### **Supporting Information**

### for

# Towards universal stimuli-responsive Drug Delivery Systems based on the tetrazole-containing polymers: synthesis of pillar[5]arenes and their self-assembly into nanocontainers

Dmitriy N. Shurpik, <sup>1</sup> Lyaysan I. Makhmutova, <sup>1</sup>Konstantin S. Usachev, <sup>2</sup> Daut R. Islamov, <sup>3</sup>Olga A. Mostovaya, <sup>1</sup>Anastasia A. Nazarova, <sup>1</sup>Valeriy N. Kizhnyaev <sup>4</sup> and Ivan I. Stoikov <sup>1,\*</sup>

<sup>1</sup> Kazan Federal University, A.M. Butlerov Chemical Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation

<sup>2</sup> Kazan Federal University, Institute of Fundamental Medicine and Biology, 420008 Kremlevskaya, 18, Kazan, Russian Federation

<sup>3</sup> Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, 420088, Arbuzov st., 8, Kazan, Russian Federation

<sup>4</sup> Irkutsk State University, 664003 K. Marksa, 1, Irkutsk, Russian Federation

E-mail: Ivan.Stoikov@mail.ru

<sup>\*</sup> Corresponding author. Tel.: +7-8432-337463; fax: +7-8432-752253; e-mail: Ivan.Stoikov@mail.ru

### Table of contents

| 1. NMR, MALDI TOF MS, IR spectra of the compounds 6-12                                     | 3  |
|--------------------------------------------------------------------------------------------|----|
| 2. Crystal data                                                                            | 20 |
| 3. Figure S24. UV spectra and Bindfit (Fit data to 1:1, 1:2 and 2:1 Host-Guest equilibria) | 21 |
| 4. Table S3. Dynamic light scattering                                                      | 29 |
| 5. Scanning electron microscopy                                                            | 34 |
| 6. Fluorescence spectra                                                                    | 39 |

#### 1. NMR, MALDI TOF MS, IR spectra of the compounds 6-12

**Figure S1.** <sup>1</sup>H NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-(4-methylbenzylsulfonate-1ethoxy)-pillar[5]arene (6), CDCl<sub>3</sub>, 298 K, 400 MHz.



Figure S2. <sup>13</sup>C NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-(4-methylbenzylsulfonate-1-ethoxy)pillar[5]arene (6), CDCl<sub>3</sub>, 298 K, 100 MHz.







**Figure S4.** IR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-(4-methylbenzylsulfonate-1-ethoxy)pillar[5]arene (**6**).



**Figure S5.** <sup>1</sup>H NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[(isoindoline-1,3-dione)propoxy]pillar[5]arene (**11**), CDCl<sub>3</sub>, 298 K, 400 MHz.



**Figure S6.** <sup>13</sup>C NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[(isoindoline-1,3-dione)propoxy]pillar[5]arene (**11**), CDCl<sub>3</sub>, 298 K, 100 MHz.



Figure S7. IR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[(isoindoline-1,3-dione)propoxy]pillar[5]arene (11).



**Figure S8.** Mass spectrum (MALDI-TOF, 4-nitroaniline matrix) of 4,8,14,18,23,26,28,31,32,35deca-[(isoindoline-1,3-dione)propoxy]-pillar[5]arene (**11**)







**Figure S10.** <sup>13</sup>C NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[2-(pyrrolidin-1yl)ethoxy]-pillar[5]arene (7), CDCl<sub>3</sub>, 298 K, 100 MHz.



**Figure S11.** Mass spectrum (MALDI-TOF, 4-nitroaniline matrix) of 4,8,14,18,23,26,28,31,32,35deca-[2-(pyrrolidin-1-yl)ethoxy]-pillar[5]arene (7).



**Figure S12.** IR spectrum of *4,8,14,18,23,26,28,31,32,35*-deca-[2-(pyrrolidin-1-yl)ethoxy]-pillar[5]arene (7).



**Figure S13.** <sup>1</sup>H NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[2-(piperidin-1-yl)ethoxy]pillar[5]arene (**8**) , CDCl<sub>3</sub>, 298 K, 400 MHz.



**Figure S14**. <sup>13</sup>C NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[2-(piperidin-1-yl)ethoxy]pillar[5]arene (8), CDCl<sub>3</sub>, 298 K, 100 MHz.



**Figure S15**. Mass spectrum (MALDI-TOF, 4-nitroaniline matrix) of 4,8,14,18,23,26,28,31,32,35deca-[2-(piperidin-1-yl)ethoxy]-pillar[5]arene (**8**).



