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Abstract: Thermal conductive materials with reliable and high performances such as thermal inter-
face materials are crucial for rapid heat transferring in thermal management. In this work, carbon fiber
fabric and graphene reinforced segmented polyurethane composites (CFF-G/SPU) were proposed
and prepared to obtain superior thermal, mechanical and electrical properties using the hot-pressing
method. The composites exhibit excellent tensile strength and can withstand a tensile force of at
least 350 N without breaking. The results show that, comparing with the SPU material, the ther-
mal conductivity is increased by 28% for the CFF-G/SPU composite, while the in-plane electrical
conductivity is increased by 8 orders of magnitude to 175 S·m−1. The application of CFF-G/SPU
composite as a winding thermal interface material with electric-driven self-heating effect presents
good performances of fluidity and interface wettability. The composite has great advantages in phase
transition and filling the interfacial gap in the short time of few seconds under the condition of
electrical field, with the interface temperature difference between two layers significantly reduced.

Keywords: carbon fiber fabric; graphene; segmented polyurethane; composites; thermal properties;
mechanical properties; electrical properties; thermal interface material

1. Introduction

Thermal management has become a serious problem with the development of mod-
ern industry and technology, where thermal conductive materials with reliable and high
performances such as thermal interface material is crucial for rapid heat transferring [1].
Segmented polyurethane (SPU) has been rapidly developed in recent years and widely used
as adhesives, coatings, biomedical materials and thermal energy storage materials, due to
the various design of molecular structure and wide range of adjustable performances [2–4].
SPU is usually polymerized by polyester or polyether polyol and isocyanate, with excel-
lent properties of elasticity, wear resistance and corrosion resistance and poor properties
of electrical and thermal conductivities [5]. Based on these characteristics, SPU can be
used as an excellent polymer matrix for multifunctional composites, compounding with
reinforcement materials such as carbon and metal materials to obtain superior perfor-
mances including electrical conductivity, thermal conductivity, tensile strength and sensing
properties, etc. [6–8].

Carbon materials such as carbon black, carbon nanotube, carbon fiber and graphene
have been widely used in multifunctional composite materials with their unique struc-
tures and excellent thermal and electrical properties [9–15]. However, the content of
one-dimensional or two-dimensional fillers must be larger than a percolation value to
construct an interconnected structure and provide enough conducting paths for electron
transport and heat transfer [16,17]. A high content of filler can easily lead to agglomeration
and defects, thereby destroying the mechanical properties of composite material. Three-
dimensional interconnected carbon material network prepared before synthesis can avoid
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the limitation of percolation threshold and provide conducting interconnected structure at
very low filler content [18]. The thermal conductivity of the three-dimensional structure
system is 66% higher than that of the random dispersion system [19], while the electrical
conductivity can be improved by at least 5 orders of magnitude at graphene contents above
percolation [20]. However, the carbon content of carbon black, carbon nanotube, carbon
fiber and graphene reinforced composites with three-dimensional structures is limited
by the preparation methods such as freeze drying, self-assembly and vapor deposition.
The thermal and electrical conducting properties is positive correlated with the filler con-
tent, so it is difficult to further increase the carbon content and enhance the thermal and
electrical conduction effects, and it is also difficult to reduce the thickness to the scale
of practical application. Therefore, it is necessary to find a thinner network structure to
increase the carbon content and reduce the thickness of the composites while maintaining
their thermal, mechanical and electrical performances.

Carbon fiber fabric with ultra-high tensile toughness has been widely used in the
mechanical reinforcement of polymer matrix composites [21–24]. In recent years, carbon
fiber fabric has received more and more attention in thermal and electrical conducting
polymer composites [25,26], due to the advantages of excellent thermal and electrical con-
ductivities and in-plane interconnected structure. Carbon fiber fabric polymer composites
are mainly prepared by the hot-pressing method due to large area of continues structure
and micron thickness of carbon fiber fabric. Carbon fiber fabric is widely used in shell
materials for mechanical support, electromagnetic shielding, and thermal conduction,
because of its high specific strength, high continuity and excellent thermal and electrical
conductivities [27–30]. The thermal conductivity of carbon fiber fabric reinforced polymer
composites can be increased by 10 times, while the electrical conductivity can be improved
by 10 orders of magnitude [31]. Using carbon fiber fabric as a reinforcement in place
of three-dimensional carbon network can effectively improve the electrical and thermal
properties of the composites and further reduce the thickness.

