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Abstract: Recent studies have predicted a strong increase in high harmonic emission in unbiased
semiconductor superlattices due to asymmetric current flow. In parallel, an external static bias has
led to orders of magnitude control of high harmonics. Here, we study how this control can affect
the operation of superlattice multipliers in a range of input frequencies and powers delivered by
commercially available GHz sources. We show that the strongly nonlinear behavior can lead to a very
complex scenario. Furthermore, it is natural to ask what happens when we combine both asymmetry
and voltage control effects. This question is answered by the simulations presented in this study.
The efficiency of high-order even harmonics is increased by the combined effects. Furthermore,
the development of ‘petals’ in high-order emission is shown to be more easily achieved, opening
the possibility to very interesting fundamental physics studies and more efficient devices for the
GHz–THz range.
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1. Introduction

Semiconductor superlattices (SSLs) are nanomaterials constructed atom-by-atom by
means of epitaxial growth techniques, and they make in many ways, the ideal system
to study quantum transport and optics controlling both structural parameters and ap-
plied fields [1–3]. The experimental detection of coherent Bloch oscillations and Stark
ladders [4] was the first step for the development of SSL multipliers (SSLMs) as sources
and heterodyne detectors, generating higher order harmonics well within the far-infrared
(54th at 37 µm) [5,6]. Compact sources operating at room temperature, such as superlattice
electron devices (SLEDs), can deliver so far a 4.2 mW power output at an input frequency of
145 GHz [7]. These SLED structures can in principle be synchronized with the potential to
become input sources with a much higher output power [8], which can be combined with
SSLMs to create hand-held devices for a large number of state of the art gigahertz–terahertz
spectroscopic techniques. This scenario can become even more interesting with quantum
dot and graphene superlattices [9–13]. At present, quantum cascade lasers (QCLs) demon-
strate high output power in the THz and mid-infrared (MIR) regions [14–16], which like
the SSLMs are epitaxially grown and multilayered at nanoscale and can also be predictably
simulated by a combination of Nonequilibrium Green’s functions, density matrix and
Boltzmann equation methods [17–28]. QCL emission stems from intersubband optical
transitions, in contrast with the mechanisms underlying high-order harmonic generation
(HHG) in SSLMs, which we briefly summarize next. When an SSLM is biased, an input
oscillating field can modulate the Bloch oscillations giving rise to HHG [29–32]. This
nonlinear emission from the SSLM can be strongly affected by the involvement of electric
field domains [33,34]. Strong excitonic effects can also play a role under well-defined
conditions [35–37]. All these processed can be somehow be combined to enhance HHG
in SSLMs; however, in this paper we focus on the combined effect of a uniform bias and
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current–voltage asymmetry on the Bloch oscillations modulation, which has successfully
predicted giant voltage control of HHG in unbiased SSLMs [28,38–42].

2. Materials and Methods

The simulations presented in this paper are based on the optical response of a strongly
coupled semiconductor superlattice excited by combined static and oscillating fields. Next
we summarize a semiclassical approach, in which the electromagnetic field is treated
classically, and the materials by quantum mechanics. The semiclassical approach can be
adapted to other nonlinear voltage current cases; however, note that the equations used here
are specific for superlattices. The derivation starts from Maxwell’s equations. Assuming
linear polarization along ẑ, we do not need a vector notation. If there are no bound charges
and no magnetization in the medium, we obtain the following wave equation:

−∇2E +
1
c2

∂2E
∂t2 = −µ0

∂J
∂t

, (1)

where the speed of light is c2 = 1/µ0ε0. Simplifying the Boltzmann equation for carrier
transport with relaxation approximation, one can show that if the superlattice is illuminated
with combined static and monochromatic fields [1,28,38–42],

E = Edc + Eac cos(2πνt), (2)

the nonlinear generation of harmonics and current rectification, with the current I, related
to the current density by j = I/A, is described by the following:

I = Idc +
∞
∑

l=1
Il.c cos(2πlνt) + Il.s sin(2πl Jt).

Idc =
∞
∑

p=−∞
J2
p(α)Y(U)

Ic
l =

∞
∑

p=−∞
Jp(α)

[
Jp+l(a) + Jp−l(a)

]
Y(U),

Is
l = ∑∞

p=−∞ Jp(α)
[

Jp+l(a)− Jp−l(a)
]
K(U).

(3)

The strong nonlinear behavior is dictated mathematically by the Bessel functions
of order p and first kind, Jp, ruled by α = eEacd/(hν), which controls the modulation
of Bloch oscillations. In addition, U = eEdcd +phν denotes shifted potential drops by
an integer number of photon quanta. The charge of an electron, superlattice period and
Plank’s constant are given respectively by e, p, h.

