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Abstract: Polyhedral oligomeric silsesquioxane (POSS), featuring a hollow-cage or semi-cage struc-
ture is a new type of organic–inorganic hybrid nanoparticles. POSS combines the advantages of
inorganic components and organic components with a great potential for optoelectronic applications
such as in emerging perovskite solar cells. When POSS is well dispersed in the polymer matrix, it can
effectively improve the thermal, mechanical, magnetic, acoustic, and surface properties of the poly-
mer. In this study, POSS was spin-coated as an ultra-thin passivation layer over the hole transporting
layer of nickel-oxide (NOx) in the structure of a perovskite solar cell. The POSS incorporation led to a
more hydrophobic and smoother surface for further perovskite deposition, resulting in the increase
in the grain size of perovskite. An appropriate POSS passivation layer could effectively reduce the
recombination of the electron and hole at grain boundaries and increase the short-circuit current from
18.0 to 20.5 mA·cm−2. Moreover, the open-circuit voltage of the cell could slightly increase over 1 V.

Keywords: polyhedral oligomeric silsesquioxane; perovskite solar cell; passivation layer; NiOx

1. Introduction

In recent years, the perovskite solar cells (PSCs) have become considered among
the most promising photovoltaic materials with rapidly increasing power conversion
efficiency (PCE) from 3.8 to 25.5% in a very short period of time [1], owing to lightweight,
low cost, simple fabrication, high optical absorption coefficient, and large charge carrier
diffusion length. Compared to conventional PSCs, inverted cells with a device structure of
transparent conductive oxide/hole transport layer (HTL)/perovskite/electron transport
layer (ETL)/top metal electrode feature advantages of low-temperature processability and
an immense potential for developing flexible optoelectronic devices [2,3]. Within the device
structure of PSCs, both HTL and ETL serve as auxiliary layers to extract the charges from the
perovskite layer and to deliver them to the respective electrodes while they also block the
opposite charge transfer [4–6] and reduce the recombination near the interfaces. Poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is commonly used for the
HTL within the structure of inverted PSCs. However, PEDOT:PSS possesses insufficient
electron-blocking ability, high hygroscopicity, and poor chemical stability [7–9]. NiOX,
being in favor of hole transport and blocking electrons efficiently, is one of the most potential
alternatives to PEDOT:PESS. Moreover, NiOX leads to the higher open-circuit voltage
(VOC) of PSCs because its work function exhibits a good alignment with valence band of
CH3NH3PbI3 (MAPbI3) [10]. To reduce interfacial loss, a passivation layer has been inserted
between the perovskite layer and the charge transport layer to decrease the interfacial
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defects and charge recombination [11–13]. Recently, several methods and materials, such
as ultraviolet ozone [14], sodium dodecylbenzenesulfonate [15], and polystyrene [16], have
been reported to passivate NOX and improve the crystal size of perovskite layer. Although
they revealed enhanced efficiencies, few studies were reported about how to improve
the NOX HTL for the fabrication of efficient PSCs. It remains a challenge to develop new
passivation methods for the PSCs with NOX imported as HTL in their structure.

