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Abstract: Biomass-waste activated carbon/molybdenum oxide/molybdenum carbide ternary com-
posites are prepared using a facile in-situ pyrolysis process in argon ambient with varying mass ratios
of ammonium molybdate tetrahydrate to porous peanut shell activated carbon (PAC). The formation
of MoO2 and Mo2C nanostructures embedded in the porous carbon framework is confirmed by
extensive structural characterization and elemental mapping analysis. The best composite when
used as electrodes in a symmetric supercapacitor (PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1)
exhibited a good cell capacitance of 115 F g−1 with an associated high specific energy of 51.8 W h
kg−1, as well as a specific power of 0.9 kW kg−1 at a cell voltage of 1.8 V at 1 A g−1. Increasing
the specific current to 20 A g−1 still showcased a device capable of delivering up to 30 W h kg−1

specific energy and 18 kW kg−1 of specific power. Additionally, with a great cycling stability, a 99.8%
coulombic efficiency and capacitance retention of ~83% were recorded for over 25,000 galvanostatic
charge-discharge cycles at 10 A g−1. The voltage holding test after a 160 h floating time resulted in
increase of the specific capacitance from 74.7 to 90 F g−1 at 10 A g−1 for this storage device. The
remarkable electrochemical performance is based on the synergistic effect of metal oxide/metal
carbide (MoO2/Mo2C) with the interconnected porous carbon. The PAC/MoO2/Mo2C ternary
composites highlight promising Mo-based electrode materials suitable for high-performance energy
storage. Explicitly, this work also demonstrates a simple and sustainable approach to enhance the
electrochemical performance of porous carbon materials.

Keywords: porous carbon; ternary composite; molybdenum oxide; molybdenum carbide; energy storage

1. Introduction

The high demand for energy in conjunction with the rapid depletion of fossil fuels has
made it essential to develop alternative energy sources. Various researchers have shown an
increased interest in the development of clean, sustainable and renewable energy sources
such as solar, wind and geothermal [1,2]. However, there are still challenges linked to
the production and continuous supply of energy in large quantities from these renewable
energy systems [3]. Therefore, in order to supply energy needs on a long-term basis, in
addition to it being affordable, sustainable and environmentally friendly, it is important
to find diverse, efficient, safe and flexible methods for its simultaneous generation and
storage [4–6]. Batteries and supercapacitors are the most renowned energy storage devices
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with supercapacitors being given gross attention by energy researchers globally due to
their high performance features such as high specific power, long life cycle and quick
charge-discharge dynamics [7,8].

Supercapacitors are typically categorized into electrical double layer-capacitor (EDLC)
and pseudo capacitors. The former operates on a charge storage process that relies on an
electrostatic charge accumulation formed at the interfacial region of electrode/electrolyte
while the latter depends on reversible faradic-type redox reactions at the electrode surface
material [9,10].

Porous carbon such as carbon nanotube, graphene, activated carbon (AC) and carbon
onions owing to their large surface area, good electrical conductivity and great stability
are mainly investigated as electrode materials for EDLC [11,12]. Porous AC materials
obtained from biomass waste (peanut shell, walnut shell, pinecone and so on) have gained
interest due to their distinctive features of well-developed surface area with hierarchical
pore structure, abundant availability of precursors sources, environmental friendliness
and low costs [13,14]. In addition, surface functional groups obtained from the AC can
favor an easy ion adsorption/desorption at the electrode/electrolyte interface leading to
an optimum electrochemical performance [15,16]. However, there is still a need to improve
their performance to meet the high-energy demand.

To date, various methods have been reported to enhance the electrochemical perfor-
mance of the porous ACs. For instance, the introduction of oxygen functional groups
(ketone, ether, carboxylic acid, quinone, and so on) by oxidizing the porous carbon surface
could promote the hydrophilicity and also surface reactivity of the carbon material [17–19].
Moreover, the presence of the surface oxygen-containing species not only provides some
pseudo capacitance effect but also enriches the surface wetting capability which contributes
a significant improvement in the capacitance and the overall specific energy/power of the
carbon electrode material [19,20].

Song et al. [19] prepared O/S dual-modified nanoporous carbon (OSC) by a hydrother-
mal oxidation method using H2O2 (O) and H2SO4 (S) as oxidants. Their study revealed
that the OSC electrode delivered a specific capacitance of 168 F g−1, 3.5 times higher than
the pristine nanoporous carbon in 6 M KOH aqueous electrolyte due to the introduction of
the oxygen functional groups on the surface of nanoporous carbon [19]. Another promising
method is the heteroatom-doping (nitrogen, sulphur, phosphorous, boron and so on) of a
porous AC matrix, which enhances the capability to store charge in the material. Therefore,
heteroatom doping into the porous carbon framework results in the modification of the
electronic structure, which can remarkably improve the electrical conductivity, the surface
wettability, properties of the electrons donor and hence the electrochemical features of the
porous carbon materials [21–24]. For instance, we reported previously in our study on the
synthesis of nitrogen-doped peanut shell activated carbon (NPAC) by chemical activation
and nitrogen-post-doping processes with KOH and melamine respectively. The NPAC
showed a considerable increase in the specific capacitance value (167 F g−1 to 216 F g−1)
for the non-doped PAC and NPAC electrodes in a 2.5 M KNO3 aqueous electrolyte [24].

Incorporating transition metal oxides/hydroxides or conducting polymer into the
porous carbon network is also an effective strategy that can improve the electrochemical
properties of these carbon materials. The integration of porous carbon with transition metal
oxides (MnO2, NiO, Fe3O4, MoO2, etc.) forming composites synergistically combines the
advantages and mitigates the limitations of both materials [25–27]. MoO2 is one of the most
promising pseudocapacitive transition metal oxides which possesses several oxidation
states (+2 to +6), high theoretical specific capacitance, excellent redox reaction capability,
low electrical resistivity, good electrochemical activity and low cost [28,29].

