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Abstract: Aqueous zinc-ion batteries (ZIBs) with the characteristics of low production costs and good
safety have been regarded as ideal candidates for large-scale energy storage applications. However,
the nonconductive and non-redox active polymer used as the binder in the traditional preparation
of electrodes hinders the exposure of active sites and limits the diffusion of ions, compromising the
energy density of the electrode in ZIBs. Herein, we fabricated vanadium pentoxide nanofibers/carbon
nanotubes (V2O5/CNTs) hybrid films as binder-free cathodes for ZIBs. High ionic conductivity and
electronic conductivity were enabled in the V2O5/CNTs film due to the porous structure of the film
and the introduction of carbon nanotubes with high electronic conductivity. As a result, the batteries
based on the V2O5/CNTs film exhibited a higher capacity of 390 mAh g−1 at 1 A g−1, as compared
to batteries based on V2O5 (263 mAh g−1). Even at 5 A g−1, the battery based on the V2O5/CNTs
film maintained a capacity of 250 mAh g−1 after 2000 cycles with a capacity retention of 94%. In
addition, the V2O5/CNTs film electrode also showed a high energy/power density (e.g., 67 kW kg−1/
267 Wh kg−1). The capacitance response and rapid diffusion coefficient of Zn2+ (~10−8 cm−2 s−1)
can explain the excellent rate capability of V2O5/CNTs. The vanadium pentoxide nanofibers/carbon
nanotubes hybrid film as binder-free cathodes showed a high capability and a stable cyclability,
demonstrating that it is highly promising for large-scale energy storage applications.

Keywords: aqueous zinc-ion battery; vanadium pentoxide; carbon nanotubes; hybrid film

1. Introduction

The lithium-ion battery is widely used in daily life owing to its many advantages
including a high operating voltage, high specific capacity, and long cycle life [1,2]. However,
lithium resources on the earth are limited, and the contradiction between its high price and
increasing demand is becoming increasingly prominent. In addition, lithium-ion batteries
suffer other issues such as high internal resistance, harmful organic electrolytes, and safety
hazards [3,4]. These problems restrict their large-scale applications. Rechargeable aqueous
batteries have the merits of low production costs, and the electrolyte used is an aqueous
electrolyte with high safety. Therefore, it is expected to supplement lithium-ion batteries
for new-generation electrochemical energy storage systems [5–8].

Among rechargeable aqueous batteries, aqueous zinc-ion batteries (ZIBs) have at-
tracted more attention due to the high abundance of metal zinc in the earth’s resources,
low cost, and nontoxicity [9,10]. As zinc metal foil can be directly used as the anode, the
development of cathodes of ZIBs have become a research hotspot. The reported cathode
materials for ZIBs mainly include manganese compounds, vanadium oxides, Prussian blue,
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and organic compounds [11–14]. Among these cathode materials, vanadium pentoxide
(V2O5) has a unique layered structure with a wide range of valence states (from V3+ to V5+),
which is conducive to the multielectron transfer providing a high specific capacity [15,16].
However, its ion conductivity is low and its diffusion kinetics is slow, resulting in a poor
rate performance and unsatisfied cycle performance. Furthermore, the nonconductive
and non-redox active polymer was used as the binder in the traditional preparation of
electrodes, which hinders the diffusion of zinc ions and compromises the energy density of
the electrode [17]. Therefore, in order to avoid using binders, it is important to design a
binder-free V2O5 electrode.

In this work, V2O5 nanofibers/carbon nanotubes (V2O5/CNTs) hybrid films were
fabricated and employed as the cathode of ZIBs, and the usage of nonconductive and non-
redox active binders was avoided. The network structure of V2O5/CNTs film is helpful for
improving the electronic and ionic conductivity of the electrode. Compared with batteries
with binders, the batteries based on the V2O5/CNTs film showed a higher specific capacity
and a better cycle stability. This work proved that the electrochemical performance of ZIBs
can be improved by the application of binder-free electrodes.

2. Materials and Methods
2.1. Preparation of V2O5 Nanofibers

First, 0.75 g of NH4VO3 (99%, Aladdin) and 1.25 g of P123 (Sigma-Aldrich, St. Louis,
MO, USA) were dissolved in 75 mL of water containing 3.75 mL of 2 M of HCl. The mixture
was stirred at room temperature for 7 h and then transferred into a Teflon autoclave.
After the autoclave was sealed, it was held at 120 ◦C for 24 h and then cooled to room
temperature. The product was washed with deionized water several times and then
freeze-dried to obtain V2O5 nanofibers.

