers such as 1× phosphate-buffered saline (PBS) and higher concentrations.
Furthermore, this linker at high parenteral doses, especially higher molecular weights,
shows certain toxicological effects and accumulation in organs such as the kidney [36].
These consequences compelled us to design a nonepitaxial shell for nanocrystals to boost
their water solubility. Various techniques have been employed to transform hydropho-
bic rare-earth NPs to hydrophilic such as ligand exchange, ligand-free, and ligand in-
teraction. Zhong et al. performed the surface modification of rare-earth NPs with a
hydrophilic polymer shell by applying a van der Waals interaction between the alkyl chains
of poly (maleic anhydride-alt-1-octadecene) and the oleic acid molecules on the UCNPs [19].
Herein, polyamidoamine (PAMAM) was employed as a water-soluble polymer with low
toxicity to coat the UCNPs. Using PAMAM as a nonepitaxial shell around UCNPs provides
the NPs the capability for multivalent conjugation, drug encapsulation, and bearing the
organic dyes for the purpose of fluorescence resonance energy transfer (FRET) in combi-
nation with the UCL [37–39]. The OA on the surface of UCNPs was successfully replaced
with the PAMAM generation 4 (G4) with 64 peripheral amino groups and a size of about
4 nm in diameter. The TEM micrographs after PAMAM modification show a lower electron
density layer around the UCNPs, and the size is also compatible with the diameter of
PAMAM G4 (Figure S3c). Visual observation using a laser pen, with a wavelength of
980 nm, revealed that there was no detectable agglomeration of UCNPs even in high-salt
solutions after PAMAM coating, and these particles were homogeneously dispersed in
water and 1× PBS (Figure 2).
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Figure 2. (a) Confocal imaging of as-synthesized β-UCNPs under 980 nm excitation by Multiphoton Leica SP8 equipped
with NIR laser (a1) green and (a2) red channels; (a3) the merge of two channels. (b) Photography of surface-polished
with HCl (right bottle) and PAMAM surface-modified (left bottle) UCNPs dispersed in water. Precipitation of UCNPs
without PAMAM started relatively fast after suspension but PAMAM might keep the solubility of UCNPs up to a few
days depending on the level of coated polymer around the NPs. (c) Photography of excited UCNPs-PAMAM by a 980 nm
laser pen after suspension in water that shows high water-solubility and homogenous dispersity of UCNPs. The impact
of hydroxyl groups from water and organic polymer coat around the particles influenced the luminescence of UCNPs by
decreasing the ratio of green against red emission.

The emission of modified UCNPs using laser pen and confocal microscopy indicated
that the quenching factor and increment ratio of red to green emission is unavoidable after
surface ligand exchange and removing the OA from the UCNPs’ periphery. Fluorescence
decay caused by hydroxyl groups is a known defect on the emission of lanthanide ions-
doped NPs and mainly influenced by electron transmission of the activator (Er3+, 2H11/2,
4S3/2 -> 4F9/2) and sensitizer (Yb3+, 2F5/2 -> 2F7/2) that could be the case for the core–shell
types [40,41]. FTIR analysis also indicated the presence of fundamental groups in PAMAM
and thioglycolic acid as the linker used for surface modification (Figure S4). PAMAM is
positively charged due to a high population of amino groups located in the external layer,
and the zeta potential measurement showed discernible change variation before and after
UCNP modification (Figure S5). Positive charge associates with slowing the aggregation
of NPs, and more importantly, according to the literature, it can reduce the value of
transepithelial electrical resistance. which means the tight junctions between the epithelial
cells can be loosed and the paracellular permeability increased [42,43]. Energy dispersive
X-ray (EDX) analysis (Figure S6) of surface-modified UCNPs was performed on top of a
gold TEM grid, and the results indicated the excessive condensation of oxygen and carbon
from the polymeric shell in comparison with the diffusion rate of substances doped into the
nanocrystals such as F, Yb, and Y. The amino groups from the PAMAM may cause an amide
reaction with the carbonyl group in the carbon domain of peptides and/or antibodies,
and the entire procedure of these covalent bondings provides reliable nanoprobes for
targeting the biological objects (Figure S7).

Resazurin assay was performed for cell viability measurement. This analysis is based
on the reduction of oxidized blue dye with a slight fluorescence to a pink fluorescent
produced by living cells. The assay might be monitored by absorbance due to a minor
blue shift with the visible light absorbance of the dye. The reduction of resazurin might be
caused by reductive enzymes derived from mitochondria and cytosol [44]. The timewise
(2, 8, 24 h) resazurin assay from UCNPs with three different coating shells in three indi-
vidual concentrations (10, 50, and 100 µg/mL) indicated fainted cytotoxicity against the
SH-SY5Y cell line (Figure S8).