**Figure S16.** IR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[2-(piperidin-1-yl)ethoxy]-pillar[5]arene (8).



**Figure S17.** <sup>1</sup>H NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-(2-morpholinoethoxy)pillar[5]arene (**9**), CDCl<sub>3</sub>, 298 K, 400 MHz.



**Figure S<sup>18</sup>**. <sup>13</sup>C NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-(2-morpholinoethoxy)pillar[5]arene (**9**), CDCl<sub>3</sub>, 298 K, 100 MHz.



**Figure S19**. Mass spectrum (MALDI-TOF, 4-nitroaniline matrix) of 4,8,14,18,23,26,28,31,32,35deca-(2-morpholinoethoxy)-pillar[5]arene (**9**).





**Figure S21**. <sup>1</sup>H NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-(aminopropyloxy)pillar[5]arene (**12**), D<sub>2</sub>O, 298 K, 400 MHz.



**Figure S**<sup>22</sup>.<sup>13</sup>C NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-(aminopropyloxy)-pillar[5]arene (12), D<sub>2</sub>O, 298 K, 100 MHz.



**Figure S23**. Mass spectrum (MALDI-TOF, 4-nitroaniline matrix) of 4,8,14,18,23,26,28,31,32,35deca-(aminopropyloxy)-pillar[5]arene (**12**).



**Figure S**<sup>24</sup>. IR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-(aminopropyloxy)-pillar[5]arene (12).





**Figure S25.** <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-(4-methylbenzylsulfonate-1-ethoxy)-pillar[5]arene (6), CDCl<sub>3</sub>, 298 K, 400 MHz.

**Table S1.** Reaction conditions for the synthesis of target macrocycles 6 and 11 fromstarting compounds 5 and 10, respectively.

| Condition  | C          | Compound s (equi | v.)                                |                                       | Tomn          | Time   | Viold             |
|------------|------------|------------------|------------------------------------|---------------------------------------|---------------|--------|-------------------|
| contantion | Starting   | Methylene        | Catalyst                           | Solvent                               | $(^{\circ}C)$ | (b)    | (%)               |
| 5          | compound   | Bridge reagent   | Catalyst                           |                                       | ( C)          | (11)   | (70)              |
| 1          | 5          | PFA              | BF <sub>3</sub> ×Et <sub>2</sub> O | CH2Cl-CH2Cl                           | 0-85          | 0.5-24 | 40-64             |
|            | (1 equiv.) | (3 equiv.)       | (1 equiv.)                         |                                       |               |        |                   |
| 2          | 5          | PFA              | BF <sub>3</sub> ×Et <sub>2</sub> O | CHCl <sub>3</sub>                     | 0-50          | 2-24   | 5-20 <sup>1</sup> |
|            | (1 equiv.) | (3 equiv.)       | (1 equiv.)                         |                                       |               |        |                   |
| 3          | 5          | PFA              | BF <sub>3</sub> ×Et <sub>2</sub> O | CH <sub>2</sub> Cl <sub>2</sub>       | 0-30          | 2-24   | 0                 |
|            | (1 equiv.) | (3 equiv.)       | (1 equiv.)                         |                                       |               |        |                   |
| 4          | 5          | PFA              | AlBr <sub>3</sub>                  | CH <sub>2</sub> Cl-CH <sub>2</sub> Cl | 0-85          | 0.5-24 | 2-25              |
|            | (1 equiv.) | (3 equiv.)       | (1 equiv.)                         |                                       |               |        |                   |
| 5          | 5          | PFA              | AlBr <sub>3</sub>                  | CHCl <sub>3</sub>                     | 0-50          | 2-24   | 4-40 <sup>1</sup> |
|            | (1 equiv.) | (3 equiv.)       | (1 equiv.)                         |                                       |               |        |                   |
| 6          | 5          | PFA              | AlBr <sub>3</sub>                  | CH <sub>2</sub> Cl <sub>2</sub>       | 0-30          | 2-24   | 0                 |
|            | (1 equiv.) | (3 equiv.)       | (1 equiv.)                         |                                       |               |        |                   |
| 7          | 5          | PFA              | CF <sub>3</sub> SO <sub>3</sub> H  | CH <sub>2</sub> Cl-CH <sub>2</sub> Cl | 0-85          | 0.5-5  | 35-85             |
|            | (1 equiv.) | (3 equiv.)       | (1 equiv.)                         |                                       |               |        |                   |
| 8          | 5          | PFA              | CF <sub>3</sub> SO <sub>3</sub> H  | CHCl <sub>3</sub>                     | 0-50          | 0.5-5  | 7-45 <sup>1</sup> |