2.2. Preparation of V2O5/CNTs Hybrid Film Electrodes

Here, 20 mg of V2O5 and 15 mg of CNTs (length: 0.5–1.5 µm; diameter ~5 nm; Carbon
Solutions Inc., Riverside, CA, USA) were dissolved in 40 mL of DMF; then, the mixture was
sonicated to form a mixed suspension. The V2O5/CNTs film was fabricated by filtration
and then dried in an oven at 80 ◦C.

2.3. Material Characterizations

Scanning electron microscopy (SEM, Supra-55, Zeiss, Oberkochen, Germany) and
transmission electron microscopy (TEM, JEOL2100F, JEOL, Tokyo, Japan) were used to in-
vestigate the morphology of the samples. The chemical components of the V2O5/CNTs film
were confirmed with X-ray photoelectron spectroscopy (XPS, PHI 1600 ESCA, PerkinElmer,
Waltham, MA, USA). The structure of the V2O5 nanowires and V2O5/CNTs film was char-
acterized using X-ray diffraction (XRD, Rigaku D/Max-3A, Rigaku Corporation, Tokyo,
Japan). Raman spectra were recorded by a spectrophotometer (Thermo-Fisher Scientific,
Waltham, MA, USA).

2.4. Electrochemical Measurements

Stainless-steel CR2032 coin cells were assembled and tested to evaluate the electro-
chemical performance of the samples. The cells were assembled using a V2O5/CNTs
composite film as the cathode, filter paper as the separator, Zn foil as the anode, and 3 M of
aqueous Zn(CF3SO3)2 solution as the electrolyte. Electrochemical impedance spectroscopy
(EIS) was performed using a frequency range between 10 mHz and 100 kHz with an AC
perturbation signal of 10 mV. Cyclic voltammetry (CV) of the as-assembled battery was
conducted at various scan rates (0.2–1.0 mV·s−1). A CHI 660E electrochemical workstation
(Shanghai Chenhua, Shanghai, China) was employed to record the CV and EIS results.
A CT2001A LAND electrochemical workstation was used to perform the galvanostatic
intermittent titration technique (GITT), galvanostatic charge/discharge (GCD), and cyclic
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performance, within a voltage window of 0.3–1.5 V. All specific capacities reported in this
work are based on the cathode mass.

3. Results

The morphology of the as-prepared V2O5 was investigated with a transmission elec-
tron microscope (TEM) and scanning electron microscope (SEM). The TEM and SEM images
reveal that the V2O5 had a nanofiber morphology with a diameter of ~18 nm and lengths of
several micrometers (Figure 1a,b). After being mixed with CNTs, the V2O5 nanofibers were
embedded into the network of CNTs (Figure 1c). Furthermore, the V2O5/CNTs electrode
showed a freestanding structure (inset of Figure 1c). Elemental mappings confirmed that C,
O, and V elements were evenly distributed in the V2O5/CNTs nanobelts (Figure 1d). XRD
and Raman spectroscopy tests were further performed to investigate the V2O5 nanofibers
and V2O5/CNTs film. XRD patterns of the V2O5 nanofibers and V2O5/CNTs film presented
typical (001) and (003) peaks (Figure 2a), which fitted well with the layered V2O5 (JCPDS
no. 40–1296). Peaks of V4O7 were also detected, which may be ascribed to the reduction
of V2O5 by P123 [18]. The Raman spectrum of V2O5/CNTs showed the presence of D
and G peaks as compared to that of V2O5, indicating the presence of CNTs in composite
films [19]. The three peaks located at 139, 280, and 983 cm−1 are assigned to the V-O
vibration in both the V2O5/CNTs and V2O5 samples (Figure 2b) [20]. In addition, in the
XPS survey spectrum, solely C, V, and O elements were detected, confirming the purity
of the as-prepared V2O5/CNTs sample (Figure 2c). The peak located at 517.5 eV in the V
2p1/2 spectrum and the peak at 525.2 eV in the V 2p3/2 spectrum correspond to V5+, and
the peak located at 516.8 eV in the V 2p1/2 spectrum and the peak at 523.7 eV is related
to V4+ (Figure 2d) [18]. The surface area of V2O5/CNTs hybrid films was measured to be
107 m2 g−1, as shown in Figure 2e.
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The electrochemical properties of V2O5 and V2O5/CNTs films were further evaluated
in ZIBs. The specific capacity at different current densities of V2O5 and V2O5/CNTs sam-
ples are shown in Figure 3a. The V2O5/CNTs film showed a high capacity of 399 mAh g−1