In this work, segmented polyurethane (SPU) with solid–solid phase change properties
was synthesized. Carbon fiber fabric-graphene/polyurethane composite (CFF-G/SPU) was
prepared by the hot-pressing method, as well as the graphene/polyurethane composite
(G/SPU) and carbon fiber fabric/polyurethane (CFF/SPU). The thermodynamic properties,
electrical conductivity, thermal conductivity and tensile properties are investigated and
discussed according to the microscopic morphology. The application of CFF-G/SPU
composite as a self-heating phase change thermal interface material is also conducted by
experiments of infrared imaging under electrical field and winding on heating tubes.

2. Materials and Methods
2.1. Materials

The graphene nanosheets was supplied by Ningbo Morsh technology Co. Ltd. (Ningbo,
China), with purity > 97.5%, thickness of 1 to 2 nm, diameter of 5 to 15 µm and specific surface
area of 150 m2·g−1, as reported by supplier. The carbon fiber fabric (plain-3K-2) was obtained
from 3M China Co. Ltd. (Shanghai, China), with carbon fiber diameter of 5 to 8 µm, tensile
strength > 3300 MPa and tensile modulus > 220 MPa, as reported by supplier. Polyethylene
glycol(PEG) 6000, 4,4′-diphenylmethane diisocyanate(MDI) and 1,4-butanediol(BDO) were
provided by Shanghai Aladdin Co. Ltd., (Shanghai, China). Other chemicals were purchased
from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).

2.2. Synthesis of Segmented Polyurethane (SPU)

The Segmented Polyurethane (SPU) was prepared by in situ polymerization method.
PEG was dried in vacuum (about 100 kPa), and heated to 100 ◦C for 2–3 h to remove
the moisture. Then, MDI and BDO were added to PEG according to the stoichiometric
ratio, and then viscous mixture was fully stirred. Finally, the mixture was heated in a dry
environment of 75 ◦C for 24 h. The isocyanate group (-NCO) in MDI reacted with the
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hydroxyl group (-OH) in PEG and with BDO to form a carbamate group (-NH-COO-),
then the SPU material was obtained.

2.3. Preparation of Composites

Graphene/segmented polyurethane composite (G/SPU) was prepared by solution
blending method. Then, 2.97 g SPU was added into 50 mL N,N-dimethylformamide (DMF),
then heated to 60 ◦C and stirred continuously to make SPU completely dissolved. Next,
0.03 g graphene nanosheets were added and stirred for 20 min. After the mixed solution
cooled, ultrasonic treatment was carried out for 20 min to make graphene completely
mixed and homogenously dispersed. The mixed solution was poured into a mold, heated
at 70 ◦C for 24 h to remove DMF solvent, and then G/SPU composite was obtained.

Carbon fiber fabric/segmented polyurethane (CFF/SPU) composite was prepared
by hot-pressing method. SPU was shaped into thin sheets by hot-pressing in advance,
then a carbon fiber fabric was placed between two SPU sheet and the compound was hot
pressed. Carbon fiber fabric and graphene reinforced segmented polyurethane composite
(CFF-G/SPU) was prepared by a similar method with CFF/SPU, using G/SPU as outer
layer instead of SPU. The samples of SPU, G/SPU, CFF/SPU and CFF-G/SPU were cut
into strips with size of 1 cm × 3 cm and exhibited in Figure 1. The SPU matrix obtained
is transparent and light yellow, while the colors of G/SPU, CFF-SPU and G-CFF/SPU
samples are black and opaque, with textures of carbon fiber fabric obviously observed
through the surface of samples.
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Figure 1. Schematic illustration of preparation method of SPU, G/SPU, CFF/SPU and CFF-G/SPU
materials and their photographs.