|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
|----|------------|-------------|------------------------------------|---------------------------------------|------|--------|-------------------|
| 9  | 5          | PFA         | CF <sub>3</sub> SO <sub>3</sub> H  | CH <sub>2</sub> Cl <sub>2</sub>       | 0-30 | 0.5-5  | 0                 |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 10 | 5          | PFA         | CF <sub>3</sub> COOH               | CH2Cl-CH2Cl                           | 0-85 | 0.5-5  | 1-10              |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 11 | 5          | PFA         | CF <sub>3</sub> COOH               | CHCl3                                 | 0-50 | 2-24   | 1-15 <sup>1</sup> |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 12 | 5          | PFA         | CF <sub>3</sub> COOH               | CH <sub>2</sub> Cl <sub>2</sub>       | 0-30 | 2-24   | 0                 |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 13 | 5          | Paraldehyde | BF <sub>3</sub> ×Et <sub>2</sub> O | CH <sub>2</sub> Cl-CH <sub>2</sub> Cl | 0-85 | 0.5-24 | 5-16              |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 14 | 5          | Paraldehyde | CF3SO3H                            | CH2Cl-CH2Cl                           | 0-85 | 0.5-24 | 10-20             |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 15 | 10         | PFA         | BF <sub>3</sub> ×Et <sub>2</sub> O | CH <sub>2</sub> Cl-CH <sub>2</sub> Cl | 0-85 | 0.5-24 | 21-53             |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 16 | 10         | PFA         | BF <sub>3</sub> ×Et <sub>2</sub> O | CHCl3                                 | 0-50 | 2-24   | 1-15 <sup>1</sup> |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 17 | 10         | PFA         | BF <sub>3</sub> ×Et <sub>2</sub> O | CH <sub>2</sub> Cl <sub>2</sub>       | 0-30 | 2-24   | 0                 |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 18 | 10         | PFA         | AlBr <sub>3</sub>                  | CH <sub>2</sub> Cl-CH <sub>2</sub> Cl | 0-85 | 0.5-24 | 1-17              |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 19 | 10         | PFA         | AlBr <sub>3</sub>                  | CHCl <sub>3</sub>                     | 0-50 | 2-24   | 1-10 <sup>1</sup> |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 20 | 10         | PFA         | AlBr <sub>3</sub>                  | CH <sub>2</sub> Cl <sub>2</sub>       | 0-30 | 2-24   | 0                 |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 21 | 10         | PFA         | CF <sub>3</sub> SO <sub>3</sub> H  | CH <sub>2</sub> Cl-CH <sub>2</sub> Cl | 0-85 | 0.5-5  | 15-74             |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 22 | 10         | PFA         | CF <sub>3</sub> SO <sub>3</sub> H  | CHCl <sub>3</sub>                     | 0-50 | 0.5-5  | 1-17 <sup>1</sup> |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 23 | 10         | PFA         | CF <sub>3</sub> SO <sub>3</sub> H  | CH <sub>2</sub> Cl <sub>2</sub>       | 0-30 | 0.5-5  | 0                 |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 24 | 10         | PFA         | CF <sub>3</sub> COOH               | CH <sub>2</sub> Cl-CH <sub>2</sub> Cl | 0-85 | 0.5-5  | 0                 |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 25 | 10         | PFA         | CF <sub>3</sub> COOH               | CHCl <sub>3</sub>                     | 0-50 | 2-24   | 0                 |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 26 | 10         | PFA         | CF <sub>3</sub> COOH               | CH <sub>2</sub> Cl <sub>2</sub>       | 0-30 | 2-24   | 0                 |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                         |                                       |      |        |                   |
| 27 | 10         | Paraldehyde | BF <sub>3</sub> ×Et <sub>2</sub> O | CH <sub>2</sub> Cl-CH <sub>2</sub> Cl | 0-85 | 0.5-24 | 5-10              |

|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                        |                                       |      |        |      |
|----|------------|-------------|-----------------------------------|---------------------------------------|------|--------|------|
| 28 | 10         | Paraldehyde | CF <sub>3</sub> SO <sub>3</sub> H | CH <sub>2</sub> Cl-CH <sub>2</sub> Cl | 0-85 | 0.5-24 | 3-12 |
|    | (1 equiv.) | (3 equiv.)  | (1 equiv.)                        |                                       |      |        |      |

<sup>1</sup>According to data of NMR spectroscopy.