at 0.1 A g−1, which is higher than that of the V2O5 nanofiber (312 mAh g−1). The reason
for the capacity decreasing at low current densities is ascribed to the continuous V2O5
dissolution [5]. Even at a high current density of 5 A g−1, the V2O5/CNTs film still ex-
hibited a high discharge capacity of 239 mAh g−1, while the V2O5 nanofiber showed a
capacity of 187 mAh g−1. The result demonstrates that the V2O5/CNTs film showed a
higher rate capability than that of V2O5 nanofibers electrode due to the introduction of
CNTs. Figure 3b displays the charge/discharge curves of the V2O5/CNTs film under vari-
ous current densities. The charge/discharge curves at different current densities showed
similar shapes, indicating the fast charge transfer kinetics of the V2O5/CNTs film.
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V2O5/CNTs film and V2O5 electrodes.
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In addition, V2O5/CNTs films maintain a high discharge capacity of 273 mAh g−1

after 100 cycles at 1 A g−1 (Figure 3c). Apart from the good rate capability, the V2O5/CNTs
film also displayed an excellent long-term cyclic stability. Even at 5 A g−1 over 2000 cycles,
the batteries based on the V2O5/CNTs film maintained a capacity of 251 mAh g−1 with
a high-capacity retention of 94% (Figure 3d), which is much higher than those of pris-
tine V2O5 (168 mAh g−1 and 81%). The long cycle capability of the V2O5/CNTs film
was comparable or higher than most of the previously reported V-based materials with-
out CNTs (Table 1) [21–31]. Furthermore, compared with other works using CNTs in an
V2O5 electrode, the batteries based on the V2O5/CNTs film still displayed a comparable
capacity and cycle performance (Table 2) [32–34]. These superior electrochemical perfor-
mances could be ascribed to the nanowire V2O5 knitted with CNTs being helpful for the
electrode to keep the close contact and provide an effective electron transmission. The
electrochemical impedance spectra (EIS) measurements were performed to study the ki-
netics. As shown in Figure 3e, both the Nyquist plots of the V2O5 and V2O5/CNTs film
consisted of a hemicycle at the high-frequency region (charge transfer-limited process)
and a straight line in the low-frequency region (ion diffusion-limited process). As for
the V2O5/CNTs sample, the line in the low-frequency region was substantially steeper
and the inner diameter of the hemicycle in the high-frequency region was small com-
pared with V2O5, manifesting that it had a fast ion diffusion rate and a small resistance.
The charge transfer resistance (Rct) of the V2O5/CNTs film electrode was about 462 Ω
after fitting, which is smaller than that of V2O5 (741 Ω), revealing that the introduction
of CNTs is beneficial for the high electronic conductivity and efficient Zn2+ transport
in the V2O5/CNTs cathode. Furthermore, the energy/power densities were calculated
and compared with other cathode materials (Figure 4). Impressively, the batteries based
on the V2O5/CNTs film display a remarkable energy density and an impressive power
density (e.g., 267 Wh kg−1 and 3.2 kW kg−1), which is comparable with the cathodes
of K2V6O16·2.7H2O, VS2, Zn0.25V2O5·nH2O, LiV3O8, Na0.33V2O5, Zn3[Fe(CN)6]2, and
Na3V2(PO4)3 [27,30,35–39].

Table 1. The comparison of long-term cycle performances of the V2O5/CNTs cathode.

Cathodes Rate
(A g−1) Capacity Retention Final Capacity

(mAh g−1) Reference

V2O5/CNTs 5 94% (2000 cycles) 251 This work
V2O5·nH2O 6 71.0% (900 cycles) 213 [21]
Cu2+-V2O5 10 88.0% (5000 cycles) 180 [22]
K+-V2O5 8 96.0% (1500 cycles) 172 [23]

Graphene/H2V3O8 6 87.0% (2000 cycles) 240 [24]
V2O5@PANI 5 93.8% (1000 cycles) 201 [25]

2D V2O5 20 68.2% (500 cycles) 117 [26]
Zn0.25V2O5·nH2O 2.4 80.0% (1000 cycles) 208 [27]
NaV3O8·1.5H2O 4 82.0% (1000 cycles) 120 [28]
Na2V6O16·3H2O 14 85% (1000 cycles) 129 [29]
K2V6O16·2.7H2O 5 88% (229 cycles) 139 [30]
Na1.1V3O7.9/rGO 1 93% (500 cycles) 85 [31]

Table 2. The comparison of the V2O5/CNTs cathode with other CNT-based V2O5 electrodes.

