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Abstract: In recent years, high-performance photodetectors have attracted wide attention because of
their important applications including imaging, spectroscopy, fiber-optic communications, remote
control, chemical/biological sensing and so on. Nanostructured perovskites are extremely suitable
for detective applications with their long carrier lifetime, high carrier mobility, facile synthesis,
and beneficial to device miniaturization. Because the structure of the device and the dimension
of nanostructured perovskite have a profound impact on the performance of photodetector, we
divide nanostructured perovskite into 2D, 1D, and 0D, and review their applications in photodetector
(including photoconductor, phototransistor, and photodiode), respectively. The devices exhibit high
performance with high photoresponsivity, large external quantum efficiency (EQE), large gain, high
detectivity, and fast response time. The intriguing properties suggest that nanostructured perovskites
have a great potential in photodetection.

Keywords: nanostructured perovskites; high-performance photodetector; different dimensions

1. Introduction

Photodetectors—the vital components of modern imaging and communication systems—
have been playing an increasingly important role in modern industrial production, basic
scientific research, space development, ocean exploration, military and national defense,
environmental protection, medical diagnosis, transportation, and other fields. For example,
ultraviolet photodetectors can be used in ozone sensing, flame sensing, etc. [1–3]. The
visible photodetectors can be used in biological sensing, video imaging, and convert com-
munications [4–7]. Infrared photodetectors can be used as infrared night vision. [8–10]
The THz photodetectors can be used in the security detection of customs, airports, and
other special occasions [11–13]. Therefore, the further research of photodetectors is of
great significance. A semiconductor, which is essential for a photodetector, can absorb the
incident photons and generate electron and hole pairs. In the presence of a built-in or ap-
plied electric field, electric current is generated when the electrodes extracted and collected
photogenerated carriers. In order to obtain a high-performance photodetector with high
sensitivity and fast response, the semiconductor needs to have effective charge collection,
low trap state density, and high carrier mobility. Till now, a large variety of semiconductor
materials have been used for constructing photodetectors, including Si [14–16], carbon
nanotubes [17,18], group II–VI and III–V compounds [19–21], and remarkable progress
has been made in improving the detection performance. Epitaxial growth technology
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with stringent conditions, which is the most commonly used for synthesis, hampers their
commercial application [22]. Therefore, it is of great significance to exploit candidates to
reduce production cost and improve photodetector performance.

Recently, perovskites with a typical formula of ABX3 has attracted wide research
interest in the photodetector field [23–25]. For ABX3, A is a monovalent cation (CH3NH3

+

(MA), Cs+, etc.), B is the divalent metal cation (Pb2+, Sn2+, etc.), and X is a halide ion (Br−,
Cl− and I−). Many properties of perovskite make it an ideal material for photodetectors.
For example, ambipolar transport, low density of defects and traps within bandgap can
effectively reduce the charge recombination, and thus improve the performance of pho-
todetectors. [26] The absorption spectra can cover the UV–Visible–Infrared region by facile
halide substitution, which is desirable for broadband photodetector applications [27,28].
High absorption coefficient and direct bandgap result in a fast photoresponse in a very
thin perovskite layer because of short transmission distance of photongenerated carri-
ers [29,30]. In addition, low cost and easy preparation remove obstacles in future mass
preparation. For example, MAPbI3 film-based photodetectors with a metal–semiconductor–
metal (MSM) structure exhibited a broad photoresponse range from 310 nm to 780 nm,
with a photoresponsivity of 3.49 A W−1 and external quantum efficiency (EQE) of 1.19
× 103% [31]. However, there is an inherent paradox to simultaneously possess both low
dark currents and high photocurrents. The former requires a large number of defects or
barriers that appear in polycrystalline film to inhibit the transmission of thermally excited
carriers [32–34], while the latter requires single crystals with good crystallinity for effective
charge transfer [35–37]. Compared with photodetectors based on polycrystalline film and
bulk crystals, nanostructured photodetectors exhibit superior performances. The large
surface-to-volume ratios of nanostructures result in longer photocarrier lifetime, which is
conducive to higher sensitivity and responsivity. In addition, the reduced dimension short-
ens the carrier transmission time and improves the response speed [19,38–41]. Therefore,
the performance of photodetector based on nanostructured perovskites will be better. For
example, a high responsivity of 1294 A W−1 with a ultrahigh detectivity of 2.6 × 1014 Jones
was obtained in α-CsPbI3 nanowire-based photodetector [42]. In addition, an ultrahigh
response speed (19/25 µs) was obtained in a photodetector based on atom-thin 2D CsPbBr3
nanosheets [43]. An ultrahigh EQE over 107% was demonstrated by a phototransistor
based on CsPbI3-xBrx quantum dots (QDs)/monolayer MoS2 heterostructure [44]. All these
are enough to show that the photodetectors based on nanostructured perovskites have
more advantages in ultrahigh responsivity and ultrafast response speed. There have been
some reviews on nanostructured perovskite-based photodetectors. Gu et al. [45] focus
on the effect of elemental composition and dimensionality of the perovskite materials on
photodetector performance. Wang et al. [46] systematically summarized the synthesis,
optoelectronic properties, and performance of photodetectors based on low-dimensional
perovskites. Here, more emphasis is placed on the effect of the device structure and the
dimension of nanostructured perovskites on the device performance.