Polyhedral oligomeric silsesquioxane (POSS) possesses a hybrid structure of inorganic
siloxane cage associated with organic groups. Combining hybrid and hollow characteristics,
POSS exhibits special mechanical, electrical and optical properties as important building
blocks for biomedical and optoelectronic materials [17,18]. The electron-withdrawing POSS
cage potentially facilitates the dissociation of Li ions to increase the electrical conductivity of
nanocomposite electrolytes [19]. POSS can block the undesirable anion exchange reactions
to improve the water resistivity and surface coverage of CsPbX3 and be used as a hole
blocking layer to balance the electron–hole injection of light-emitting devices [20,21]. Liu
et al. used POSS with amino group to passivate perovskite layers through coordination
and hydrogen bonding between amino groups and Pb ions. The passivation increased VOC
and PCE owing to the decrease in the charge trap density and trap-state energy level [22].
The hydrophobic nature of POSS also improved the humidity tolerance of perovskite
materials [23]. In this study, POSS was used in attempt to passivate the NOX HTL in
a PSC structure through its hydrophobic nature and ability of trap suppression. Here,
the PSCs have been fabricated with the inverted structure of fluorine-doped tin oxide
(FTO)/NOX/POSS/MAPbI3/PC61BM/Bathocuproine (BCP)/Ag structure. The effect of
POSS content on photovoltaic properties has been analyzed using different microscopy and
spectroscopy techniques. Enhanced surface hydrophobicity and flatness were induced by
the POSS passivation to significantly increase the grain size of perovskite. For an optimized
concentration of 0.01-mg·mL−1 POSS, the short circuit current (JSC) increased from 18.0 to
20.5 mA·cm−2, an increase of 13.9%. This enhancement was mainly due to the decrease in
grain boundaries and the resistance of the charge recombination.

2. Materials and Methods
2.1. Materials

FTO-coated glass substrates (7 Ω·sq−1) were purchased from Ruilong optoelectronics,
Taiwan. Nickel(II) initrate hexahydrate (99.9985%), ethylene diamine (EDA, 99%), and
ethylene glycol monomethyl ether (2-ME, 99%) were purchased from Alfa Aesar (Ward Hill,
MA, USA). Acryloisobutyl POSS was received from Hybrid Plastics Inc. (Hatteriesburg, MS,
USA). Methylammonium idodide (MAI), lead(II) iodide (PbI2), and bathocuproine (BCP,
99.5%) were purchased from Xi’an Polymer Light Technology (Xi’an, China). 6,6-Phenyl-
C61-butyric acid methyl ester (PC61BM) were purchased from Solenne BV (Groningen,
Netherlands). Anisole was purchased from Acros Organics (Geel, Belgium). Anhydrous
solvents such as dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), chlorobenzene
(CB), and isopropanol (IPA) were purchased from Sigma Aldrich (Saint Louis, MO, USA)
and used without further purification.

2.2. Synthesis of NOX Solution

The amount of 0.87 g nickel nitrate hexahydrate and 0.12 g of EDA were mixed into
5 mL of 2-ME. The solution was sealed with parafilm and stirred overnight at 550 rpm and
60 ◦C. The color of the solution gradually changed from dark green to dark blue, resulting
in a 0.6 M NOX solution.

2.3. Device Fabrication

The fluorine doped tin oxide (FTO) glass substrates (2 × 1.5 cm2) were masked by
polyimide tape as T-shape pattern. Then, the unmasked portion of the FTO was etched
with zinc powder/HCl solution (6 M) and then cleaned with a detergent to remove the
surface residue and zinc powder, following ultrasonically with ethanol, isopropanol, and
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deionized water for 15 min, respectively. The fabrication process of PSCs was illustrated in
Figure S1. Typically, the NOX solution was spin-coated on the cleaned FTO glass substrates
at 4000 rpm for 40 s and then heated at 100 ◦C for 10 min, followed by 300 ◦C for 1 h. 80 µL
of POSS IPA solution in the concentration of 0, 0.005, 0.01, 0.015, and 0.05 mg·mL−1, was
spin-coated on the as-prepared NiOX substrates at 6000 rpm for 20 s and then heated at
100 ◦C for 10 min, respectively. MAPbI3 was prepared by dissolving 0.2305-g MAI and
0.6684-g PbI2 in DMSO/DMF in the volumetric ratio of 1:4 and then stirring the solution
for one day. Sixty microliters (60 µL) of the MAPbI3 solution was spin-coated on the
POSS-passivated substrates at 4000 rpm for 25 s in a glove box. Nine seconds (9 s) after the
start of the spinning, 500 µL of anisole was dropped upon the MAPbI3-coated substrates
as an anti-solvent. The substrates were then heated at 100 ◦C for 12 min to complete the
film formation. Ten microliters (10 µL) of PC61BM CB solution was spin-coated onto the
perovskite layer at 3000 rpm for 20 s. Then, the samples were heated at 80 ◦C for 10 min.
Eighty microliters (80 µL) of BCP IPA solution was spin-coated upon the PC61BM layer at
5000 rpm for 20 s. Finally, a silver layer with 100 nm thickness was formed on the surface
of the devices through thermal deposition under a vacuum of 5 × 10−6 torr and a plating
rate of 0.8–0.9 Å/s. The structure of the designed devices in this study is shown in Figure 1.
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2.4. Measurements and Characterization

