

Supplementary Materials

Effect of Polyvinyl Alcohol Ligands on Supported Gold Nano-Catalysts: Morphological and Kinetics Studies

Stefano Scurti ¹, Eleonora Monti ¹, Elena Rodríguez-Aguado ², Daniele Caretti ^{1,*}, Juan Antonio Cecilia ² and Nikolaos Dimitratos ^{1,*}

- ¹ Industrial Chemistry "Toso Montanari" Department, University of Bologna, Viale Risorgimento 4, 40126 Bologna, Italy; stefano.scurti2@unibo.it (S.S.); eleonora.monti8@unibo.it (E.M.)
- ² Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain; aguadoelena5@gmail.com (E.R.-A.); jacecilia@uma.es (J.A.C.)
- * Correspondence: daniele.caretti@unibo.it (D.C.); nikolaos.dimitratos@unibo.it (N.D.)

-Poly vinyl alcohol synthesis and characterization

To characterize polymer synthesized by radical polymerization of vinyl acetate NMR as well as FT-IR spectra were recorded and reported in **Figure S1**. By ¹H-NMR spectrum, reference peak of the CH₃ derived from acetate group was observed at 2 ppm. The other aliphatic hydrogen signals were observed at 1.75 ppm and 4.9 ppm. **Figure S1b** shows FT-IR spectra of PVAc where typical reference bands at 1729 and 1300–1000 cm⁻¹ related to the stretching vibrations of C=O and C–O group are present.

SS_PVAc1 polivinil-acetato (100%Etoh)

Figure S1. (a) ¹H-NMR (Proton nuclear magnetic resonance) in CDCl₃ and (b) FT-IR (Furier Transform Infra-Red Spectroscopy) spectra of poly-vinyl acetate (PVAc).

Table 1. GPC (Gel Permeation Chromatography) data.

	$\overline{M_n}$	$\overline{M_w}$	Polidispersity
PVAc1	23,300	44,700	1.9
PVAc2	32,800	60,500	1.8
PVAc3	92,300	221,500	2.4
PVAc4	161,500	616,400	3.8

Poly-vinyl alcohol synthesized by direct saponification process was characterized by means of NMR and FT-IR spectroscopies. By ¹H-NMR spectrum reported in **Figure S2.** it is possibile to confirm the presence of full-hydrolyzed PVA due to the absence of CH₃ peak at 2 ppm.

Figure S2. ¹H-NMR spectrum in d₆-DMSO-D₂O of full hydrolyzed poly-vinyl alcohol.

By using a reference peak, the intensity of C=O stretching band at 1729 cm⁻¹, the hydrolysis degree in PVA partially hydrolyzed was evaluated. **Figure S3** showed the FT-IR spectra of the synthesized polymers.

Figure S3. FT-IR spectra of poly-vinyl alcohol partially hydrolysed: focus on the C=O stretching at 1729 cm⁻¹.

-Nanoparticles characterization: effect of molecular weight

Figure S4. UV-visibile spectra and positions of the surface plasmon resonance peak of the Au colloidal nanoparticles obtained by PVA as a function of molecular weight.

Figure S5. XRD patterns of the Au supported colloidal nanoparticles obteined by PVA as a function of molecular weight.

Figure S6. TEM images and particle size distributions of Au/AC synthesized using different molecular weights: (a) M_n = 13,000–23,000; (b) M_n = 31,000–50,000; (c) M_n = 92,300 and (d) M_n = 146,000–186,000.

Figure S7. XPS spectra for 1% wt Au/AC synthesized using PVA-99 with different molecular weights.

-Nanoparticles characterization: effect of hydrolysis degree

Figure S8. UV-visibile spectra relative to gold nanoparticles obtained by PVA (Mn:23,300) with different hydrolysis degree: focus on surface plasmon resonance peak.

Figure S9. Zeta potential (ζ) of gold nanoparticles versus poly-vinyl alcohol hydrolysis degree (Mn:23,300).

Figure S10. XRD patterns of the Au supported nanoparticles obtained by PVA (Mn:23,300) as a fucntion of the hydrolysis degree.

Figure S11. TEM images and particle size distributions of Au/AC synthesized using different hydrolysis degree: (**a**) 20%; (**b**) 40%; (**c**) 50%; (**d**) 60%; (**e**) 88% and (**f**) 99%.

Figure S12. XPS spectra for 1% wt Au/AC synthesized using PVA (Mn:23,300) with different hydrolysis degree.

-Effect of molecular weight

Figure 13. TEM images and particle size distributions of Au/AC synthesized using PVA2 (Mn=13,000–23,000) with different Au:PVA weight ratio: (**a**) ratio 1:0.15(Au:PVA); (**b**) ratio 1:0.33(Au:PVA).

Figure S14. XRD patterns of the Au supported nanoparticles obtained by PVA2 (Mn:13,000–23,000) with different Au:PVA weight ratio.

Figure S15. XPS spectra for 1% wt Au/AC synthesized using PVA2 (13,000–23,000) with different Au:PVA weight ratio.

-Effect of hydrolysis degree

Figure S16. Zeta potential (ζ) of gold nanoparticles versus amount of PVA-60 (Mn:23,300) in Au:PVA weight ratio.

Figure S17. TEM images and particle size distributions of Au/AC synthesized using PVA-60 (Mn = 23,300) with different Au:PVA weight ratio: (**a**) ratio 1:1.2(Au:PVA); (**b**) ratio 1:0.33(Au:PVA); (**c**) 1:0.15 (Au:PVA); (**d**) 1:0 (Au:PVA).

Figure S18. XRD patterns of the Au supported nanoparticles obtained by PVA-60 (Mn:23,300) with different Au:PVA weight ratio.

Figure S19. XPS spectra for 1% wt Au/AC synthesized using PVA-60 (23,000) with different Au:PVA weight ratio.

-Reusability test

Figure S20. XPS spectra for 1% wt Au/AC synthesized using PVA-60 (23,000) with Au:PVA of 1:0.33: comparison beetween fresh and used catalyst.

Table S2. XPS data for 1% wt Au/AC synthesized using PVA-60 (Mn = 23,300) with Au:PVA of 1:0.33: comparison beetween fresh and used catalyst.

	Au:PVA (w/w)	BE Au 4f7/2 (eV)	Au on Surface (% atomic)	C on Surface (% atomic)	Surface atomic ratio Au/C
PVA-60 fresh	1:0.33	84.1	1.38	93.2	0.02
PVA-60 used	1.0.33	84.1	1.87	92.9	0.02

Figure S21. TEM images and particle size distributions of Au/AC used catalyst synthesized with PVA-60 (Mn = 23,300) Au:PVA of 1:0.33.