The key parameters of photodetectors are shown in Table 1.
In this study, we will review research results in nanostructured perovskite-based

photodetectors, focusing on the photodetection performance and potential mechanism. It
is well known that the electrons of nanostructured perovskite are quantum confined in
three directions for 0D QDs, two directions for 1D nanowires (NWs), and one direction
for 2D nanosheets [45]. The band structures of the nanostructured perovskite could be
heavily influenced by the quantum size effect induced by dimensionality constraint, and
thus deeply affect the optoelectronic properties. Therefore, we discussed the performance
of perovskite photodetectors based on 1D, 2D, and other nanostructured perovskites,
respectively. Finally, a brief summary and outlook will be given to enhance the performance
of the perovskite-based photodetectors.
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Table 1. The key parameters of photodetectors.

Parameters Definition

Photoresponsivity (R) the ratio of the photocurrent to the incident power on the active area: R = (Ip − Id)/(PA),
where Ip is the photocurrent, Id is the dark current, P is the light intensity, A is the active area

EQE Photoelectric conversion efficiency. EQE = Rhc/e, where h is the Planck’s constant, c is the
light velocity, e is the electronic charge.

Gain (G)
The number of charge carriers through external circuit for per incident photon:
G = τl/τt = τl(µV)/d2, where τl is the carrier lifetime, τt is the carrier transit time, µ is the
carrier mobility, V is bias voltage, d is the channel length

Detectivity (D*) D* = (A4 f)1/2/NEP, where A is the active area of the detector,4f is the electrical bandwidth,
NEP is the noise equivalent power.

LDR
LDR usually stands for “Linear Dynamic Range”, defined as the range in which the current
response of the photodetector is linearly proportional to the light intensity.
LDR = 20 log (Ip*/Id), Where Id is the dark current.

Response speed (rise/decay time) The ability of devices to track the incident light signal.

2. Photodetectors

Perovskite-based photodetector devices can be divided into two categories, pho-
tovoltaic and photoconductive photodetectors. According to the spatial layout of the
photoactive medium and electrodes, perovskite-based photodetector devices can be further
divided into vertical type and lateral type. In general, vertical photodetectors provide
fast response and low driving voltage because of the small electrode spacing with a short
carrier transit length; in contrast, lateral photodetectors show slow response and high
driving voltage due to their large electrode spacing. For photovoltaic photodetector, or
photodiode (Figure 1a), the device structure is similar to that of solar cell configuration.
Photodiodes based on perovskite polycrystalline films or single crystals are widely re-
ported, but those based on nanostructured perovskites are rarely reported. Photodiodes
typically rely on PN junction, which can provide a built-in electrical field at the junction
interface to aid the electrons and holes to transport in opposite directions toward electrodes.
Owing to the junction barrier at the interface, photodiodes exhibit low dark current and
large detectivity. However, they suffer from low responsivity and external quantum effi-
ciency (EQE ≤ 100%). As for photoconductive photodetector, it can be further divided into
photoconductor (Figure 1b) and phototransistor (Figure 1c). Compared with photovoltaic
photodetector, photoconductive photodetector exhibits high responsivity, EQE (beyond
100%) and large gain. External voltage leading to multiple electrical carriers recycling per
single incident photon should be responsible for the large gain [47–50]. However, large
gain, in turn, usually results in a slow response speed because both the response time
and the gain are determined by the carrier lifetime. Therefore, the intrinsic contradictions
between the responsivity and response speed always exist. One solution is to fabricate pho-
totransistor by adding gate electrode (Si) and dielectric layer (SiO2) to the photoconductor.
The charge transport can be controlled by applying a gate voltage. It is demonstrated that
phototransistor can simultaneously enhance the photoresponsivity and exhibit an ultrafast
photoresponse speed [51].