2.4. Characterization

The microstructure of composites was observed by a scanning electron microscope
(SEM) (S4800, Hitachi Co., Tokyo, Japan) with accelerating voltage of 5 kV and current of 10
µA. The observation surfaces of SPU and G/SPU samples were obtained by Freezing brittle
fracture in liquid nitrogen. Due to the high toughness of carbon fiber fabric, the observation
surfaces of CFF/SPU and CFF-G/SPU samples were obtained by mechanical cutting.

The phase transition temperature, enthalpy and specific heat capacity were measured
by differential scanning calorimetry (DSC) (DSC Q2000, TA Co., New Castle, DE, USA) with
a temperature range from −20 ◦C to 90 ◦C and under a rate of 10 ◦C·min−1 for temperature
rise. Specific heat capacities were calculated from sapphire line and baseline. The tempera-
ture filed was measured by an infrared camera (T420, FLIR Co., Goleta, CA, USA).

The mechanical properties were measured by a universal material testing machine
(CMT6103, SANS, Shanghai, China) with loading rate of 5 mm/s. The densities were mea-
sured by an automatic density analyzer (XS204, Mettler-Toledo AG, Greifensee, Switzerland).

The electrical conductivities of composites were measured by a digital source meter
(Keithley 2400, Keithley Co., Cleveland, OH, USA) under a stable direct current (DC)
voltage of 2.1 V. The thermal conductivities of SPU, G/SPU, CFF/SPU, CFF-G/SPU sam-
ples were measured by a self-build test system based on the steady-state plate method.
The system has been reported in our previous work [32].
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3. Results and Discussion
3.1. Microstructures

Figure 2 shows the microscopic morphology of surface and liquid nitrogen frozen
fractured surface of SPU, G/SPU, CFF/SPU and CFF-G/SPU samples. It can be observed
from Figure 2b that the fractured surface of SPU matrix is relatively smooth and flat,
while the surface of G/SPU composite with graphene sheets presents some wavy wrinkles,
as shown in Figure 2d, indicating that graphene sheets are homogenously dispersed in
SPU matrix. Figure 2f,h show the microstructures of composite materials with carbon fiber
fabric. It can be measured from the figure that the fiber diameter of carbon fiber fabric
is about 7 µm. The matrix is successfully melted and penetrated into the space between
carbon fibers during the process of hot-pressing, while the adding of graphene has little
effect on the structure. It is beneficial for good structural integrity of composite and strong
interface between SPU matrix and carbon fiber fabric.
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3.2. Thermal Properties

The thermodynamic properties of samples were measured by differential scanning
calorimetry (DSC), as shown in Figure 3. By comparing the phase transition temperatures
of SPU and CFF/SPU with those of G/SPU and G-CFF/SPU, it is found that phase tran-
sition temperature of composites with graphene has a slight decrease, from 56.3 ◦C to
55.9 ◦C, and from 60.4 ◦C to 59.2 ◦C, respectively. While the heat of fusion is 127.0 J· g−1,
125.8 J· g−1, 113.3 J· g−1 and 102.9 J· g−1 for SPU, G/SPU, CFF/SPU and G-CFF/SPU,
respectively. The slightly decrease in the fusion heat of composites indicates a decrease
in crystallinity with the adding of graphene and carbon fiber fabric. This is due to that
semi-crystalline structure of SPU, composing by soft segments of PEG and hard segments
of MDI, is destroyed by the adding of graphene, which makes the phase transition easier.
Compared with graphene nanosheets, carbon fiber fabric woven composed by long carbon
fibers is a continuous and stable structure, which restricts the movement of the molecular
chain segments and increases the phase transition temperatures by 4.1 ◦C and 3.3 ◦C, re-
spectively. The specific heat capacity of the SPU is 1.78 J· g−1·K−1, and that of the G/SPU is
1.61 J· g−1·K−1. It is due to the low specific heat capacity of graphene (0.7 J· g−1·K−1) [33],
1% mass fraction reduces the specific heat by 9.6%. The specific heat capacity of CFF/SPU
and CFF-G/SPU are both decreased to about 1.36 J· g−1·K−1.
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The thermal conductivities of samples were measured by steady-state plate method,
while the values were the average of three measurements. The thermal conductivity of
SPU matrix is 0.178 W·m−1·K−1, while that of G/SPU is 0.246 W·m−1·K−1, as shown in
Figure 4. It is found that adding 1 wt.% graphene can improve the thermal conductivity of
composite by about 38%. However, the adding of carbon fiber fabric with high in-plane
thermal conductivity and content of 24 wt.% has little influence on the thermal conductivity
of CFF/SPU composites. This is due to the three-layer structure of CFF/SPU composites
requiring that the heat must pass through two SPU-CFF interfaces and result in a low
conductive efficiency, when the heat flow direction is perpendicular to the fiber direction.
The addition of graphene can significantly improve the through-plane thermal conductivity
of CFF/SPU and achieve a higher thermal conductivity of CFF-G/SPU composite. Because
of the higher density and content of carbon fiber fabric, the composites of CFF/SPU and
CFF-G/SPU have slightly higher densities.
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3.3. Mechanical Properties