# 2. Crystal data

| Compound                   | 6                               | 7                  | 11                |
|----------------------------|---------------------------------|--------------------|-------------------|
| Formula                    | $C_{129}H_{136}N_2O_{40}S_{10}$ | C97H143N11O10      | C150H127Cl3N12O30 |
| Dcalc./ g cm <sup>-3</sup> | 1.392                           | 1.167              | 1.082             |
| μ/mm-1                     | 2.315                           | 0.596              | 1.056             |
| Formula                    | 2674.99                         | 1623.22            | 2683.98           |
| Weight                     |                                 |                    |                   |
| Colour                     | clear brown                     | colourless         | yellow            |
| Shape                      | prism                           | plate              | plate             |
| Size/mm <sup>3</sup>       | 0.27×0.18×0.11                  | 0.15×0.09×0.0<br>2 | 0.42×0.23×0.15    |
| T/K                        | 99.9(2)                         | 100.00(10)         | 99.99(10)         |
| Crystal                    | monoclinic                      | triclinic          | triclinic         |
| System                     |                                 |                    |                   |
| Space Group                | C2/c                            | <i>P-</i> 1        | <i>P-</i> 1       |
| a/Å                        | 27.2340(4)                      | 12.4634(4)         | 19.9245(3)        |
| b/Å                        | 17.5786(3)                      | 20.2507(12)        | 20.8844(3)        |
| c/Å                        | 26.8160(5)                      | 20.7444(10)        | 21.69742(17)      |
| $\alpha/^{\circ}$          | 90                              | 63.291(6)          | 104.8530(11)      |
| β/°                        | 95.9945(14)                     | 81.416(4)          | 98.5060(10)       |
| γ/°                        | 90                              | 88.833(4)          | 104.3794(13)      |
| V/Å <sup>3</sup>           | 12767.6(4)                      | 4618.2(4)          | 8234.8(2)         |
| Ζ                          | 4                               | 2                  | 2                 |
| Ζ'                         | 0.5                             | 1                  | 1                 |
| Wavelength/<br>Å           | 1.54184                         | 1.54184            | 1.54184           |
| Radiation<br>type          | Cu K α                          | Cu K α             | Cu K α            |
| $\theta_{min}/^{\circ}$    | 2.997                           | 2.414              | 2.163             |
| $\theta_{max}/^{\circ}$    | 77.501                          | 77.237             | 71.992            |
| Measured                   | 66822                           | 63746              | 265502            |
| Refl.                      |                                 |                    |                   |
| Independent                | 13185                           | 18772              | 32032             |
| Refl.                      |                                 |                    |                   |
| Reflections                | 11003                           | 9154               | 22857             |
| with $I > 2(I)$            |                                 |                    |                   |
| Rint                       | 0.0400                          | 0.1296             | 0.1000            |
| Parameters                 | 822                             | 1093               | 1758              |
| Restraints                 | 0                               | 0                  | 63                |

**Table S2.** Crystal data and structure refinement for 6, 7 and 11.

| Largest Peak               | 0.664   | 1.041   | 1.004   |
|----------------------------|---------|---------|---------|
| Deepest Hole               | -0.431  | -0.397  | -1.328  |
| GooF                       | 1.075   | 1.023   | 1.436   |
| wR <sub>2</sub> (all data) | 0.2288  | 0.2831  | 0.3620  |
| $wR_2$                     | 0.2181  | 0.2235  | 0.3401  |
| R1 (all data)              | 0.0778  | 0.1672  | 0.1259  |
| $R_1$                      | 0.0706  | 0.0875  | 0.1096  |
| CCDC                       | 2027115 | 2027117 | 2027116 |
| Refcode                    |         |         |         |

## 3. Figure S2<mark>6</mark>. UV spectra and Bindfit (Fit data to 1:1, 1:2 and 2:1 Host-Guest equilibria)

UV-vis spectra of pillar[5]arene 7 (1×10<sup>-5</sup> M) at different concentrations of PVTE.

UV-vis spectra of pillar[5]arene 9 (1×10<sup>-5</sup> M) at different concentrations of PVTE.





UV-vis spectra of Fluorescein (1×10<sup>-5</sup> M) at different concentrations of pillar[5]arene 7.

UV-vis spectra of Fluorescein (1×10<sup>-</sup> <sup>5</sup> M) at different concentrations of pillar[5]arene 9. Fluorescence spectra of Fluorescein (1×10<sup>-5</sup>M) at different concentrations of pillar[5]arene 7.



**Figure S**<sup>27</sup>. Screenshots taken from the summary window of the website supramolecular.org. This screenshots shows the raw data for UV-vis titration of 7 with PVTE, the data fitted to 1:1 binding model (A), 1:2 binding model (B) and 2:1



S23

**Figure S28**. Screenshots taken from the summary window of the website supramolecular.org. This screenshots shows the raw data for UV-vis titration of 9 with PVTE, the data fitted to 1:1 binding model (A), 1:2 binding model (B) and 2:1 binding model (C).