2.1. Photoconductor
2.1.1. Photoconductor Based on 2D Perovskites

Among the various perovskite compositions, CsPbX3 and CH3NH3PbX3 (MAPbX3)
(X = Br, I) have attracted more attention in photodetection. Song et al. report [43] for the first
time, the preparation of atom-thin 2D CsPbBr3 nanosheets and their high-performance in
flexible photodetector with solution treatment. The UV–vis absorption spectrum (Figure 2a)
of the CsPbBr3 nanosheets exhibited a favorable absorption capability and a direct bandgap
of about 2.32 eV. The schematic of a flexible photodetector device based on the as-fabricated
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CsPbBr3 nanosheet is shown in Figure 2b. The flexible photodetector exhibited a high
on/off ratio (>103, Figure 2c), which indicated a good light-switching behavior, high
responsivity of 0.25 A W−1(Figure 2d) and peak EQE value of 53% (Figure 2e). The
high switching ratio as shown in Figure 2f results from large absorption coefficient of the
perovskites. The rise and decay times were 19 and 25 µs (Figure 2g), respectively, which are
much shorter than the previously reported [52]. The high response speed can be attributed
to the high carrier transport speed caused by high crystal quality and atomic 2D plane
of the CsPbBr3 nanosheets. A fluctuation that was <3% after bending for 10,000 times
indicates high flexibility (Figure 2h). In addition, a fluctuation of less than 2.6% after 12 h
of exposure indicates excellent stability (Figure 2i). These results show that there is a great
potential for CsPbBr3 nanosheets in high-sensitivity detectors.
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Qin et al. [53] successfully prepared high-quality MAPbI3 with the morphologies of
nanowires (NWs) and nanoplates by a simple solution immersing method. Schematic
diagrams of photodetectors based on nanowire and nanoplate are shown in Figure 3a,b.
The stability was tested by dozens of cycles under different illumination (Figure 3c,d). Both
the photocurrent and switching ratio were maintained well, and the switching ratio was
well controlled by adjusting the applied illumination intensity. The on/off ratio of the
nanowire-based MAPbI3 photodetector reached 314, while the on/off ratio of nanoplate-
based photodetector up to 1210, which was several orders of magnitude higher than that
of polycrystalline film photodetector [54]. The nanoplate-based devices usually exhibit a
relatively better performance than nanowire-based devices due to the higher crystal quality
with smoother surface and more regular shapes. It suggested that higher performance
could be expected by further improving the crystal quality.

Due to low responsivity induced by poor charge transport of perovskites, many
studies have combined perovskites with high mobility materials to increase responsivity.
For example, Li et al. [55] constructed a photodetector based on CsPbBr3 nanosheet/carbon
nanotubes (CNTs) heterojunction to improve performance. CNTs act as a transport layer
with high carrier mobility, and CsPbBr3 nanosheets act as a photo absorber with strong
absorption. The schematic diagram of the photodetector was illustrated in Figure 4a. The
experiment proved that CsPbBr3 nanosheet/CNT (6%) composite-based photoconductor
exhibits almost the best responsivity. The highest external quantum efficiency (EQE)
reaches 7488% (Figure 4b) and the highest responsivity reaches 31.1 A W−1 (Figure 4c).
The on/off ratio reaches 823 (Figure 4d). A nonlinear I–V curve demonstrates Schottky
contact between CsPbBr3 nanosheet/CNT and electrodes. Figure 4e shows a broad LDR of
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the device. The I–t curves exhibit excellent reproducibility and stability (Figure 4f). The
rise and decay times were 16 µs and 0.38 ms, respectively (Figure 4g). The high response
speed indicates the rapid separation and efficient extraction of photogenerated carriers,
which can be attributed to the improved electrical conductivity of CNTs.
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Figure 2. (a) UV–vis absorbance spectrum of CsPbBr3 nanosheets. (b) The schematic of a flexible
photodetector device based on the CsPbBr3 nanosheet. (c) Logarithmic I–V characteristics of the
photodetector in the dark and under irradiation with 442 nm light. (d) Responsivity and (e) EQE
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10,000th bending-recovery cycle. (i) Excellent stability of photocurrent of CsPbBr3 photodetectors.
Reprinted with permission from ref. [43]. Copyright 2016 Wiley-VCH.
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2.1.2. Photoconductor Based on 1D Perovskites