Thus, the MoO2 incorporated into the porous carbon may provide more electrochemi-
cal active sites that could influence additional surface pseudocapacitive effect endowing
enhanced electrochemical performance of the composite [30–32]. Lina et al. [30] synthesized
MoO2 nanoparticles decorated into 3D porous graphene (MoO2-rGO) using a hydrothermal
route. Their work indicated that the MoO2-rGO composite enhanced specific capacitance
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to 356 F g−1 as compared to the 3D porous graphene (244 F g−1) in 6 M KOH aqueous
electrolyte [30].

Other studies have also shown the incorporation of transition metal carbide (Mo2C,
W2C, TiC, etc.) in the carbon framework could improve the performance metrics of the
electrochemical capacitors [33–35]. Among the transition metal carbides, Mo2C has recently
attracted great interest due to the high specific conductance (1.02 × 102 S cm−1), great
conductivity (electrical and thermal) and good chemical stability [36–38]. Furthermore,
these remarkable proprieties can offer additional actives sites, facilitate electron and ion
transportation, good cyclic stability properties and a reduction of the charge resistance
which could produce a relatively high electrochemical performance [38,39]. Hussain and co-
workers [40] have prepared carbon nanotubes (CNTs) decorated with molybdenum carbide
nanosheets (Mo2C@CNT) by a chemical reduction approach followed by carbonization. In
their report, the hybrid composite Mo2C@CNT exhibited a specific capacitance value of
365 F g−1 which is 3.5 times higher than the CNTs (103 F g−1) in KOH electrolyte owing to
the synergy between the Mo2C and CNTs [40].

Forming a ternary composite of metal oxide (MoO2), metal carbide (Mo2C) and porous
carbon material result in a combination of the advantages of each component that could
considerably enhance the electrochemical features of the energy storage device [38,41,42].
For instance, Ihsan et al. [36] have prepared a MoO2/Mo2C/C spheres by a two-step,
hydrothermal process followed by a calcination procedure.

Yang et al. [42] have also synthesized MoO2/Mo2C/C hybrid microspheres by a
template-free method. Both studies showed a great rate capability, cycling stability, good
capacity as anode materials for Li-ion batteries. However, to the best of our knowl-
edge no reports exist on the application of these Mo-based materials/porous carbon
(MoO2/Mo2C/C) ternary composites as supercapacitor electrodes.

In this study, we have established a facile and low-cost approach of synthesizing a
ternary composite (PAC/MoO2/Mo2C) for the first time as electrode material for superca-
pacitor by one-step pyrolysis route through varying mass ratios of ammonium molybdate
tetrahydrate to porous peanut shell activated carbon (PAC) (1:0.5; 1:1; 1:2). The in-situ
formation of MoO2 and Mo2C nanostructures incorporated into the PAC network were
confirmed by the XRD, Raman, HRTEM, SAED, SEM, EDX mapping, as well as the XPS
analysis. The obtained ternary composites portrayed interesting merits based on the exist-
ing incorporated nanostructures of the MoO2-Mo2C within the nanoporous PAC-based
material including: (i) high specific surface area with hierarchically porous structure of the
PAC, (ii) pseudocapacitive effect by the redox reaction of MoO2 and (iii) superior electrical
conductivity and stability of the Mo2C. The best ternary composite (PAC/MoO2/Mo2C-
1) exhibited superior capacitive performance in both half and full-cell test owing to the
synergistic effect of the MoO2 and Mo2C nanostructures embedded into the PAC matrix.
Moreover, our study demonstrates a simple and sustainable approach to enhance the
electrochemical performance of porous carbon materials.

2. Experimental
2.1. Materials

In this study, all chemical reagents were used as obtained without any further purifi-
cation. Ammonium molybdate tetrahydrate (NH4)6Mo7O24·4H2O, 99.98%), potassium
nitrate, (KNO3, 99.99%), potassium hydroxide (KOH, 99%), polyvinylidene fluoride (PVDF,
99%), carbon acetylene black (CAB, 99.95%), hydrochloric acid (HCl, 37%) and N-methyl-2-
pyrrolidone (NMP, 99%) were supplied from Merck (Johannesburg, South Africa). Argon
gas (Ar, 99.99%) was purchased from Afrox (Johannesburg, South Africa) and polycrys-
talline nickel foam mesh (with 1.6 mm thickness, 420 g m−2 areal density) was obtained
from Alantum (Munich, Germany).
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2.2. Synthesis of the Peanut Shell Waste Derived Activated Carbon (PAC)

Peanut shell waste derived activated carbon (PAC) was prepared by a one-step chem-
ical activation following a reported procedure from our previous study [24]. Briefly, the
peanut shell waste raw material was mixed with KOH pellets in an optimized ratio by
mass and then subjected to chemical activation at an elevated 850 ◦C temperature for 1 h to
obtain the final product.

2.3. Synthesis of the Peanut Shell Derived Activated Carbon/Molybdenum Oxide/Molybdenum
Carbide (PAC/MoO2/Mo2C) Ternary Composites

The synthesized PAC sample was mixed with ammonium molybdate tetrahydrate
in mass ratios of 1:0.5, 1:1 and 1:2 for the PAC to the inorganic salt in an agate mortar.
Few drops of deionized water were added to the as-prepared mixture to ensure thorough
mixing of both materials which was then loaded onto a porcelain boat and air dried at
80 ◦C for 12 h in an electric oven.

The porcelain boat was transferred into a horizontal tube furnace and heated to 850 ◦C
at a ramping rate of 5 ◦C min−1. The furnace was kept constant at this temperature for 1 h
under 250 sccm of argon gas flow. After cooling down to room temperature, the ternary
composites were obtained and labelled PAC/MoO2/Mo2C-0.5, PAC/MoO2/Mo2C-1 and
PAC/MoO2/Mo2C-2 corresponding to the mass ratio of 1:0.5, 1:1 and 1:2, of PAC to the
inorganic salt, respectively. The schematic procedure for preparing the PAC/MoO2/Mo2C
ternary composites is illustrated in Figure 1.
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Figure 1. Schematic illustration for the synthesis method of the PAC/MoO2/Mo2C ternary composites.