The crystalline phase of the perovskite crystals was characterized through X-ray
diffraction (XRD) using an X-ray diffractometer (Miniflex II, Rigaku, Tokyo, Japan) and
CuKα radiation (wavelength 0.15418 nm) with a fixed operating voltage of 30 kV and
a fixed current of 15 mA. The morphology of the perovskite layers and devices were
examined using a field-emission scanning electron microscope (AFE-SEM, Zeiss Auriga,
Oberkochen, Germany). The absorption and photoluminescence (PL) emission spectra
of the perovskite crystals were determined using a UV–Vis spectrometer (V770, Jasco,
Tokyo, Japan) and a fluorescence spectrometer (LS-55, Perkin Elmer, Waltham, MA, USA),
respectively. The contact angle of the POSS-passivated surface was determined using
a contact angle analyzer (Phoenix 10, SEO, Suwon, Korea). The photocurrent density–
voltage (J–V) characteristics were measured under irradiation of 100 mW·cm−2 using a
solar simulator (MFS-PV, Hong-Ming Technology, Taiwan) equipped with a source meter
(Keithley 2400, Keithley Instruments, Cleveland, OH, USA). Electrochemical impedance
spectra (EIS) were measured over the frequency range of 50 mHz to 1 MHz with a potential
perturbation of 10 mV using an electrochemical workstation (Zennium, Zahner, Kansas
City, MO, USA). The incident photon-to-electron conversion efficiency (IPCE) spectra of
cells were measured using an external quantum efficiency measurement system (QE-R,
Enli Technology, Taiwan).
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3. Results and Discussion

The XRD patterns of the perovskite layers with various POSS contents have been
measured under dark standard conditions at room temperature and presented in Figure 2a.
All samples exhibited three sharp reflection peaks at 14.1◦, 28.4◦, and 31.8◦ corresponding
to crystal planes (110), (220), and (310) of tetragonal I4/mcm MAPbI3 perovskite structure,
respectively [24]. These XRD results are in agreement with XRD patterns reported in the
literature [25,26]. No peak has been recorded near 12.7◦ which is usually attributed to PbI2
formed in the perovskite layer [27]. This result implies that POSS incorporation neither
hinders the formation of MAPbI3 crystal nor results in PbI2 separated out from MAPbI3
layer. In particular, the XRD peak related to plane (110) recorded for the sample POSS-0.01
shows the highest intensity compared to other samples, indicating that 0.01-mg·mL−1

POSS incorporation leads to the best crystallinity. Figure 2b shows the UV–Vis absorbance
of the FTO/NiOX/POSS/MAPbI3 samples with various POSS incorporation. All of curves
display the same cut-off edge at 779 nm but different absorption intensity in the range of
400~530 nm. Introduction of POSS over the NOX layer improves the photo-absorption of
MAPbI3 and the strongest absorption rate is related to sample POSS-0.01.
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Figure 2. (a) XRD patterns and (b) UV–Vis absorption spectra of the MAPbI3 layers over the fluorine-doped tin oxide
(FTO)/NiOX/POSS with various POSS contents.