Cathodes Specific Capacity Capacity Retention Reference

V2O5/CNTs 399 mAh g−1 (0.1 A g−1)
327 mAh g−1 (1 A g−1)

5A g−1:
94% (2000 cycles)

This work

V2O5/CNTs nanopaper 375 mAh g−1 (0.5 A g−1) 10A g−1:
80.0% (500 cycles)

[32]

V2O5/CNTs (VCP) 312 mAh g−1 (1 A g−1) 1 A g−1:
81% (2000 cycles)

[33]

V2O5@CNTs 293 mAh g−1 (0.3 A g−1) 5 A g−1:
72.0% (6000 cycles)

[34]
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The electrochemical kinetics was further investigated to explain the electrochemical
performance. The CV curves of the V2O5/CNTs film was measured at different scan rates.
As shown in Figure 5a, the CV curves showed similar shapes with the growth of the
scan rates, which indicates its good electrochemical reversibility. The characteristic peaks
appeared at 0.5/0.7 V, as well as 0.8/1.0 V, reflecting the redox reaction in V2O5/CNTs
(Figure 5a) [15,18]. According to the previous literature, the peak current (i) and scan rates
(v) have a linear relationship, which can be written as [40]:

i = avb (1)

where a and b are adjustable parameters. When b is close to 1, the reaction is a mainly
surface-controlled process; when b is near to 0.5, the reaction is dominated by diffusion-
controlled behavior. The slope of the peaks of the V2O5/CNTs film is close to 1, which
is higher than that of the V2O5 electrode [15,18,22], indicating that the electrochemical
process of the V2O5/CNTs is dominated by the pseudocapacitive behavior (Figure 5b).
Furthermore, the contribution of pseudocapacitance at different scan rates can be calculated
by the following equation: [41]

i = k1v + k2v1/2 (2)

The current density (i) should be divided into two parts, the pseudocapacity influence
(k1v) and the diffusion-dominant reaction (k2v1/2). Based on the integration of the CV
curve, 66.3% of the total charge storage of the V2O5/CNTs cathode is from the capacitive
contribution at 0.5 mV s−1 (Figure 5c). The proportions of the capacitive contribution for
the V2O5/CNTs cathode are listed in Table 3 (Figure 5d).
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Table 3. The proportions of the capacitive contribution for the V2O5/CNTs cathode.

Scan rate (mV s−1) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0

Capacitive
contribution (%) 52.8 59.6 64.0 66.3 68.3 70.0 71.6 73.7

In order to study the kinetics of Zn2+ diffusion in these batteries, a constant-current
intermittent titration technique (GITT) test was performed (Figure 6a). The diffusion
coefficients (D) of Zn2+ ions at the discharge process and charge process can be estimated
according to the following equation [42]:

D =
4

πτ
(

mBVM
MBS

)
2
(

∆Es

∆Eτ
)

2 (
τ � L2/D

)
(3)

where τ is the time for an applied galvanostatic current; mB, MB, and VM are the mass,
molecular weight, and molar volume, respectively; S is the active surface of the electrode
(taken as the geometric area of the electrode); ∆Es and ∆Eτ are the quasi-equilibrium
potential and the change in cell voltage E during the current pulse, respectively; L is the
average radius of the material particles. In our case, the DZn value of the battery with
the V2O5/CNTs film electrode is ~10−8 cm−2 s−1, which is higher than the value of the
V2O5 cathode (Figure 6b), which is consistent with the CV results. Due to the network
structure of the V2O5/CNTs films, high values of the capacitive contribution and diffusion
coefficients of Zn2+ are enabled, leading to a high rate capability of V2O5/CNTs films. All
the above results conclusively substantiate that V2O5/CNTs possesses a bright future for
the practical application of ZIBs.
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4. Conclusions

In summary, V2O5/CNTs films were fabricated and employed as binder-free cathodes
for ZIBs. The V2O5/CNTs film electrodes without nonconductive and non-redox active
binders are beneficial for the exposure of active sites and the transfer of electrons and
zinc ions, enhancing the electrochemical performance. As a result, the ZIBs based on
V2O5/CNTs film electrodes possess an excellent rate performance and stable cycle life.
This work provides a viable method for fabricating freestanding and binder-free electrodes
for energy storage devices and other electronics into highly flexible devices.
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