2.4. Physical Characterization

Powder X-ray diffraction (XRD) analysis of the PAC/MoO2/Mo2C samples was
determined using a Brucker D8 Advance diffractometer using Cu Kα (λ = 1.5406 Å)
radiation operating in the 2θ range of 10–80◦. Raman spectra of the ternary composite
materials were characterized on WITec alpha300 RAS+ confocal Raman microscope (WITec,
Ulm, Germany) using a 532 nm excitation laser at a power of 5 mW.

High-resolution transmission electron microscope (HRTEM) micrographs and selected
area electron diffraction (SAED) patterns were obtained using a JEOL JEM-2100F field
emission gun transmission electron microscope (FEG-TEM) operating at 200 kV. Scanning
electron microscope (SEM) micrographs and energy dispersive X-ray (EDX) mappings
were carried out using a Zeiss Ultra-plus 55 field emission scanning electron microscope
(FE-SEM). The SEM images and EDX mapping images were operated at 1.0 and 10 kV
accelerating voltage respectively. The surface area distribution was performed by Brunauer-
Emmett-Teller (BET) and porosity pore size by Barrett-Joyner-Halenda (BJH) methods on
the Micrometrics TriStar II 3020 (version 2.00) system in a relative pressure (P/P0) range of
0.01–1.0 at 77 K. X-ray photoelectron spectroscopy (XPS) of the samples was obtained by a
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VG Escalab 220i-XL instrument equipped with a monochromatic Al-Kα (1486.6 eV) source
of radiation.

2.5. Electrochemical Characterization

The PAC/MoO2/Mo2C electrodes were prepared by mixing the active material, car-
bon acetylene black (CAB) as conductive additive and polyvinylidene difluoride (PVDF)
as binder in a weight ratio of 8:1:1, respectively in an agate mortar. Few drops of N-
methylpyrrolidone (NMP) as solvent was added to the mixture to obtain slurry which was
uniformly coated on nickel foam (NF) as current collector followed by drying at 80 ◦C for a
period of 12 h in an electric oven.

The cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemi-
cal impedance spectroscopy (EIS) were investigated using VMP-300 16-channel potentiostat
(Bio-Logic, Knoxville, USA) associated with EC-Lab® (V11.33) software. The three electrode
(half-cell) test was performed using the as-prepared electrode as working electrode, the
glassy carbon as counter electrode (CE) and Ag/AgCl (in saturated 3M KCl) as reference
electrode (RE).

For the two-electrode measurement (full-cell), a Swagelok cell and a microfiber filter
paper (separator) were used to assemble the symmetric device. All electrochemical tests
were performed in 2.5 M KNO3 aqueous electrolyte at room temperature.

The specific capacitance Cs (F g−1) of the half-cell was obtained from the GCD profiles
using the following Equation [43]:

Cs =
I∆t

m∆V
(1)

where I represents the current (mA), ∆t is the time (s) of the discharge slop from GCD, m is
the mass (mg) of the active electrode and ∆V is the operating potential (V).

The specific capacitance Cs (F g−1), specific energy E (W h kg−1) and the specific
power P (W kg−1) for the symmetric device were calculated using the mass total mT (mg)
of the positive and negative electrode from the Equations (2)–(4) [44]:

Cs =
I∆t

mT∆V
(2)

E =
Cs∆V2

7.2
(3)

P = 3600
Ed
∆t

(4)

3. Results and Discussion
3.1. Structural, Morphological and Textural Characterization

XRD patterns of the as-prepared PAC/MoO2/Mo2C ternary composites are displayed
in Figure 2a. These XRD spectra reveal diffraction peaks matching with the monoclinic
MoO2 (ICSD card No. 86-0135, space group: P21/c, cell parameters: a = 5.6096 Å,
b = 4.8570 Å, c = 5.6259 Å) and the hexagonal Mo2C (ICSD card No. 35-0787, space
group: P63/mmc, with cell parameters: a = 3.0124 Å, b = 3.0124 Å, c = 4.7352 Å) in
PAC/MoO2/Mo2C-0.5, PAC/MoO2/Mo2C-1 and PAC/MoO2/Mo2C-2 samples. All
diffraction peaks located with approximate 2θ values of 26.1◦, 37.1◦, 53.7◦, 60.7◦ and 66.9◦

corresponding to (011), (211), (220), (310) and (131) crystallographic planes, respectively
can be assigned to the monoclinic MoO2 [45,46].



Nanomaterials 2021, 11, 1056 6 of 20

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 21 
 

 

approximate 2θ values of 26.1°, 37.1°, 53.7°, 60.7° and 66.9° corresponding to (011), (211), 

(220), (310) and (131) crystallographic planes, respectively can be assigned to the mono-

clinic MoO2 [45,46].  

 

Figure 2. (a) XRD patterns and (b) Raman spectra of the PAC/MoO2/Mo2C-0.5, PAC/MoO2/Mo2C-1 

and PAC/MoO2/Mo2C-2. 

Therefore, the other featured peaks located at 2θ of 34.3°, 37.9°, 39.4°, 52.1°, 61.5°, 

69.5°, 74.6° and 75.5° can be ascribed to the (100), (002), (101), (102), (110), (103), (112) and 

(201) crystallographic planes from the hexagonal Mo2C, respectively [47,48]. Additionally, 

the broad peak around 2θ of 26.5° corresponding to (002) diffraction of graphite (ICSD 

card No. 41-1487) could be attributed to the presence of the amorphous carbon domains 

of the PAC which overlaps with MoO2 peak at 26.1° [45,48]. 

The Raman spectra of the as-prepared PAC/MoO2/Mo2C porous ternary composites 

are shown in Figure 2b. The characteristic peaks at around 125, 152, 200, 342, 381 and 666 

cm−1 bands could be attributed to the vibration modes of the monoclinic MoO2. The Raman 

active modes at 285, 825 and 998 cm−1 bands could be assigned to vibrational features of 

the Mo2C [49–52]. Two other characteristics peaks are also observed at (1341–1360 cm−1) 

and (1583–1609 cm−1) which correspond to the D and G bands, respectively (as shown in 

Table 1). The D band is associated to the disordered graphitic structure in carbon matrix 

while the G is due to the sp2-hybridized graphitic carbon [43]. The intensity ratio of D and 

G bands (ID/IG ratio) recorded in Table 1 reveals the graphitization degree of the as-syn-

thesized ternary composites [42]. The ID/IG ratio values decreased from 1.03 to 0.97 with 

increasing mass ratio of the molybdenum precursor to the porous carbon. This indicates 

a balanced amorphous carbon to the graphitic carbon in the PAC/MoO2/Mo2C composites 

resulting from the MoO2 and Mo2C nanoparticles embedded into the porous carbon net-

work [53,54]. 