**Figure S29**. Screenshots taken from the summary window of the website supramolecular.org. This screenshots shows the raw data for UV-vis titration of 7 with Fluorescein, the data fitted to 1:1 binding model (A), 1:2 binding model (B) and 2:1 binding model (C).

|            | Fitter: UV 1:1 Fit                                                                                                                       | Summar                                                                             | ry Save                        |                                      | Fits Molefractions Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |
|------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| (A)        | Details<br>Time to fit<br>SSR<br>Fitted datapoints<br>Fitted params<br>Parameters<br>Parameter<br>(bounds)<br>$K (0 \rightarrow \infty)$ | 0.1893 s<br>6.7966e-5<br>10<br>2<br><b>Optimised</b><br>4730.16<br>M <sup>-1</sup> | <b>Error</b><br>± 10.3780<br>% | Initial<br>100.00<br>M <sup>-1</sup> | 0.125<br>0.1<br>0.075<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0. | <ul> <li>• data</li> <li>data residuals</li> </ul> |
|            | Fitter: UV 1:2 Fit                                                                                                                       | Summa                                                                              | ry Save                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |
| <b>(B)</b> | Details<br>Time to fit<br>SSR<br>Fitted datapoints<br>Fitted params<br>Parameters                                                        | 1.0341 s<br>5.3723e-5<br>10<br>4                                                   | 5                              |                                      | Fits Molefractions Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • data                                             |
|            | Parameter<br>(bounds)                                                                                                                    | Optimised                                                                          | Error                          | Initial                              | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |
|            | $K_{\mathfrak{ll}} \left( \ 0 \to \infty \ \right)$                                                                                      | 3981.21<br>M⁻¹                                                                     | ± 6.0967<br>%                  | 1000.00<br>M <sup>-1</sup>           | 0<br>5 10 15 20 25 30 35 40 45 50<br>Equivalent total (G)=P-0=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|            | $K_{12} \left( \ 0 \to \infty \ \right)$                                                                                                 | -2163.70<br>M <sup>-1</sup>                                                        | ± -6.0967<br>%                 | 100.00 M <sup>-1</sup>               | 8 0.005<br>9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 🔸 data residuals                                   |
|            | Back                                                                                                                                     |                                                                                    | Ne                             | ext                                  | .0.005 5 10 15 20 25 30 35 40 45 50<br>Equivalent total (G)=/PI(=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |
| (C)        | Fitter: UV 2:1 Fit                                                                                                                       | Summar                                                                             | y Save                         |                                      | Fits Molefractions Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |
|            | Details<br>Time to fit<br>SSR<br>Fitted datapoints<br>Fitted params<br>Parameters                                                        | 0.8129 s<br>6.5367e-5<br>10<br>4                                                   |                                |                                      | 0.125<br>0.1<br>0.075<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • data                                             |
|            | Parameter<br>(bounds)                                                                                                                    | Optimised                                                                          | Error                          | Initial                              | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |
|            | $K_{\mathfrak{l}\mathfrak{l}} \left( \ 0 \to \infty \ \right)$                                                                           | 1285.31<br>M <sup>-1</sup>                                                         | ± 150.1621<br>%                | 1000.00<br>M <sup>-1</sup>           | 5 10 15 20 25 30 35 40 45 50<br>Equivalent total [0]=/h]th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a data apartituata                                 |
|            | $K_{21}\left( \ 0 \to \infty \ \right)$                                                                                                  | 99110.44<br>M <sup>-1</sup>                                                        | ± 254.0283<br>%                | 100.00<br>M <sup>-1</sup>            | 8 0.005<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - data residuals                                   |
|            | Back                                                                                                                                     |                                                                                    | Nex                            | d                                    | -0.005 5 10 15 20 25 30 35 40 45 50<br>Equivalent total (QI-P) Flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |

**Figure S30**. Screenshots taken from the summary window of the website supramolecular.org. This screenshots shows the raw data for UV-vis titration of 9 with Fluorescein, the data fitted to 1:1 binding model (A), 1:2 binding model (B) and 2:1 binding model (C).



**Figure 531**. Screenshots taken from the summary window of the website supramolecular.org. This screenshots shows the raw data for fluorescence titration of 7 with Fluorescein, the data fitted to 1:1 binding model (A), 1:2 binding model (B) and 2:1 binding model (C).