Figure 3 presents the SEM surface morphology images of the MAPbI3 layers deposited
over POSS layers fabricated with various POSS contents. The images were recorded at
two kinds of magnification. Some pinholes can be observed on the surface of the pristine
perovskite layer. When the ultra-thin POSS passivation layer is introduced, the number
of pinholes is reduced and reaches the minimum level at concentration of 0.01-mg·mL−1

POSS, which means that the coverage of the perovskite layer is more complete at this
optimum POSS concentration. When the POSS concentration increases over 0.01 mg·mL−1,
the number of voids increases again. In addition to the pinholes, the POSS concentration
also influences the grain size of MAPbI3. When the concentration of POSS increased
from 0 to 0.01 mg·mL−1, the crystal growth of MAPbI3 progressively accelerated and the
grain size of perovskite enlarged from 162.3 to 226.9 nm. However, grain size decreased
to 167.5 nm when the POSS concentration increased to 0.05 mg·mL−1 (Figure S2). We
inferred that too high and too low concentration of POSS may have a negative impact on
the morphology and crystallinity of the perovskite layer. Figure 4 reveals the contact angle
of water drops on the surface of FTO/NiOX/POSS with various POSS contents. It can be
realized easily that the contact angle increases with POSS amount due to the hydrophobic
nature of POSS. The hydrophobic property may reduce the damage of adsorbed water and
hydroxyl groups on the surface of ETL to MAPbI3 crystal growth. Too many POSS may
make the perovskite solution difficult to spread over the surface of substrates, resulting
in pinholes and small grain size. The SEM analysis is in good correlation with the XRD
and UV–Vis observations where all of them recommend that an optimum amount of POSS
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is a key to induce optimum crystal growth. A compact perovskite film with larger grains
can be obtained at optimum POSS concentration with a full surface coverage (Figure 3e,f).
Comparing with the pristine NiOX layer, an appropriate POSS deposition decreases the
surface roughness (Figure S3). As a result, the increase in grain size of perovskite may
be due to the fact that the POSS passivation makes the surface of the NiOX layer more
hydrophobic and smoother. The photoluminescence spectra (PL) of the MAPbI3 grown
over the substrate with various POSS amounts present a dominant peak around 753 nm
under 500 nm excitation (Figure 5). Perovskites have a direct bandgap, thus this peak
can be assigned to radiative recombination. The POSS-0.01 shows a slight blue shift to
smaller wavelengths around 752 nm and also the PL intensity decreases. This represents
the rapid transfer of the excited electrons into ETL which is due to improved grain size and
improved film morphology with reduced pinholes.
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Figure 6 displays the current–voltage characteristics of the PSCs with various POSS
contents for passivation. The corresponding characteristic properties are summarized in
Table 1. The PCEs and current densities of the PSCs increase with increasing POSS content,
reaching a maximum at POSS-0.01, and decrease with further increasing POSS content
(POSS-0.05). The order is reciprocal to that of the PL intensity but follows that of grain
size. As the decrease in the PL intensity of MAPbI3 indicates the reduction in the rate of
electron–hole recombination, the enhancement on PCEs and current density caused by
the POSS passivation may result from the large grain size and few pinholes to reduce the
charge recombination. Compared with pristine PSC (control), the POSS-0.01 increases the
PCEs and the photocurrent density from 13.3 to 15.6% and from 18.0 to 20.5 mA·cm−2,
an increase of 17.3 and 13.9%, respectively. Figure 7 presents the variations of device
parameters (VOC, JSC, fill factor (FF), and PCE) of the control cell and the champion cell
POSS-0.01. The individual data, average value, and standard deviation are shown in
the figures. The higher average PCE and Jsc were obtained for POSS passivated cells.
However, the average FF is lower for the POSS passivated cell which is probably due to
increased series resistance of the passivated cells. However, the VOC of the POSS-0.01 is
slightly higher than that of the control cell, responding the fact that lowering the charge
recombination rate would lead to increasing VOC [28,29].
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Table 1. The photovoltaic characteristics of the control cell and the PSC fabricated with various POSS contents.