Table 1. Raman data of the PAC/MoO2/Mo2C ternary composites. 

Samples 
D-Band  

(cm−1) 

G-Band  

(cm−1) 
ID/IG Ratio 

PAC/MoO2/Mo2C-0.5 1349 1583 1.03 

PAC/MoO2/Mo2C-1 1341 1607 1.01 

PAC/MoO2/Mo2C-2 1360 1610 0.97 

Figure 2. (a) XRD patterns and (b) Raman spectra of the PAC/MoO2/Mo2C-0.5, PAC/MoO2/Mo2C-1 and PAC/MoO2/Mo2C-2.

Therefore, the other featured peaks located at 2θ of 34.3◦, 37.9◦, 39.4◦, 52.1◦, 61.5◦,
69.5◦, 74.6◦ and 75.5◦ can be ascribed to the (100), (002), (101), (102), (110), (103), (112) and
(201) crystallographic planes from the hexagonal Mo2C, respectively [47,48]. Additionally,
the broad peak around 2θ of 26.5◦ corresponding to (002) diffraction of graphite (ICSD card
No. 41-1487) could be attributed to the presence of the amorphous carbon domains of the
PAC which overlaps with MoO2 peak at 26.1◦ [45,48].

The Raman spectra of the as-prepared PAC/MoO2/Mo2C porous ternary composites
are shown in Figure 2b. The characteristic peaks at around 125, 152, 200, 342, 381 and
666 cm−1 bands could be attributed to the vibration modes of the monoclinic MoO2. The
Raman active modes at 285, 825 and 998 cm−1 bands could be assigned to vibrational features
of the Mo2C [49–52]. Two other characteristics peaks are also observed at (1341–1360 cm−1) and
(1583–1609 cm−1) which correspond to the D and G bands, respectively (as shown in Table 1).
The D band is associated to the disordered graphitic structure in carbon matrix while the G
is due to the sp2-hybridized graphitic carbon [43]. The intensity ratio of D and G bands
(ID/IG ratio) recorded in Table 1 reveals the graphitization degree of the as-synthesized
ternary composites [42]. The ID/IG ratio values decreased from 1.03 to 0.97 with increasing
mass ratio of the molybdenum precursor to the porous carbon. This indicates a balanced
amorphous carbon to the graphitic carbon in the PAC/MoO2/Mo2C composites resulting
from the MoO2 and Mo2C nanoparticles embedded into the porous carbon network [53,54].

Table 1. Raman data of the PAC/MoO2/Mo2C ternary composites.

Samples D-Band (cm−1) G-Band (cm−1) ID/IG Ratio

PAC/MoO2/Mo2C-0.5 1349 1583 1.03
PAC/MoO2/Mo2C-1 1341 1607 1.01
PAC/MoO2/Mo2C-2 1360 1610 0.97

High-resolution transmission electron microscopic (HRTEM) micrographs and se-
lected area electron diffraction (SAED) patterns were further performed to provide more
crystal structural information of the PAC/MoO2/Mo2C-0.5, PAC/MoO2/Mo2C-1 and
PAC/MoO2/Mo2C-2 ternary composites as shown in Figure 3. Figure 3a–c revealed the
HRTEM micrographs of the ternary composites in which the lattice fringes are highlighted
in yellow arrow and the layer of amorphous PAC in orange arrow. The lattice fringes with
an inter-planar spacing (d) approximate values of 0.340 nm, 0.219 nm and 0.283 nm are
corresponding to the crystallographic planes (011), (−212) and (−102) of the monoclinic
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MoO2 (ICSD card No. 86-0135), respectively. The other d-spacing values of 0.237 nm
and 0.227 nm are assigned to the crystallographic planes (002) and (101) of the hexago-
nal Mo2C (ICSD card No. 35-0787), respectively. The as-obtained SAED patterns of the
PAC/MoO2/Mo2C ternary composites are exhibited in Figure 3d–f. The SAED patterns
show the bright diffraction rings which are attributed to (302), (310) and (220) planes of
MoO2 and those (002), (100), (101) and (201) planes to Mo2C.
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These results imply a successful incorporation of the MoO2 and Mo2C heterostructures
into the amorphous PAC matrix through a pyrolysis process which are consistent with the
XRD analysis in Figure 2a.

The SEM micrographs of PAC/MoO2/Mo2C ternary composites prepared at different
mass ratios of molybdenum precursor to PAC are displayed in Figure 4. The morphology
of the ternary composites reveals the formation of a mixture of agglomerated nanoparticles
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and nanoplates embedded into the interconnected porous structure of the PAC at low
magnification (Figure 4a,c,e).

Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 21 
 

 

These results imply a successful incorporation of the MoO2 and Mo2C heterostruc-

tures into the amorphous PAC matrix through a pyrolysis process which are consistent 

with the XRD analysis in Figure 2a.  

The SEM micrographs of PAC/MoO2/Mo2C ternary composites prepared at different 

mass ratios of molybdenum precursor to PAC are displayed in Figure 4. The morphology 

of the ternary composites reveals the formation of a mixture of agglomerated nanoparti-

cles and nanoplates embedded into the interconnected porous structure of the PAC at low 

magnification (Figure 4a,c,e). 

 

Figure 4. SEM micrographs at low and high magnification of (a,b) PAC/MoO2/Mo2C-0.5, (c,d) 

PAC/MoO2/Mo2C-1 and (e,f) PAC/MoO2/Mo2C-2 ternary composites. 