4. Table S3. Dynamic light scattering. Aggregation of the particles for 7 / Flu and 7 / PVTE in EtOH.

| Ratio    | V, μl | C7, M  | CFlu, M              | Z average (d) , nm | PDI             | ζ- potential, |
|----------|-------|--------|----------------------|--------------------|-----------------|---------------|
| 7 / Flu  |       |        |                      |                    |                 | mV            |
| 1:0      | 1000  | 10-3   | 0                    | 376.40±34.49       | 0.42±0.12       | -             |
| 1:0      | 1000  | 10-4   | 0                    | 406.60±71.45       | 0.35±0.10       | -             |
| 1:0      | 1000  | 10-5   | 0                    | 760.20±111.20      | 0.44±0.29       | -             |
| 1:1      | 1000  | 10-3   | 10-3                 | 428.30±8.12        | $0.36 \pm 0.08$ | 3.20±0.10     |
| 1:2      | 1000  | 10-3   | 2×10-3               | 433.90±102.40      | $0.41 \pm 0.02$ | -             |
| 2:1      | 1000  | 2×10-3 | 10-3                 | 305.70±48.18       | 0.43±0.01       | -             |
| 1:1      | 1000  | 10-4   | 10-4                 | 336.00±13.60       | 0.33±0.02       | 1.40±0.72     |
| 1:2      | 1000  | 10-4   | 2×10-4               | 457.50±149.50      | 0.47±0.13       | -             |
| 2:1      | 1000  | 2×10-4 | 10-4                 | 456.80±131.40      | $0.45 \pm 0.11$ | -             |
| 1:1      | 1000  | 10-5   | 10-5                 | 155.40±7.16        | 0.16±0.02       | 5.94±0.06     |
| 1:2      | 1000  | 10-5   | 2×10-5               | 225.40±7.12        | 0.23±0.02       | 2.50±0.58     |
| 2:1      | 1000  | 2×10-5 | 10-5                 | 191.00±25.87       | $0.26 \pm 0.05$ | 2.74±0.14     |
| 0:1      | 1000  | 0      | 10-3                 | 460                | 1               | -             |
| 0:1      | 1000  | 0      | 10-4                 | -                  | -               | -             |
| 0:1      | 1000  | 0      | 10-5                 | 2328               | 1               | -             |
| 7 / PVTE | V, μl | C7, M  | CPVTE, M             | Z average (d) , nm | PDI             | ζ- potential, |
|          |       |        |                      |                    |                 | mV            |
| 50:1     | 1000  | 5×10-4 | 10-5                 | 213.22±4.11        | 0.31±0.07       | -5.44±0.08    |
| 10:1     | 1000  | 10-4   | 10-5                 | 116.01±2.26        | 0.23±0.01       | -9.21±0.05    |
| 5:1      | 1000  | 5×10-5 | 10-5                 | 198.44±8.10        | 0.34±0.15       | -             |
| 2:1      | 1000  | 2×10-5 | 10-5                 | 302.11±1.87        | $0.35 \pm 0.05$ | -             |
| 1:1      | 1000  | 10-5   | 10-5                 | 417.20±11.18       | 0.39±0.11       | -             |
| 1:2      | 1000  | 10-5   | 2×10-5               | 405.54±10.05       | 0.41±0.17       | -             |
| 1:5      | 1000  | 10-5   | 5×10-5               | 440.56±18.16       | $0.46 \pm 0.15$ | -             |
| 1:15     | 1000  | 10-5   | $1.5 \times 10^{-4}$ | 315.20±5.23        | 0.37±0.28       | -             |
| 0:1      | 1000  | 0      | 10-3                 | 670.30±456.40      | 0.60±0.19       | -             |
| 0:1      | 1000  | 0      | 10-4                 | 108.80±21.02       | 0.41±0.09       | -             |
| 0:1      | 1000  | 0      | 10-5                 | 678.00±486.90      | 0.52±0.17       | -             |

## Aggregation of the particles for 9 / Flu and 9 / PVTE in EtOH.

| Ratio   | V, μl | С9, М  | CFlu, M | Z average (d), nm | PDI             | ζ- potential, |
|---------|-------|--------|---------|-------------------|-----------------|---------------|
| 9 / Flu |       |        |         |                   |                 | mV            |
| 1:0     | 1000  | 10-3   | 0       | 690.10±93.47      | $0.56 \pm 0.34$ | -             |
| 1:0     | 1000  | 10-4   | 0       | 255.80±96.04      | 0.58±0.24       | -             |
| 1:0     | 1000  | 10-5   | 0       | 262.30±166.60     | $0.45 \pm 0.14$ | -             |
| 1:1     | 1000  | 10-3   | 10-3    | 733.70±209.60     | 0.48±0.37       | -             |
| 1:2     | 1000  | 10-3   | 2×10-3  | 1448.00±72.40     | $0.47 \pm 0.12$ | -             |
| 2:1     | 1000  | 2×10-3 | 10-3    | 760.80±20.55      | 0.49±0.13       | -             |
| 1:1     | 1000  | 10-4   | 10-4    | 876.40±438.80     | 0.62±0.16       | -             |
| 1:2     | 1000  | 10-4   | 2×10-4  | 451.10±221.10     | 0.44±0.21       | -             |
| 2:1     | 1000  | 2×10-4 | 10-4    | 363.20±167.30     | $0.40\pm0.14$   | -             |
| 1:1     | 1000  | 10-5   | 10-5    | 273.50±162.90     | 0.31±0.16       | 0.05±0.03     |
| 1:2     | 1000  | 10-5   | 2×10-5  | 309.90±37.24      | 0.40±0.12       | -             |
| 2:1     | 1000  | 2×10-5 | 10-5    | 408.80±176.60     | 0.45±0.14       | -             |