Deng et al. [56] first reported photodetectors based on single-crystalline MAPbI3
microwire (MW) arrays (Figure 5a). The device demonstrated an obvious response to
visible light, but was rather insensitive to the UV and NIR light. (Figure 5b,c). High
responsivity of 13.57 A W−1 (Figure 5d), high detectivity of 5.25 × 1012 Jones and broad
LDR (Figure 5e) were achieved in the MW array-based photodetectors. Compared with thin
film-based photodetector, the MW array-based ones exhibit better stability by recording
the dark and photocurrents of the photodetectors for 50 d (Figure 5f). The outstanding
device performance can be attributed to the high optical absorption coefficient of MAPbI3
and high crystallinity of the MWs.
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Figure 5. (a) Device structure of the MAPbI3 microwire (MW) array-based photodetector. (b,c) I–V
curves of a typical photodetector. (d) Photoresponsivity and photodetectivity of the MAPbI3 MW
array-based photodetector. (e) Photocurrent versus light intensity of the device under 550 nm light
illumination. (f) Variation of dark current/photocurrent of MAPbI3 MW arrays-based photodetector
in ambient air. Reprinted with permission from ref. [56]. Copyright 2016 Wiley-VCH.

Li et al. [57] synthesized high crystalline MAPbI3 MWs arrays by a solution-based
blade coating and solvent recrystallization method. The corresponding schematic diagram
of the as-fabricated photodetector was illustrated in Figure 6a. Apparently, the device
exhibits a significant response to the UV and visible light, but is insensitive to the near-IR.
(Figure 6b). The energy band diagram was shown in the inset of Figure 6c. Photoresponsiv-
ity of 0.04 AW−1, on/off ratio of 0.84 × 104 and specific detectivity of 0.6 × 1012 Jones are
shown in Figure 6e. The rise and decay time is 178/173 µs (Figure 6f). It is worth noting
that the performance of the as-fabricated device has been significantly improved. The main
reasons may be as follows: (i) High crystallinity and suitable surface roughness of the
MAPbI3 MWs are beneficial for the transport of carriers. (ii) The MAPbI3 MWs and Ag
electrodes form a stable and available Ohmic Contact. The results demonstrate that the
MAPbI3 MWs have a good application prospect in high-performance photodetectors.
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By reacting Pb-containing precursor NWs with MABr and HBr in an organic solvent,
Zhuo et al. [58] successfully prepared porous MAPbBr3 NWs. The UV/Vis absorption
spectrum (Figure 7a) indicates a favorable absorption capability with a direct band gap
about 2.22 eV. A good ohmic contact was demonstrated by the typical linear and symmet-
rical I–V curve (Figure 7b). The on/off ratios of 61.9 suggested a good response to the
light intensity. As shown in Figure 7d, the rise and decay times were 0.12 s and 0.086 s,
respectively. The excellent photoelectric properties are mainly attributed to their unique
1D porous geometry, numerous active sites, and outstanding light absorption.
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Deng et al. [59] reported high-quality single-crystalline MAPb(I1−xBrx)3 (x = 0, 0.1,
0.2, 0.3, 0.4) NWs with an absorption spectrum ranging from 680 to 780 nm by modifying
I/Br ratio. The schematic diagram of the NWs-based device is shown in Figure 8a. The
NWs-based photodetectors demonstrated an ultrahigh responsivity of 1.25 × 104 A W−1

due to the high-quality crystal structure of NWs (Figure 8c). In addition, other excellent
figure-of-merit parameters were also obtained by the device, such as 3 dB bandwidth
(0.8 MHz), large detectivity (1.73 × 1011 Jones), LDR of 150 dB (Figure 8d), maximum G of
36,800 and robust stability. The high performance could be attributed to the long carrier
lifetime and high carrier mobility in high-crystalline MAPbI3 NWs. Thus, a variety of
high-performance integrated optoelectronic devices could be fabricated by the NW arrays.