An increase of molybdenum content reveals an increased tendency of both agglom-

erated nanoparticles and nanoplates morphologies as highlighted in circles in Figure 

4b,d,f (high magnification). These two different morphologies are perhaps due to the pres-

ence MoO2 and Mo2C in the composites, but it is not easy to identify which of these be-

longs to a specific morphology.  

EDX mapping was also applied to determine the elemental distribution of the 

PAC/MoO2/Mo2C-0.5, PAC/MoO2/Mo2C-1 and PAC/MoO2/Mo2C-2 ternary composites as 

seen in Figure 5a–i. It is observed that the Mo, O and C elements are uniformly distributed 

throughout the interconnected porous carbon structure. This suggests that the agglomer-

ated nanoparticles and nanoplates were composed of MoO2 and Mo2C embedded into the 

carbon matrix. 
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MoO2/Mo2C-1 and (e,f) PAC/MoO2/Mo2C-2 ternary composites.

An increase of molybdenum content reveals an increased tendency of both agglomer-
ated nanoparticles and nanoplates morphologies as highlighted in circles in Figure 4b,d,f
(high magnification). These two different morphologies are perhaps due to the presence
MoO2 and Mo2C in the composites, but it is not easy to identify which of these belongs to
a specific morphology.

EDX mapping was also applied to determine the elemental distribution of the PAC/
MoO2/Mo2C-0.5, PAC/MoO2/Mo2C-1 and PAC/MoO2/Mo2C-2 ternary composites as
seen in Figure 5a–i. It is observed that the Mo, O and C elements are uniformly distributed
throughout the interconnected porous carbon structure. This suggests that the agglomer-
ated nanoparticles and nanoplates were composed of MoO2 and Mo2C embedded into the
carbon matrix.

N2 adsorption/desorption experiment was conducted to investigate the textural properties of
the PAC/MoO2/Mo2C ternary composites as shown in Figure 6 and Table 2. Figure 6a,b presents
the sorption isotherms and the pore size distribution curves, respectively, of the ternary
composites. All isotherms depicted a type IV features associated with a H4 hysteresis loop
which indicates the coexistence of the micropores and mesopores structures in the ternary
composites [55,56]. The BET specific surface area (SSA) values of PAC/MoO2/Mo2C-
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0.5, PAC/MoO2/Mo2C-1 and PAC/MoO2/Mo2C-2 samples are 804, 711 and 301 m2 g−1,
respectively. A decrease in SSA was observed upon increasing the ammonium molybdate
precursor loading from 0.5 to 2. For the total pore volume and micropore area (Table 2), the
same trend is also identified for all samples from with the decrease from 0.44 to 0.20 cm3 g−1

and 670 to 165 m2 g−1, respectively.
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Table 2. Textural properties of the PAC/MoO2/Mo2C ternary composites.

Samples BET SSA
(m2 g−1)

Total Pore Volume
(cm3 g−1)

Micropore Volume
(cm3 g−1)

Micropore SSA
(m2 g−1)

Mesopore Volume
(cm3 g−1)

PAC/MoO2/Mo2C-0.5 804 0.44 0.23 670 0.21
PAC/MoO2/Mo2C-1 711 0.40 0.19 575 0.21
PAC/MoO2/Mo2C-2 301 0.20 0.07 165 0.13
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The decrease in the SSA and total pore volume could be ascribed to the embedding
of the MoO2 and Mo2C nanoparticles into the porous PAC during the pyrolysis process
which can block some pores [57].

However, the SSA of the as-synthesized samples are much higher than that reported
for similar materials such as MoO2/Mo2C/C composite prepared via ion-exchange method
(73.4 m2 g−1) [58], MoO2/Mo2C/C spheres by hydrothermal and calcination processes
(159.6 m2 g−1) [36] and MoO2/Mo2C/C microspheres obtained by a mild polymer regula-
tion procedure followed by calcination treatment (57.6 m2 g−1) [59].

The formation of the nanoparticles MoO2 and Mo2C in the ternary composite emanates
from the interaction between the ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O)
and the porous PAC (denoted as C) at elevated temperature (≥800 ◦C) under argon at-
mosphere. It is good to mention that typically activated carbon (PAC) comprised of OH
and COOH groups on the surface, which makes it acidic, favors a thermal reduction of the
ammonium molybdate precursor to MoO2 instead of MoO3. The MoO2 could react with
carbon at high temperature and under inert atmosphere (Ar) to give Mo2C. This process
can be described with the following Equations [42,60]:

(NH4)6Mo7O24 · 4H2O→ MoO2 + H2O + NH3 ↑ (5)

2C + 4MoO2 → 2Mo2C + 4O2 (6)

During the pyrolysis, the ammonium molybdenum precursor decomposes to form
MoO2, H2O and ammonia gas (NH3) being released at high temperature. In addition,
the generated MoO2 nanoparticles could react with the porous carbon (PAC) leading to
the formation of Mo2C. The formation of a ternary composite comprising of PAC, MoO2
and Mo2C could possibly enhance ion intercalation as well as create an interconnected
porous network. This might promote an easy diffusion of the electrolyte’s ions through the
electrode materials and further enhance the fast transport of the ions which are beneficial
for the electrochemical analysis.

3.2. XPS Analysis

The surface chemistry property and the elemental composition of the as-synthesized
ternary composites were determined using X-ray photoelectron spectroscopy (XPS). The
wide survey scan spectrum depicted the distinctive peaks of the carbon (C 1s), molybdenum
(Mo3p1/2, Mo3p3/2 and Mo 3d) and oxygen (O 1s) elements in PAC/MoO2/Mo2C-0.5,
PAC/MoO2/Mo2C-1 and PAC/MoO2/Mo2C-2 composites as illustrated in Figure 7a.

Table 3 presents the atomic percentage (at.%) of C, Mo and O elements in the as-
synthesized ternary composites. From these samples, it can be seen that the carbon content
decreases from 73.9 to 54.9 at.% as the yield of the molybdenum increases. However, the
molybdenum and oxygen contents were found to increase from 8.6 to 20.2 at.% and 17.5 to
24.9 at.%, respectively. Notably, the PAC/MoO2/Mo2C-2 material exhibited the smallest
carbon content and highest molybdenum and oxygen contents. This could be due to the
formation of MoO2 and Mo2C nanoparticles during the pyrolysis process. On the other
hand, the elemental composition in the ternary composites is significantly influenced by
the mass loading of molybdenum precursor into the PAC.