| 9 / PVTE | V, μl | С9, М  | Cpvte, M             | Z average (d), nm | PDI           | ζ- potential,<br>mV |
|----------|-------|--------|----------------------|-------------------|---------------|---------------------|
| 50:1     | 1000  | 5×10-4 | 10-5                 | 312.25±7.12       | 0.31±0.07     | -                   |
| 10:1     | 1000  | 10-4   | 10-5                 | 125.10±4.15       | 0.40±0.09     | -                   |
| 5:1      | 1000  | 5×10-5 | 10-5                 | 270.21±5.14       | 0.38±0.23     | -                   |
| 2:1      | 1000  | 2×10-5 | 10-5                 | 288.60±3.13       | 0.39±0.10     | -                   |
| 1:1      | 1000  | 10-5   | 10-5                 | 339.45±10.21      | $0.40\pm0.08$ | -                   |
| 1:2      | 1000  | 10-5   | 2×10-5               | 550.28±24.35      | 0.48±0.21     | -                   |
| 1:5      | 1000  | 10-5   | 5×10-5               | 1120.50±56.40     | 0.50±0.21     | -                   |
| 1:15     | 1000  | 10-5   | $1.5 \times 10^{-4}$ | -                 | -             | -                   |

### Aggregation of the particles for 7/Flu/PVTE in EtOH.

| 7/Flu/PVTE | V, µl | C7, M | CFlu, M | Cpvte, M | Z average (d), nm | PDI             | ζ- potential,<br>mV |
|------------|-------|-------|---------|----------|-------------------|-----------------|---------------------|
| 1101       | 1000  | 10.2  | 10.2    | 10.4     | 410 04 10 11      | 0.41.0.10       | III V               |
| 1:1:0.1    | 1000  | 10-3  | 10-5    | 10-4     | 418.24±10.11      | $0.41\pm0.12$   | -                   |
| 1:1:1      | 1000  | 10-3  | 10-3    | 10-3     | 312.15±5.10       | $0.35 \pm 0.14$ | -                   |
| 1:1:5      | 1000  | 10-3  | 10-3    | 5×10-3   | 214.74±10.08      | $0.33 \pm 0.04$ | -6.13±0.11          |
| 1:1:10     | 1000  | 10-3  | 10-3    | 10-2     | 54.11±1.12        | $0.20 \pm 0.04$ | -11.15±0.10         |
| 1:1:0.1    | 1000  | 10-4  | 10-4    | 10-5     | 502.11±20.43      | 0.54±0.21       | -                   |
| 1:1:1      | 1000  | 10-4  | 10-4    | 10-4     | 395.00±66.37      | $0.36 \pm 0.04$ | -8.25±0.54          |
| 1:1:5      | 1000  | 10-4  | 10-4    | 5×10-4   | 188.23±9.17       | 0.38±0.09       | -9.16±0.36          |
| 1:1:10     | 1000  | 10-4  | 10-4    | 10-3     | 51.04±2.07        | 0.21±0.04       | -10.79±0.08         |
| 1:1:0.1    | 1000  | 10-5  | 10-5    | 10-6     | 287.20±34.17      | 0.32±0.07       | -7.14±0.24          |
| 1:1:1      | 1000  | 10-5  | 10-5    | 10-5     | 114.30±2.10       | 0.20±0.01       | -10.45±0.07         |
| 1:1:5      | 1000  | 10-5  | 10-5    | 5×10-3   | 102.20±2.24       | 0.21±0.05       | -11.04±0.17         |
| 1:1:10     | 1000  | 10-5  | 10-5    | 10-4     | 48.02±1.10        | 0.16±0.01       | -12.81±0.04         |