Tang et al. [60] successfully synthesized CsPb(Br/I)3 nanorods with a facile hot-
injection method. The PL and UV–vis absorption spectra indicate that the bandgap is
≈1.98 eV (Figure 9c). The schematic of the photodetector was illustrated in Figure 9a. The
photosensitivity of the photodetector reaches 103, and the rise and decay times were 0.68 s
and 0.66 s, respectively (Figure 9d). Figure 9e indicated the photodetector meets well with
the ohmic characteristics with a linear I–V curve. I–t curve demonstrated a remarkable
high on/off ratio of 2000. The good performance of the photodetector can be related to the
long lifetime and short transit time of the photocarriers in CsPb(Br/I)3 nanorods with large
surface-to-volume ratio and high density of deep level surface trap states.
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It is a common method to enhance the stability of perovskite by ligands to improve the
performance of photodetector. Gao et al. [61] successfully synthesized MAPbI3 NWs array
by optimizing one-step self-assembly method. It turned out that the devices prepared by
OA (Oleic acid)-passivated MAPbI3 NWs have the best performance. The photodetector
structure is schematically shown in Figure 10a. A broadband photoresponse range from
400 to 750 nm. The calculated responsivity is 0.45 AW−1 (Figure 10b). The rising and
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decay time are within 0.1 ms (Figure 10c). On/off ratio of 4000 reflects an excellent
photosensitivity of the device (Figure 10d). Additionally, the ultralow dark currents result
from low carrier density and low thermal emission (recombination) rates enable the device
to detect very weak optical signals. In addition, the detectivity of 2 × 1013 Jones was
achieved (Figure 10d). The improved performance can be attributed to the increasing
of carrier lifetime after OA passivation, which can reduces the non-radiating composite
centers on the surface of the NWs and gives the device more time to collect and transfer
the photogenerated carriers.
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To verify the influence of perovskite morphology on photodetector performance,
Liu et al. [62] prepared MAPbI3 with various morphology including NWs, microwires,
a network, and islands by inkjet printing method with proper solvent and controlling
the crystal growth rate. Photoconductor based on these different crystals were fabricated
and among which, the MW-based photodetector exhibited better performance, such as
a switching ratio of 16,000%, responsivity of 1.2 A/W, and normalized detectivity of
2.39 × 1012 Jones. The reason might be a more balance between the uniformity and low
defects in MW MAPbI3. Both the rise time and decay time are within 10 ms (Figure 11c),
which indicated the ability of MW MAPbI3-based photodetector to detect the rapidly
changing optical signal.
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Chen et al. [42] synthesized α-CsPbI3 perovskite nanowire arrays with preferential
(100) crystallographic orientation to further enhance the photodetector performance. High
photoluminescence (PL) intensity (Figure 12a) and long PL lifetime (Figure 12b) demon-
strated a low trap density in α-CsPbI3 NWs, which originates from their suppressed
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grain boundaries and surface defects. High-performance photodetectors based on the
as-fabricated NWs were constructed. The schematic diagram of photodetector was shown
in the insert of Figure 12c. The photodetector exhibits high responsivity of 1294 A W−1 and
detectivity of 2.6 × 1014 Jones (Figure 12d). The rise time is 0.85 ms, and the decay time
is 0.78 ms (Figure 12f). The performance can maintain 90% after 30 days demonstrated
an excellent long-term stability. The high performance mainly benefits from fewer grain
boundaries and ordered crystallographic orientation.
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Figure 12. (a) Normalized PL emission, and (b) time-resolved PL spectra of CsPbI3 NWs. (c) The typ-
ical I–V curves of α-CsPbI3 nanowire arrays, inset is the schematic illustration of device. (d) Photocur-
rent and responsivity of photodetector. (e) I–t response and (f) photoresponse time of photodetectors.
Reprinted with permission from ref. [42]. Copyright 2019 Wiley-VCH.