The high-resolution XPS spectra of the Mo 3d split into 3d5/2 and 3d3/2 spin-orbit
components in the binding energy range of 226–241 eV as presented in Figure 7b–d. In
Figure 7b, the deconvolution of the core level Mo 3d spectrum exhibits six sets of peaks
which indicate the presence of four oxidation states Mo2+, Mo4+, Mo5+ and Mo6+ in
PAC/MoO2/Mo2C-0.5 ternary composite. The peak located at 228.8 eV (Mo2+ 3d5/2) is
associated to Mo-C bond in Mo2C while the pair of peaks located at 229.6 and 232.9 eV (Mo 4+

3d5/2/3d3/2) are attributed to the formation of MoO2 [42,61–63]. The pair of peaks at binding
energies of 231.0 and 234.4 eV (Mo5+ 3d5/2/3d3/2) and that located at 232.5 and 235.9 eV
(Mo6+ 3d5/2/3d3/2) are the characteristics of the MoO3 which could be assigned to the surface
oxidation and sample oxidation in air of the metastable phase of the MoO2 [64–67]. Figure 7c,d
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presents the fitting of the core level Mo3d in PAC/MoO2/Mo2C-1 and PAC/MoO2/Mo2C-
2 ternary composites. In comparison with PAC/MoO2/Mo2C-0.5 ternary composite, there
are no changes in the number of peaks deconvoluted which means that all the composites
have similar oxidation states (Mo2+, Mo4+, Mo5+ and Mo6+). Table S1 presents the atomic
percentage (at.%) of all deconvoluted peaks of the ternary composites. What is noticeable is that
PAC/MoO2/Mo2C-1 has high at.% of Mo2C and MoO2 as compared to the other composites.
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Table 3. Elemental composite of the PAC/MoO2/Mo2C ternary composites.

Elemental Composition (at.%)
Samples

C 1s O 1s Mo 3d

PAC/MoO2/Mo2C-0.5 73.9 17.5 8.6
PAC/MoO2/Mo2C-1 62.4 22.6 15.0
PAC/MoO2/Mo2C-2 54.9 24.9 20.2

This could be beneficial in the electrochemical measurements of these composites
because these two materials are expected to improve the electrochemical properties of
PAC where MoO2 is expected to contribute pseudocapacitive behavior, while Mo2C will
contribute stability and conductivity.

The high-resolution C 1s and O 1s core levels of the ternary composites are shown in
Figure S1. The fitting of the C 1s spectrum (Figure S1a–c) shows the characteristic peak of
Mo-C bond in Mo2C at 283.3 ± 0.2 eV [68,69].

The other four peaks are attributed to the C=C (sp2 hybridized), C-C (sp3 hybridized), C-
OH and O-C=O bonds corresponding to the binding energies at 284.4 ± 0.3eV, 285.2 ± 0.2 eV,
287.5 ± 0.6 and 290.7 ± 0.3 eV, respectively [70–72]. The deconvolution of the O 1s feature
(Figure S1d–f) exhibits a peak located at 530.6 ± 0.2 eV linked to Mo-O bond, the two
other peaks at 533.3 ± 0.2 eV and 536.4 ± 0.2 eV are associated to C-O and O-C=O bonds,
respectively [73–75]. The results of the XPS analysis confirm the formation of the MoO2 and
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Mo2C nanoparticles in all ternary composites which are consistent with the XRD, Raman,
HRTEM and SAED results.

3.3. Electrochemical Characterization

All measurements of the ternary composite electrodes with different molybdenum
precursor content were done first in a three-electrode configuration using 2.5 M KNO3
aqueous electrolyte. Figure 8a,b displays the comparative cyclic voltammetry (CV) profiles
of the PAC/MoO2/Mo2C-0.5, PAC/MoO2/Mo2C-1 and PAC/MoO2/Mo2C-2 electrodes
at a constant scan rate of 50 mV s−1 in both negative and positive potential windows of
−0.9–0 V and 0–0.9 V vs. Ag/AgCl, respectively. A quasi-rectangular characteristic was
observed for all CV profiles indicating an electrical double layer capacitor (EDLC) behavior
for these samples [24]. It can be seen that the CV profile of PAC/MoO2/Mo2C-1 electrode
displays a higher current response than other electrode materials. This superior current
response could be assigned to the moderate loading of molybdenum precursor into the
porous carbon network, which provided more active sites enhancing the fast ion diffusion
and good interaction between the interface of electrode/KNO3 electrolyte.
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composites in a three-electrode configuration.
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Figure S2a,b display the galvanostatic charge-discharge (GCD) comparison curves of
the PAC/MoO2/Mo2C ternary composites.

The GCD curves of all electrodes are performed within both negative (−0.9–0.0 V vs.
Ag/AgCl) and positive (0.0–0.9 V vs. Ag/AgCl) operating potential windows, respectively
at a constant specific current of 1 A g−1.

The GCD curves depicted a symmetrical triangular profile that confirms the electrical
double layer capacitor nature of the ternary composites electrodes supported by the CV
curves [76]. It is also observed that the GCD curve of the PAC/MoO2/Mo2C-1 electrode
has a longer discharge time as compared to PAC/MoO2/Mo2C-0.5 and PAC/MoO2/Mo2C-
2 electrodes agreeing with the CV results. Furthermore, the details of the CV curves at
different scan rates from 10 to 100 mV s−1 and GCD profiles at specific currents ranging
from 1 to 10 A g−1 of the PAC/MoO2/Mo2C-1 ternary composite because of superior
electrochemical properties are shown in Figure S3a–d, respectively. The corresponding
specific capacitance (Cs) as a function of the specific current in the range of 1–10 A g−1 is
presented in Figure 8c,d in the negative (−0.9–0.0 V vs. Ag/AgCl) and positive (0.0–0.9 V
vs. Ag/AgCl) operating potential windows for all three composites, respectively. The Cs of
the ternary composites was determined from the discharge period of GCD patterns using
Equation (1). From both Figure 8c,d, it is observed that the PAC/MoO2/Mo2C-1 electrode
depicted the highest Cs value in both potential windows reflecting longer charge-discharge
pattern which is consistent with the highest current response from the CV curve. However,
the smallest Cs value of PAC/MoO2/Mo2C-2 in both potential windows can be explained
by the fact that further increasing the molybdenum precursor content could lead to the
blockage of some pores in the porous carbon matrix as evidenced by a decrease in SSA of
301 m2 g−1 and thus limit the ion diffusion at the electrode/electrolyte interface [77].