One of the main purposes of using the SH-SY5Y cell line was to have a differentiated
structure of this cell line where it is possible to get thin extensions of the cells (Figure S9) for
performing cryo-EM, as the regions with thick ices or nonvitrified areas are imperceptible
by 120 kV electron microscopes. This study shows that the modified UCNPs are capable of
penetrating into the cells and accumulating in certain locations within the cell body using
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Z-stack serial imaging by confocal microscopy (Figure 3). Pep-1 with both hydrophilic and
hydrophobic domains assists in the better penetration of NPs into the cells [45]. The ad-
vantages of labeling the living cells assist in understanding the dynamic process and
intracellular interactions and provide more relevant information compared to fixed-cell
imaging. The SH-SY5Y cells after differentiation were treated with antibody-modified
UCNPs for targeting mitochondria in living cells. The cells were treated without chemical
fixation to visualize the near-native state of UCNP uptake by the cells, regardless of the
exact mechanism for internalization, which is out of the scope of this study. The nonfixation
approach might confirm the feasibility of the endocytosis procedure in living cells instead
of creating artificial porousness on the cell membrane by fixative reagents. Innumerable
studies have experimented with various strategies for targeting subcellular organelles with
macromolecules and nanoparticles [46,47]. Among these approaches, confocal imaging
has been heavily utilized for cellular imaging, but due to restrictions with light imaging,
the resolution cannot be sufficient for visualizing the details of organelles in cells; therefore,
we employed cryo-EM to elevate the resolution of microscopy from the deliberated mito-
chondria targeted by UCNPs. The differentiated SH-SY5Y cells were cultured on gold EM
grids following the literature protocol by Shahmoradian et al., explained in Section 1 and
Section 2, and plunged frozen in liquid ethane [48].

Figure 3. Confocal microscopy of the differentiated SH-SY5Y cells immunostained by UCNPs
modified with Pep-1 and VDAC-1 antibody to target mitochondria. Z-stack serial imaging by a
multiphoton microscope (Leica TCS SP8 MP) under excitation of 980 nm indicated the presence and
accumulation of UCNPs in specific locations in both cell body and extensions. The same regions are
marked with different arrow colors for better observation. Scale bar: 6 µm.

Frozen SH-SY5Y cells on the grid were transferred to a 120 kV electron microscope
while well-preserved at cryogenic temperature, and imaging was performed (Figure 4a,b)
in low-dose mode.

Initial screening showed well-vitrified differentiated cells on the surface of EM grids
with adequate thin regions and extensions suitable for cryo-EM imaging (Figure 4a).
The functionalized NPs were targeted specific organelles with the least amount of agglom-
eration. Figure 4b displays the surface of a dense organelle that is covered with modified
UCNPs. At this stage, we are not capable to surely claim the targeted organelle is mitochon-
dria as this requires the correlation of light and electron microscopy (CLEM) at cryogenic
temperature, which we will accomplish in our future studies.
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Figure 4. (a) Low-magnification cryo-EM image of vitrified differentiated SH-SH5Y cells with dendrite-like extensions
on top of the TEM grid; (b) surface of a dense organelle that is coated with peptide/antibody-modified UCNPs (red
arrowheads). Inserted red boxes show a relatively higher magnification and contrast of UCNPs. Ice crystals are labeled with
white asterisks.

4. Conclusions

In summary, a core-shell approach was applied to design a bright fluorescent probe
with a 540 nm emission under 980 nm excitation. The rationale for designing such compos-
ite UCNPs lies in the unique and potent optical properties of these materials for biological
applications. It is also encouraging that the modified UCNPs caused no obvious in vitro
toxicity to the mammalian cells, which is unlike typical inorganic dyes such as QDs. The sur-
faces of UCNPs were successfully modified with antibodies for targeting the mitochondria,
and accordingly, this method can be applied for any subcellular organelle or pathogenic
inclusions such as neurodegenerative hallmarks within the neurons and cells. The imple-
mentation of cryo-EM in 2D followed by fluorescence imaging in 2D widefield and 3D
confocal modes provides a delicate technique for biological screening and localization of
fluorescent NPs within cells. As the next step, the cryo-CLEM technique might be applica-
ble, as a powerful cell imaging technique, to provide necessary localization information
with light microscopy, merged with cryo-EM to obtain an adequate resolution for the
detection of UCNPs. Cryo-electron tomography also may show a 3D view of organelles
targeted with NPs that will be considered for future experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11061541/s1, Figure S1: TEM micrographs of as-synthesized nanocrystals at core level,
Figure S2: Atomic structure illustration of as-synthesizedβ-NaGdYF4:Yb,Er@NaGdYF4,Yb@NaGdYF4:Yb
NP, Figure S3: TEMs of as-synthesized β-NaGdYF4:Yb,Er@NaGdYF4,Yb@NaGdYF4:Yb NPs, Figure
S4: FTIR analysis of synthesized UCNPs coated with PAMAM, Figure S5: Zeta potential of NPs after
before and after surface modification with PAMAM, Figure S6: EDX analysis of functionalized UCNPs,
Figure S7: Schematic illustration of chemistry procedure for the fictionalization of the UCNPs with
antibody and peptide, Figure S8: Time-dependent in vitro cytotoxicity analysis of functionalized UC-
NPs, Figure S9: Light microscopy of unmatured and matured differentiated SH-SY5Y cells, Figure S10:
Schematic drawing of localization of mitochondria within the cell by functionalized UCNPs, Figure S11:
Schematic procedure of TEM grid preparation for growing the cells.
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