In order to reduce the toxicity of lead to future applications, Han et al. [63] fabricated
lead-free all-inorganic CsSnX3 (X = Cl, Br, I) perovskite NW arrays on a mica substrate
with the growth direction of [100] by Chemical vapor deposition. Uniform and strong
PL peak suggested a high crystallinity. Furthermore, the narrow band gap of CsSnI3 NW
array extends the optoelectronic applications of perovskites from visible to near-infrared
region and the as-fabricated photodetector based on CsSnI3 NW array is the first reported
near-infrared detector. The performance of the CsSnI3 NW array-based photodetector is
shown in Figure 13. The maximum responsivity occurred at 940 nm, so the photodetector
is irradiated with 940 nm laser (Figure 13a). The photocurrents increase with the increase of
the incident intensity and excellent stability and reproducibility were shown in Figure 13b.
The rise and decay time were 83.8 and 243.4 ms, respectively. The fast photoresponse can be
attributed to the high-quality of CsSnI3 NW array with less surface states and trap centers.
The responsivity and detectivity were 54 mA W−1 and 3.85 × 105 Jones, respectively.
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Figure 13. Near-infrared photodetection performance of CsSnI3 NW array-based photodetector. (a) Spec-
tral response of the photodetector illuminated from 475 to 940 nm. (b) Time-response curves of pho-
todetector. (c) Rise and decay time constants. (d) Responsivity and detectivity of the photodetector.
Reprinted with permission from ref. [63]. Copyright 2019 Scientific Publishers of India.

Li et al. [64] constructed a polarization-sensitive UV photodetector based on another
all-inorganic perovskite CsCu2I3 NW (Figure 14a). Anisotropy ratio of PL intensity can be
up to 3.16 (Figure 14c). The schematic diagram of a photodetector based on CsCu2I3 NW
was shown in Figure 14d. As shown in Figure 14e, the device can respond to light from
230 to 350 nm. The asymmetrical I–V curves demonstrated the formation of a Schottky
barrier (Figure 14f). The performance of photodetector based on CsCu2I3 NW is impressive,
such as a high on/off ratio of 2.6 × 103 (Figure 14g), a photoresponsivity of ~32.3 AW−1,
a high specific detectivity of 1.89 × 1012 Jones (Figure 14h), and a fast response speed of
6.94/214 µs (Figure 14i). In addition, a good flexibility and stability had been demonstrated
by 1000 bending cycles without no photoresponse degradation (Figure 14j).

2.1.3. Photoconductor Based on Other Nanostructured Perovskites

Dong et al. [65], for the first time, fabricated a photodetector based on the all-inorganic
perovskite CsPbBr3 nanocrystals (NCs) with synergetic effect of preferred-orientation and
plasmonic effect. The schematic diagram of the device is shown in Figure 15a. Figure 15b
indicated a broadband photodetection range from 300 to 520 nm. The peak responsivity
value is 20.92 mA W−1. The increase below 520 nm is attributed to the increased concen-
tration of electron–hole pairs. The light on/off ratio is >1.6 × 105, as shown in Figure 15c.
Figure 15d exhibited stable and reproducible photoresponse. The rise and decay time were
0.2 and 1.3 ms, respectively (Figure 15e).

Ramasamy et al. [52] chose red emitting CsPbI3 NCs to fabricate photoelectronic
devices because a relatively longer radiative lifetime than the green and blue emitting in
CsPbX3 (X = Cl, Br) NCs helps to generate large photocurrent. The schematic diagram
of the CsPbI3-based photodetector is shown in Figure 16a. The as-fabricated photode-
tector exhibits a high performance, including high photosensitivity of 105 (Figure 16b),
reproducible response to ON/OFF cycles (Figure 16c), fast response time of 24/29 ms
(Figure 16d), which make a promising application in photoelectric devices.

Algadi et al. [66] constructed nitrogen doped graphene quantum dots (GQDs)/CsPbBr3
NCs photodetectors, in which the GQDs act as an electron transfer layer, while the CsPbBr3
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as light absorber. Figure 17a presents the schematic diagram of the hybrid photodetector.
As shown in Figure 17b, the PL lifetime of the GQDs-passivated CsPbBr3 NCs is obviously
decreased, demonstrating a great deal of charge transfer at the GQDs/CsPbBr3 interface.
The heterostructure-based photodetector exhibits a higher performance than pure one, such
as higher on/off ratio of 7.2 × 104 (Figure 17c), higher photoresponsivity of 0.24 AW−1

(Figure 17d), larger specific detectivity of 2.5 × 1012 Jones, EQE of 57% (Figure 17e), shorter
decay time as 1.16 ms (Figure 17f).
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Figure 14. (a) Schematic diagram of polarization PL measurements. (b) PL spectra vs. incident light
polarization. The color represents the emission intensity. (c) Polarization-dependent PL intensity of
CsCu2I3 NWs. (d) Schematic diagram of the CsCu2I3 NW-based photodetector. (e) Responsivity for
different incident wavelength. Inset is the optical microscope image of the photodetector. (f) I–V and
(g) I–t curves of the photodetector with different incident power. (h) Responsivity and specific detec-
tivity with different incident power. (i) Rise and decay time of the photodetector. (j) Photoresponse
maintained well after 1000 bending cycles. Reprinted with permission from ref. [64]. Copyright 2020
Royal Society of Chemistry.