The mechanical properties of four materials were characterized by tensile testing,
and tensile moduli were calculated from elastic segments, as shown in Table 1. After adding
of graphene and carbon fiber fabric reinforcement fillers, the CFF-G/SPU composites
represent the best mechanical properties, as shown in Figure 5. The tensile modulus is
increased by 4 times to 2317 MPa, while the tensile strength is increased by 6.4 times to
66.1 MPa. However, the tensile strength of G/SPU composite is decreased by 19.42% to
8.3 MPa, attributed to that the high specific surface area of graphene nanosheets are easy to
cause agglomeration and defects. Because of the three-layer structures of CFF/SPU and
CFF-G/SPU composites, the samples will slip from the fixtures of testing machine before
the broken of carbon fiber fabric, which means the highest point of stress–strain curve
is the maximum stress when the sample slips, not the maximum stress when it breaks.
Therefore, the theoretically tensile strength of carbon fiber fabric reinforced composite
should be larger. It can be explained by the introduction of carbon fiber fabric into SPU
matrix provides excellent mechanical support for composite materials and greatly improves
the mechanical properties.

Table 1. Mechanical properties of SPU, G/SPU, CFF/SPU and CFF-G/SPU.

Sample Thickness (mm) Tensile Modulus (MPa) Tensile Strength (MPa)

SPU 0.52 609 10.3
G/SPU 0.30 1297 8.3

CFF/SPU 0.78 2100 44.6
CFF-G/SPU 0.76 2317 66.1
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3.4. Electrical Properties

The in-plane and through-plane electrical conductivities of SPU, G/SPU, CFF/SPU
and CFF-G/SPU are shown in Figure 6. The result shows that the in-plane conductivities of
CFF/SPU and CFF-G/SPU composites have been significantly improved with an increase
of about 8 orders of magnitude. The unique two-dimensional structure of carbon fiber
fabric provides fast electronic transmission channels along the fiber direction and enhances
the in-plane conductivity of composite. As the content of 1 wt.% graphene is not enough
to form an interconnected electrical conducting structure, the in-plane and through-plane
conductivities of G/SPU composites are slightly increased due to the high conductivity of
randomly dispersed graphene nanosheets. The through-plane conductivities of CFF/SPU
and CFF-G/SPU composites increase sequentially in a small range, attributed to that
the high conductivity carbon fiber fabric is covered by SPU matrix in the through-plane
direction due to the three-layer structure of CFF/SPU and CFF-G/SPU composites.
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3.5. Electric-Driven Self-Heating Effect and Thermal Interface Material Application

Because of the high thermal conductivity, CFF-G/SPU composite has good potential
as a thermal interface material. When the temperature rises to phase transition temperature,
the soft segments of SPU matrix become amorphous and fill the interface voids, resulting in
good interfacial wettability and low thermal contact resistance. The modulus of SPU after
phase change is very small and cannot withstand large pressure, while the carbon fiber
fabric with good toughness and compression resistance can greatly improve the modulus
of composite and withstands large pressure at high temperature after phase change. In ad-
dition, the thermal expansion of carbon fiber fabric is small, which can limit the expansion
and contraction of SPU matrix. With the advantages of high electrical conductivity and
in-plane thermal conductivity of carbon fiber fabric, CFF-G/SPU composite exhibits electric
driven self-heating effect and beneficial to the pre-assembly of thermal interface material
between the heating device and the heat sink.