Electrochemical impedance spectroscopy (EIS) analysis of the as-synthesized PAC/MoO2/
Mo2C ternary composites was evaluated at open circuit voltage (VOC) in the frequency
range of 100 kHz to 10 mHz. The EIS data are provided using Nyquist plot which illustrates
the variation of the impedance as a function of the frequency as shown Figure 8e.

The Nyquist plots of all ternary composites exhibit a semi-circle at high to medium
frequency region corresponding to the charge transfer resistance (Rct) and a quasi-straight
line slightly tilted to Z” imaginary axis at low frequency region indicating the ion diffusion
throughout the electrolyte [27,78]. The Nyquist curves of the ternary composites further
confirms the capacitive characteristic. The intercept of the Z’ real axis (beginning of the
arc) at high frequency depicts the equivalent series resistance (ESR) which represents
the combination of resistance at electrode/electrolyte and electrode/current collector
interfaces [79]. As seen in the inset to Figure 8e, PAC/MoO2/Mo2C-1 electrode depicts
smaller ESR and Rct values of 0.59 and 1.01 Ω as compared to PAC/MoO2/Mo2C-0.5 (0.76
and 1.10 Ω) and PAC/MoO2/Mo2C-2 electrodes (1.31 and 1.84 Ω), respectively. In addition,
PAC/MoO2/Mo2C-1 electrode also has the shortest diffusion path length and closest to the
Z” axis suggesting a quicker ion diffusion of the interfacial electrode and KNO3 electrolyte
and shows better capacitive features among the ternary composites.

Considering all the above results, the as-prepared PAC/MoO2/Mo2C-1 electrode
recorded superior electrochemical performance among the other ternary composites. This
might be ascribed to the synergistic effect of the MoO2, MO2C and porous carbon obtained
after the reaction of ammonium molybdate and porous carbon at equal mass ratios during
the pyrolysis route. This is also supported by the at.% of all the deconvoluted peaks in Table
S1 where for this particular sample MoO2 and Mo2C show higher at.% as compared to the
rest of the composites. The formation of the MoO2 and Mo2C nanoparticles embedded
into the porous PAC provided abundant electro-actives sites for the charge transfer ability
and quick ion diffusion of the electrolyte, which improve the wettability and the electrical
conductivity, thus the charge storage of the electrode.

The electrochemical measurement of the PAC/MoO2/Mo2C-1 ternary composite
electrode was further performed in a two-cell configuration by assembling a symmetric
device using identical electrolyte. Figure 9a,b displays the CV features of the as-fabricated
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symmetric supercapacitor (PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1) under an oper-
ating cell potential of 0–1.8 V. The CV features of the ternary composite device reveals a
quasi-rectangular behavior whereas the current response increased upon increasing the
scan rates from 10 to 400 mV s−1 (Figure 9a) suggesting quasi-reversible electron transfer
kinetics and dominated electrical double layer.
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A slight redox peak was observed in the CV curves due to the pseudocapacitive
contribution from the molybdenum oxide. The minor redox reactions could emanate from
the insertion of K+ ions into the MoO2 containing electrodes. A similar observation was
reported by Wang et al. [80], on the lithium-ion insertion onto MoO2 that is associated
with the monoclinic–orthorhombic–monoclinic phase transition of MoO2 [80]. As such a
transition from MoO2 to KXMoO2 by the insertion of K+ ions to the molybdenum oxide
can be postulated [81]. The CV curves of the PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1
device still maintain the rectangular-like feature upon increasing the scan rate to high rate
from 0.5 to 2.5 V s−1 (as seen in Figure 9b) which demonstrated a high rate capability [82].
GCD plots of the assembled device in the operating potential of 0–1.8 V are shown in Figure
9c. A typical triangular behavior was recorded for all GCD plots at various specific currents
from 1 to 20 A g−1 confirming the capacitive charge storage mechanism of the symmetric
ternary composite device [24]. The plot of the obtained specific capacitance (Cs) calculated
using Equation (2) against the specific current from 1 to 20 A g−1 is depicted in Figure
9d. The recorded value Cs of the ternary composite device was found to be 115 F g−1 at
1 A g−1 specific current. The ternary composite PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-
1 device still delivered a high Cs of 67 F g−1 even after a twentyfold increase of specific
current which confirms the good rate capability of 58.3% obtained from the symmetric
supercapacitor.

Figure 10a depicts the specific energy against specific power (Ragone plot) mea-
sured at various specific currents (1–20 A g−1). The symmetric ternary composite device



Nanomaterials 2021, 11, 1056 15 of 20

recorded high specific energy of 51.8 W h kg−1 with an associated power of 0.9 kW kg−1

at 1 A g−1. Interestingly, the symmetric ternary composite device can maintain up to
30 W h kg−1 of specific energy with a corresponding specific power of 18 kW kg−1 even
at 20 A g−1 increase of specific current. These specific energy/power values recorded for
the PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1 symmetric cell are better than reports on
Mo-based/C composites for supercapacitors applications as shown in Table S2.
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To investigate the stability of the PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1 device,
the cycling test based on the long-term galvanostatic charge-discharge was performed at
10 A g−1 specific current as shown in Figure 10b.

The ternary composite device recorded a columbic efficiency of 99.8% up to 25,000
charge-discharge cycles and a capacitance retention found to be 94%, 92% and 83% after
7000, 15,000 and 25,000 constant charge-discharge cycles, respectively. These results indicate
that even up to 25,000 continuous cycling the ternary composite device still maintains good
stability with a specific capacitance loss of 17% as compared to the initial value. The good
long-term stability of the symmetric device is owed to the rapid electron transfer kinetics
offered by the ternary composite electrode.