2.2. Phototransistor
2.2.1. Phototransistor Based on 2D Perovskites

The above experimental results show that it is difficult to obtain high responsivity and
fast response speed simultaneously by using photoconductive device. The phototransistor
can achieve a balance between the responsivity and response speed by modulating the
gate voltage.
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Liu et al. [67] constructed a field-effect transistor (FET) based on 2D MAPbX3 nanosheet
prepared by a combined solution process and vapor-phase conversion method. The
schematic diagram of the FET device is shown in Figure 18a. Figure 18b shows the picture
and PL mapping images of the FET. The photocurrent under dim light promises great
potential as an effective photodetector. The linear I–V curves (Figure 18c) indicate the
contact between 2D MAPbX3 nanosheet and gold electrodes is ohmic. The on/off ratio of
the FET can reach up to 102 (Figure 18c, inset), which can be related to strong light–matter
interaction and absorptive capacity of 2D MAPbX3 nanosheet. I–t curve further demon-
strated an effective optical switching, as shown in Figure 18d. The responsivity of the FET
was calculated to be 22 AW−1 (Figure 18e). Rise and decay times of the FET are within
20 and 40 ms, respectively (Figure 18f). The results demonstrate that the 2D perovskite
photodetector has excellent photoresponsivity and relatively fast response speed.
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curve of photodetector. (e) Rise and decay time of the device. Reprinted with permission from
ref. [65]. Copyright 2016 Wiley-VCH.
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Figure 16. (a) Schematic diagram of the CsPbI3 nanocrystals (NCs)-based photodetector. (b) I–V
curve of photodetector with incident light intensity. (c) I–t curve as a function of applied bias. (d) Rise
and decay time of the device. Reprinted with permission from ref. [52]. Copyright 2016 Royal Society
of Chemistry.
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ref. [66]. Copyright 2020 Elsevier.
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Figure 18. (a) Schematic diagram of a phototransistor based on 2D MAPbX3 nanosheet. (b) Picture (left) and PL mapping 
image (right) of field-effect transistor (FET). (c) I–V curves of the FET. Inset: I–t curve under different power with a voltage 
bias of 1 V. (d) I–t curve of the FET under the different power. (e) Photocurrent and responsivity as a function of incident 
power. (f) Rise and decay times of the FET are within 20 and 40 ms, respectively. Reprinted with permission from ref. [67]. 
Copyright 2016 American Chemical Society. 

Lv et.al [68] fabricated a FET based on 2D all-inorganic CsPbBr3 nanosheet to inves-
tigate photoelectronic performance. The schematic was illustrated in Figure 19a. I–V curve 
with a significantly increased photocurrent (Figure 19b) demonstrates that 2D CsPbBr3 

nanosheet has a great potential to be an efficient photodetector. The fast and reproducible 
on/off cycle exhibit an excellent photo switching and stability of the as-fabricated photo-
detector (Figure 19c). The rise time was 17.8 ms, and the decay times were determined to 
be 14.7 and 15.2 ms (Figure 19d). 

Figure 18. (a) Schematic diagram of a phototransistor based on 2D MAPbX3 nanosheet. (b) Picture (left) and PL mapping
image (right) of field-effect transistor (FET). (c) I–V curves of the FET. Inset: I–t curve under different power with a voltage
bias of 1 V. (d) I–t curve of the FET under the different power. (e) Photocurrent and responsivity as a function of incident
power. (f) Rise and decay times of the FET are within 20 and 40 ms, respectively. Reprinted with permission from ref. [67].
Copyright 2016 American Chemical Society.