The functions Y and K read as follows:

Y(U) = j0
2U/Γ

1 + (U/Γ)2 , K(U) =
2j0

1 + (U/Γ)2 . (4)

The global dephasing is given by Γ = }/τ = Uc. It characterizes the region of negative
differential resistance and j0 denotes current maximum at U = Uc = Γ. Asymmetric flow
in the voltage–current is described by an Ansatz solution introduced in Ref. [28],

j0 =

{
j−0 , U < 0
j+0 , U ≥ 0

, Γ =

{
Γ−, U < 0
Γ+, U ≥ 0

. (5)

Our calculations are performed for a strongly coupled superlattice consisting of
alternating GaAs and AlAs semiconducting layers depicted by red and blue regions,
respectively, in the left inset of Figure 1. Therefore, the tight-binding dispersion relation
ε(kz) = −∆

2 cos kz d can describe the kinetic energy of the electron in the first SSL miniband,
where kz is the quasimomentum and ∆ is the miniband width [1]. Note that typically the
interfaces of GaAs over AlAs do not have the same quality as those of AlAs over GaAs.
To characterize the quality of interfaces in the superlattice we employ the asymmetry
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parameter δ = Γ+/Γ− = j+0 /j−0 , which effectively depends on the different interface
roughness self-energies [39,41]. Therefore, as δ increases the peak of the current–voltage
characteristic for positive bias practically remains the same, whereas for negative bias the
peak is significantly reduced. The main input parameters of Equations (3)–(5) taken from
Ref. [28] are as follows: j+0 = 2.14× 109 A/m2, Γ+ = 21 meV, resulting from Nonequilibrium
Green’s functions (NEGF) calculations and L = 121.4 nm corresponding to an SSL with
18 lattice periods (d) of 6.23 nm each, i.e., eighteen monolayers GaAs and four monolayers
AlAs homogeneously doped with electron density N = 1.5× 1018 cm−3.
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Figure 1. The current–voltage characteristics, jdc(U), in the absence of an oscillating field for different
values of the asymmetry parameter, from bottom (black) to top (red) as follows: δ = 1, 1.1, 1.2, 1.3.
The left inset is a schematic representation of the semiconductor superlattice with a superlattice
period, d, which results in the asymmetric current flow. The SSL is biased by a static electric field
E = (0, 0, Edc) antiparallel to the growth axis (−z) of the superlattice structure. The right inset
corresponds to the tilted superlattice potential Vs due to the application of the electric field. The
shaded green region indicates the first miniband with width ∆.

We assume next a slowly varying propagation, so that it is uniform throughout
the active region (z-direction). Harmonic electromagnetic fields, current densities and
polarizations will build up from zero and we can use a complex representation for plane
waves inside a waveguide between x = 0 and x = L. In general,

E = ∑l E(x, lω)e−ilωt,
→
P = ε0(p0 + ∑l χ1(lω)E(x, lω)e−ilωt + ∑l pNL(x, lω)e−ilωt),

→
j = ∑l j(x, lω)e−ilωt.

(6)

The equations connecting electric field, vector potential, current and the macroscopic
polarization lead to the relations.

→
E = −∂

→
A

∂t
,
→
j =

∂
→
P

∂t
⇒ E(x, lω) = (ilω)A(x, lω), |NL(x, lω) = ε0(−ilω)pNL(x, lω) (7)

where we subsequently insert Equation (7) into (wave) Equation (1).

−∇2

−∂
→
A

∂t

+
1
c2

∂2

∂t2

−∂
→
A

∂t

 = −µ0
∂
→
J

∂t
= −µ0

∂2
→
P

∂t2 = −µ0ε0
∂2→p
∂t2 = − 1

c2
∂

∂t

(
∂2→p
∂t

)
, (8)
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or equivalently,

∇2
→
A− 1

c2
∂2
→
A

∂t2 = − 1
c2

∂
→
p

∂t
, (9)

thus,

∂2 A(x, lω)

∂x2 +

(
lω
c

)
A(x, lω) =

(ilω)

c2 [(ilω)χ(x, lω)A(x, lω) +pNL(x, lω)]. (10)

Introducing the complex wavenumber κlω, κ2
lω =

(
lω
c

)2
(1 + χ1(lω)),

∂2 A(x, lω)

∂x2 + κlω
2 A(x, lω) = µ0ε0(ilω)pNL(x, lω) = −µ0|NL(x, lω). (11)

At this point we introduce a propagation factor A(x, lω) = eiκlω xA(x, lω). The slowly
varying amplitude approximation (SVEA), |κlωA| �

∣∣∣ ∂A
∂x

∣∣∣, simplifies the wave equation
for the vector potential. Note that we are interested in l ≥ 2 harmonics.