An additional stability performance, floating test (or voltage holding) has been in-
vestigated on the PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1 symmetric supercapacitor.
Figure 10c displays the variation of the specific capacitance versus the floating time of
each 10 h during 150 h at a maximum potential cell of 1.8 V at 10 A g−1. An increase
of 21% from the initial value of the specific capacitance is observed during the first 60 h
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of floating subsequently stabilizing up to 150 h floating time. The specific capacitance
of the ternary composite device was enhanced from 74.7 to 90 F g−1 after the floating
time which also highlights an improvement of the specific energy from 33.7 to 40.2 W h
kg−1. The improvement of the PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1 device in the
specific capacitance and specific energy could be ascribed to more penetration of ions elec-
trolyte into the network of MoO2 and Mo2C nanoparticles embedded in the porous carbon.
This could consequently increase the electrode wettability and enable faster diffusion of
electrolyte ions at the electrode/KNO3 electrolyte interface, hence enhancing the charge
storage [83,84]. In brief, the as-fabricated PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1
device revealed a good stability performance in terms of long-term cycling up 25,000 cycles
and floating time over 150 h thereby implying a superior electrochemical performance of
the entire device.

Figure 10d illustrates the Nyquist plots of PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-
1 symmetric supercapacitor before and both after long-term cycling and holding test.
All Nyquist plots exhibit a nearly vertical feature at low frequency referring to the ideal
capacitive characteristic and the great electrical conductivity of the PAC/MoO2/Mo2C-1
ternary composite. A slight decrease of the ESR values was observed from the original
value of 0.82 Ω to 0.78 Ω and 0.74 Ω for both after 25,000 cycles and 150 h floating test
respectively as shown in the inset to Figure 10d. Similarly, the Rct value depicted also
a small decrease from the initial value of 1.14 Ω to 1.11 Ω and 1.04 Ω after cycling and
holding tests, respectively. These small ESR and Rct values demonstrate a fast charge
transport capability and rapid ion diffusion through the full symmetric device which got
improved by the stability tests as indication that the electrode had better wettability after
stability [85].

The Bode plot of the as-fabricated-symmetric device which defines the plot of the
angle phase versus frequency is shown in Figure 10e before and after cycling stability and
voltage holding. The phase angle values increased from −78◦ to −80◦ and −85◦ after
cycling and holding test, respectively. These values are close to −90◦ which confirm the
ideal capacitive behavior of the PAC/MoO2/Mo2C-1 ternary composite [24].

According to these results, the as-fabricated symmetric supercapacitor demonstrated a
superior electrochemical performance after cycling and holding test in aqueous electrolyte
which could be due to the fact that the electrodes wettability had been improved and
hence ions have more access to the pores. The high performance of the PAC/MoO2/Mo2C-
1//PAC/MoO2/Mo2C-1 symmetric supercapacitor is based on the synergistic effect of
the ternary composite with the following benefits: (i) high electrical conductivity of Mo2C,
(ii) pseudo capacitor effect of MoO2 and (iii) large surface area of porous carbon (PAC).
Owing to these advantages, the PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1 can be used
as an excellent charge storage device.

4. Conclusions

A ternary peanut shell activated carbon/molybdenum oxide/molybdenum carbide
(PAC/MoO2/Mo2C) composite was successfully synthesized via a facile in-situ pyroly-
sis route of ratio of porous carbon to different mass loading of ammonium molybdate
(1:0.5; 1:1; 1:2). All as-synthesized materials display the in-situ formation of MoO2 and
Mo2C nanostructures into the porous carbon based on the XRD, Raman, HRTEM, SAED,
EDX mapping and XPS analysis. The ternary composite with the mass ratio of 1 to 1
(PAC/MoO2/Mo2C-1) provided a superior electrochemical characteristic in a neutral 2.5
M KNO3 electrolyte. The as-assembled PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1 sym-
metric device delivered an excellent specific capacitance of 115 F g−1 at 1 A g−1 with a
good rate capability (58% at 20 A g−1) and cycling stability (99.8% columbic efficiency
after 25,000 cycles). Moreover, a specific energy of 51.8 W h kg−1 with a corresponding
power of 0.9 kW kg−1 was recorded for the symmetric device within an operating potential
window of 1.8 V at 1 A g−1 specific current. Interestingly, the electrochemical results of
the device show a significant enhancement of 21% from its initial specific capacitance
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value after 160 h holding test. These remarkable performances are linked to the great
synergistic effect of the different components into the ternary composite by supplying
favorable properties: Pseudo capacitor behavior of the MoO2, highly conductive Mo2C
and high surface area of the porous carbon. This study provides a simple and low-cost
way to enhance the electrochemical performance of carbons by incorporating Mo-based
components into porous activated carbon.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11041056/s1, Table S1: Composition (at.%) of the PAC/MoO2/Mo2C ternary com-
posites, Figure S1: High resolution XPS spectra C 1S and O 1 S of (a,d) PAC/MoO2/Mo2C-0.5
(b,e) PAC/MoO2/Mo2C-1 (c,f) PAC/MoO2/Mo2C-2 ternary composites, Figure S2: Galvanostatic
charge-discharge curves at 1 A g−1 (a) in −0.9–0.0 V negative and (b) 0.0–0.9 V positive potential
windows of the PAC/MoO2/Mo2C ternary composites in three-electrode configuration, Figure S3:
(a,b) CV plots at different scan rate from 10 to 100 mV s−1 in (−0.9–0.0 V) and (0.0–0.9 V) operating
potential, (c,d) GCD curves at different specific currents ranging from 1 to 10 A g−1 in (−0.9–0.0 V)
and (0.0–0.9 V) operating potential of the PAC/MoO2/Mo2C-1 ternary composite in three-electrode
configuration, Table S2: Comparison of electrochemical performance of Mo-based composite with
carbon material in aqueous electrolyte.
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