Samples
POSS

Concentration
mg·mL−1

Voc, V Jsc,
mA·cm−2 FF, % PCE (Average

PCE), % R2, Ω R3, Ω

Control 0 1.05 18.0 70.18 13.3 (12.55 ± 0.49) 163.9 328.9
POSS-0.005 0.005 1.05 18.4 73.78 14.1 (12.64 ± 1.23) 209.2 506.4
POSS-0.01 0.01 1.07 20.5 71.33 15.6 (14.75 ± 0.71) 234.3 869.9
POSS-0.015 0.015 1.07 19.2 66.16 13.7 (12.85 ± 0.35) 193.7 440.3
POSS-0.05 0.05 1.06 15.2 71.60 11.5 (10.91 ± 0.62) 179.3 332.7
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The Nyquist plots (Z′–Z′ ′) of the EIS of the PSCs with various POSS contents present
two semicircles at the high and low frequency regions measured at V = VOC under dark con-
ditions (Figure 8). We used an equivalent-circuit model, as inserted in Figure 8, to explain
the EIS responses. R1 is the external series resistance including contacts resistance, CPE1 is
related to the capacitive element at high-frequency response related to accumulation of
surface charges at the interface of perovskite layer, R2 represents the charge transport resis-
tance of the bulk perovskite film but contains information about the transport resistance of
POSS passivation layer as well, and CPE2 represents the low-frequency capacitive related
to the charge and defects accumulation in the film but can also be influenced from the ion
in-diffusion recombination at the bulk of the film. R3 is the resistance related to the charge
recombination at the bulk of the film due to presence of bulk defects and traps [30–33]. The
fitting results are summarized in Table 1. With the increase in POSS content (POSS-0.005,
POSS-0.01), the R2 and R3 increase, indicating that the charge recombination resistance
increases but the charge transport resistance also increases. According to SEM morphology
and absorption spectra analyses (Figures 2 and 4), the decrease in charge recombination
may be attributed to the increase in the grain size of MAPbI3. Larger grains and lower grain
boundaries and thus reduce charge recombination at interfaces, consequently obtaining a
higher JSC [34,35]. We infer that POSS passivation enhances the MAPbI3 crystal growth and
thus blocks the ion-diffusion and defect/trap-related recombination in the perovskite layer,
but also increases the resistance at the interface between the perovskite layer and the HTL.
The increase in charge recombination resistance by POSS passivation is also observed by
dark current analysis (Figure S4). The POSS-passivated cell displays a smaller leak current
and dark current than the control cell, implying that the POSS passivation suppresses
the charge recombination and induces a strong depleted electric field. Too many POSS
contents may lead to the increase in pinhole, which increases the charge recombination
rate but decreases the charge transport resistance. Figure 9 shows the IPCE spectra and
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integrated JSC of the control cell and the PSCs with various POSS contents. The values of
the integrated JSC agreed well with those obtained from J–V measurement. The curves
present a cutoff at ~790 nm, corresponding to a bandgap of 1.57 eV for a typical MAPbI3
solar cell [36]. POSS passivation influences mainly external quantum efficiency in the
wavelength range of 380 to 760 nm. IPCE spectra of the PSCs support the J–V observation
and the aforementioned argument. The POSS-0.01 displays the highest quantum efficiency
and the highest JSC.
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4. Conclusions

In summary, this is the first attempt to use POSS as a passivation layer between the hole
transport layer (NiOX) and the perovskite layer (MAPbI3) of PSCs. POSS passivation can
make the surface of the NiOX layer more hydrophobic and smoother surface, which leads
to a significant increase in the MAPbI3 grain size and a slight increase in VOC. However,
in addition to the increase in interface resistance, too much POSS makes the surface of
NiOX become too hydrophobic to spread over the perovskite solution and thus results
in pinholes and a small grain size. A 0.01-mg·mL−1 POSS passivation displays the best
performance, which increases the JSC from 18.0 to 20.5 mA·cm−2 and an enhancement of
17.3% for PCE. The performance improvement arises mainly from the decrease in the rate
of charge recombination.
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