2iκlωeiκlω x ∂A(x, lω)

∂x
= −µ0|NL(x, lω). (12)

The harmonic fields and vector potential build up from zero at x = 0, thus,

A(L, lω) = −µ0

∫ L

0

1
2iκlω

e−iκlω x|NL(x, lω)dx. (13)

In semiconductors, the real part of the linear wavenumber is typically much larger
than its imaginary part. Thus (for kω ≡ k1ω) we introduce the Ansatz |NL(x, lω) = |leilkω x,

A(L, lω) = −µ0|l
∫ L

0

1
2iκlω

eiκlω(L−x) eilkω x dx= µ0|l
eiκlω L

2κlω

1
lkω − κlω

[
eiL(lkω−κlω) − 1

]
(14)

For L(lkω − κlω)� 1, we have the following:

A(L, lω) ≈ iµ0|l
L

2κlω
eiκlω L. (15)

The real and imaginary components of κlω are given byR{κlω} = nlω
lω
c , I{κlω} = κ

′′
lω,

and typically R{κlω} � I{κlω}. Introducing the contact area S , the (averaged) power
emitted by the lth order harmonic reads,

Pl =
nlωε0cS

2
〈|Elω |2〉 =

nlωε0cS
2

(lω)2〈|A(L, lω)|2〉= cµ0L2S
8nr

[
j2l,c + j2l,s

]
, (16)

where we have approximated the refractive index by the background refractive index nr.
Note that in our calculations we consider a contact area S ∼ 50 µm2 corresponding to a
typical SSL mesa structure with a diameter 8 µm.

3. Results

Figure 2 shows the output powers for the second, fourth and sixth harmonics of
the SSLMs excited by well-defined SLED input powers and frequencies extracted from
experiments [7] that were used for the comparison with different input device powers [4].
Figure 3 shows the corresponding analysis for backward wave oscillators (BWOs) [4,40].
Figure 3 shows the harmonics output power (arb. Units) in a superlattice with period d,
as a function of α = (eEacd)/(hν), the applied voltage V and the asymmetry parameter

δ = j+0 /j−0 . The input parameters are connected by the relation j+
0

Γ+ = j−0
Γ− . The black areas

designate the set of values (V, α, δ) for which Pl demonstrates a weak or zero output (see
Figure 4a,b). On the other hand, the colored areas reveal discrete ‘islands’ of enhanced
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harmonic response. Finally, in Figure 5 we fix the level of current asymmetry δ and look at
details of the second, fourth and sixth harmonics. In this case, the colored areas indicate
‘petals’ of significant harmonic response as a function only of the voltage, V, and the
parameter α, which is directly proportional to the amplitude of the oscillating field. The
high harmonic ‘petals’ are separated by black areas which again are defined by the set of
values (V, α) for which Pl shows a small harmonic response.
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4. Discussion

Figure 2 is based on specific frequencies and input powers delivered by available
SLED sources [7,40]. It shows a monotonic increase in the output power with applied
voltage. However, the scenario in Figure 3 for powers and frequencies typically delivered
by BWOs [28,40] is far more complex. The maximum output for even harmonics occurs in
a well-defined region of the input parameters, not necessarily at the largest applied voltage.
This is consistent with the predictions and measurements in Ref. [42]. We also expect that
current flow asymmetry improves the even harmonics, as predicted in Ref. [41]. Thus, the
natural question to ask is, what happens when we combine both, controlling the output
with both (V, δ). Figures 4 and 5 answer this question. We see that the asymmetry allows
for strong emission at a lower voltage. This may make the observation of high harmonic
‘petals’ easier, since the available samples, such as those used in the experiments described
in Ref. [42], cannot sustain high voltages without permanent sample damage. This can also
lead to devices with a more uniform higher power output at high-order even harmonic,
leading to a wide range of useful frequencies in the GHz–THz range.

In conclusion, this paper describes the consequence of the combined intrinsic voltage
flow asymmetry with an externally applied voltage, predicting an increase in efficiency for
even harmonics and the possibility to more easily observe the development of ‘petals’ in
high harmonic emission. This unusual nonlinear effect should open new possibilities for
applications and fundamental physics studies.
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