To demonstrate the electric driven self-heating effect of CFF-G/SPU composite, an elec-
tric field with a voltage of 3 V and a power of 5.1 W was applied at both ends of the carbon
fiber fabric to heat the composite and raise the temperature above the phase transition
temperature, with an infrared camera used to observe the temperature distribution of com-
posite surface, as shown in Figure 7. When the power is turned on, the heat concentration
is located at the contact region of alligator clip and carbon fiber fabric, where the resistance
is the largest. Due to the extremely high thermal conductivity of carbon fiber, the heat
is rapidly transmitted from the outside to the inside along the axial direction. The tem-
perature rapidly increased to over 150 ◦C under electric field for 10 s, and then the phase
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transition of composite can be obviously observed, which means the pre-assembly process
of thermal interface material can be finished in 10 s by the electric driven self-heating effect.
When it reaches 30 s after the power turned off, the temperature distribution becomes
homogenous and the temperature of all regions is over 80 ◦C. At 60 s after the power turned
off, the temperature of the composites homogenously decreased to 40 ◦C, lower than the
phase transition temperature.
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Due to the excellent mechanical properties and layer structure, CFF-G/SPU composite
is especial suitable as a winding thermal interface material for the connection and heat
dissipation of equipment such as cooling sleeve. As carbon fiber fabric can be used as a long
continuous reinforcement, CFF-G/SPU composite becomes a natural tape-like winding
material with high thermal conductivity and large tensile strength, which is beneficial for
the heat dissipation when connecting the inner and outer tubes. In addition, the electrical
conductivity in the through-plane direction is extremely low, equivalent to an insulator,
so the short circuit can be avoided and the electric driven self-heating method is still
available to obtain stronger connection interface between the inner and outer tubes. In this
work, a strip of CFF-G/SPU composite with a width of 0.5 cm was used as the winding
thermal interface material, while a stainless-steel tube and a copper tube were used as the
inner tube and outer tube, respectively. The prepared sleeves were located on a heating
table at constant temperature of 180 ◦C, while carbon powder was prayed on the surface of
sleeves for better infrared imaging, as shown in Figure 8. The temperature of cooper cube
rises to 54.3 ◦C, 69.3 ◦C, 84.0 ◦C and 88.1 ◦C at 1 min, 2 min, 5 min, 10 min, respectively,
and then remain stable with a temperature difference between sleeves of only 5.2 ◦C.
It proves that the winding thermal interface material of CFF-G/SPU composite enhancing
the heat dissipation performance and reducing the temperature difference between the
inner and outer tubes.
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4. Conclusions

In this work, segmented polyurethane was synthesized, and carbon fiber fabric and
graphene nanosheets were used as reinforcements to enhance the composite with high
thermal, mechanical and electrical properties. Four materials of SPU, G/SPU, CFF/SPU
and CFF-G/SPU were successfully prepared and their microscopic morphology, mechani-
cal properties, thermal properties and electrical properties were carefully characterized.
The results show that the CFF-G/SPU composite has the largest tensile strength and
can withstand a tensile force of at least 350 N without breaking. The thermal stability
of CFF/SPU and CFF-G/SPU composites has been improved with the phase transition
temperatures increased by 4.1 ◦C and 2.9 ◦C, respectively. Compared with SPU mate-
rials, the thermal conductivity of G/SPU is increased by 28% to 0.246 W·m−1·K−1 at a
low content of 1 wt.%, with in-plane and through-plane electrical conductivities slightly
increased. The tensile strength of G/SPU is increased by 112.97%, while the tensile strength
is decreased by 19.42%. The in-plane electrical conductivity of CFF/SPU and CFF-G/SPU
are significantly improved by 8 orders of magnitude. The experiments of electric-driven
self-heating and application as a tape-like winding thermal interface material proves that
CFF-G/SPU composites have great potential in thermal interface material with good
interface wettability, high thermal conductivity and large tensile strength.
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