#### Aggregation of the particles for 7/Flu/PVTE in H<sub>2</sub>O/EtOH (100/1).

| 7/Flu/PVTE | VH20, | V EtOH, | C7, M | CFlu, M | CPVTE, M | Z average (d), nm | PDI             | ζ-          |
|------------|-------|---------|-------|---------|----------|-------------------|-----------------|-------------|
|            | μl    | μl      |       |         |          |                   |                 | potential,  |
|            |       |         |       |         |          |                   |                 | mV          |
| 1:1:0.1    | 1000  | 10      | 10-3  | 10-3    | 10-4     | 388.58±9.23       | 0.64±0.25       | -           |
| 1:1:1      | 1000  | 10      | 10-3  | 10-3    | 10-3     | 324.90±7.80       | 0.53±0.02       | -           |
| 1:1:5      | 1000  | 10      | 10-3  | 10-3    | 5×10-3   | 183.45±5.15       | 0.36±0.09       | -9.23±1.47  |
| 1:1:10     | 1000  | 10      | 10-3  | 10-3    | 10-2     | 68.26±1.12        | $0.09 \pm 0.01$ | -34.12±1.94 |
| 1:1:0.1    | 1000  | 10      | 10-4  | 10-4    | 10-5     | 1560.40±145.24    | 1               | -           |
| 1:1:1      | 1000  | 10      | 10-4  | 10-4    | 10-4     | 417.40±54.39      | $0.42 \pm 0.15$ | -           |
| 1:1:5      | 1000  | 10      | 10-4  | 10-4    | 5×10-4   | 245.36±2.23       | $0.35 \pm 0.04$ | -9.11±2.13  |
| 1:1:10     | 1000  | 10      | 10-4  | 10-4    | 10-3     | 175.00±3.05       | 0.29±0.01       | -26.40±1.45 |

### Aggregation of the particles for 7/Flu/PVTE in buffer (pH 9-2).

| 7/Flu/PVTE | V buff., | V EtOH, | <b>C</b> <sub>7</sub> | CFlu    | Cpvte   | Z average (d), | PDI             |
|------------|----------|---------|-----------------------|---------|---------|----------------|-----------------|
|            | μl (pH)  | μl      | (EtOH),               | (EtOH), | (EtOH), | nm             |                 |
|            |          |         | Μ                     | Μ       | Μ       |                |                 |
| 1:1:10     | 1000 (9) | 10      | 10-3                  | 10-3    | 10-2    | 82.99±0.47     | $0.15 \pm 0.02$ |
|            | 1000 (7) | 10      | 10-3                  | 10-3    | 10-2    | 84.33±0.72     | $0.12 \pm 0.01$ |
|            | 1000 (5) | 10      | 10-3                  | 10-3    | 10-2    | 489.33±10.30   | 0.43±0.15       |
|            | 1000 (4) | 10      | 10-3                  | 10-3    | 10-2    | 688.40±25.69   | 0.63±0.09       |
|            | 1000 (2) | 10      | 10-3                  | 10-3    | 10-2    | 737.80±45.58   | $0.55 \pm 0.07$ |



**Figure S**<sup>32</sup>. Size distribution of the particles by intensity for PVTE (1×10<sup>-5</sup>M) in ethanol.

**Figure S**<sup>33</sup>. Size distribution of the particles by intensity for 7 (1×10<sup>-5</sup>M) in ethanol.



**Figure S**<sup>34</sup>. Size distribution of the particles by intensity for 7 (1×10<sup>-4</sup> M) / PVTE (1×10<sup>-5</sup> M) (10:1) in ethanol.





**Figure S35.** Size distribution of the particles by intensity for 7/Flu, 7/Flu/PVTE in ethanol and buffer at different pH

#### 5. Scanning electron microscopy.





**Figure S37**. SEM image of 7/Flu/PVTE ( $1 \times 10^{-5}$  M) after the solvent (H<sub>2</sub>O/EtOH) evaporation.



**Figure S**38. SEM image of 7/Flu/PVTE (1×10<sup>-5</sup> M) after the solvent (H<sub>2</sub>O/EtOH) evaporation.



**Figure S39**. SEM image of 7/Flu/PVTE ( $1 \times 10^{-5}$  M) after the solvent (H<sub>2</sub>O/EtOH) evaporation.



**Figure S** $_{40}$ . SEM image of 7/Flu (1×10-5 M) after the solvent (H<sub>2</sub>O/EtOH) evaporation.





**Figure S41.** SEM image of PVTE (1×10<sup>-5</sup> M) after the solvent (H<sub>2</sub>O/EtOH) evaporation.

### 6. Fluorescence spectra

**Figure S**<sup>42</sup>. Fluorescence spectra of 7/Flu/PVTE (1×10<sup>-5</sup>M) in buffer at different pH (9-2).