Lv et al. [68] fabricated a FET based on 2D all-inorganic CsPbBr3 nanosheet to investi-
gate photoelectronic performance. The schematic was illustrated in Figure 19a. I–V curve
with a significantly increased photocurrent (Figure 19b) demonstrates that 2D CsPbBr3
nanosheet has a great potential to be an efficient photodetector. The fast and reproducible
on/off cycle exhibit an excellent photo switching and stability of the as-fabricated photode-
tector (Figure 19c). The rise time was 17.8 ms, and the decay times were determined to be
14.7 and 15.2 ms (Figure 19d).

2.2.2. Phototransistor Based on 1D Perovskites

In 2014, Horvath et al. [69] reported the first MAPbI3 NWs-based photodetectors.
Figure 20a,b showed the schematic diagram and the microscope image of the device,
respectively. The linear output characteristics indicate that the contacts between MAPbI3
NWs and electrodes are ohmic (Figure 20c). The current increases parabolically with
the incident power, but the photocurrent does not reach saturation (inset to Figure 20c).
Responsivity was calculated to be 5 mA/W. The rise and decay time were 0.35 ms and 0.25
ms, respectively, demonstrated a fast response behavior in the photodetector (Figure 20d).
In addition, the EQE of the perovskites MWs-based device is twice as high as nanoparticles-
based one, which demonstrated the morphological properties could play an essential role
in photodetection.
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Reprinted with permission from ref. [68]. Copyright 2016 Royal Society of Chemistry.
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Zhu et al. [70] constructed a FET based on MAPbI3 MWs to study photoelectronic 
characteristics. The schematic diagram of FET is shown in Figure 21a. SEM image of the 
FET based on MAPbI3 microwires was shown in the inset of Figure 21a. The on–off ratio 
was calculated to be 4.02 × 103 (Figure 21b). A stable and reproducible I–t curve demon-
strated the fast response and stability of the MAPbI3 MWs-based device (Figure 21c). Good 
performance should be beneficial to the carrier charge transport caused by the oriented 
alignment of the microwires and narrow electrode channel distance of about 20 mm. In 
addition, a stable and available ohmic contact make contributions as well. The rise and 
decay time was 0.2 ms and 0.25 ms, respectively (Figure 21d). The relatively low respon-
sivity of 0.3 A W−1 may be caused by low efficient electron transfer during the light ab-
sorption. 

Figure 20. (a) Schematic diagram of the MAPbI3 NWs-based FET and I–V photocurrent measure-
ments. (b) Microscopy image of the FET based on MAPbI3 NWs. (c) Dark and laser illuminated I–V
curves as a function of laser power. (d) Rise and decay time of the FET. Reprinted with permission
from ref. [69]. Copyright 2014 American Chemical Society.
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Zhu et al. [70] constructed a FET based on MAPbI3 MWs to study photoelectronic
characteristics. The schematic diagram of FET is shown in Figure 21a. SEM image of
the FET based on MAPbI3 microwires was shown in the inset of Figure 21a. The on–
off ratio was calculated to be 4.02 × 103 (Figure 21b). A stable and reproducible I–t
curve demonstrated the fast response and stability of the MAPbI3 MWs-based device
(Figure 21c). Good performance should be beneficial to the carrier charge transport caused
by the oriented alignment of the microwires and narrow electrode channel distance of
about 20 mm. In addition, a stable and available ohmic contact make contributions as well.
The rise and decay time was 0.2 ms and 0.25 ms, respectively (Figure 21d). The relatively
low responsivity of 0.3 A W−1 may be caused by low efficient electron transfer during the
light absorption.
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permission from ref. [70]. Copyright 2016, Elsevier. 

Xiao et al. [71] fabricated a phototransistor based on MAPbI3 NWs with well-defined 
facets and smooth surfaces. The SEM image of the device was shown in Figure 22a. Under 
illumination, the I–Vsd curves are nonlinear, and the current reaches saturation at high Vsd 
(Figure 22b), which indicates a diode contact barrier. At high Vsd, the saturation region 
exhibits a linear laser power-photocurrent curve (Figure 22c). The responsivity R was cal-
culated to be 0.11 AW−1. A gain was estimated to be 0.25. In addition, they demonstrated 
that the photocurrent becomes stronger as the excitation energy close to the bandgap due 
to the strong light coupling, which provides new insights to the carrier transport and dy-
namics. 

Figure 21. (a) Schematic diagram of the FET based on MAPbI3 MWs, inset: SEM image of the FET.
(b) I–V curve of the photodetector under dark and illumination at 100 mWcm−2. (c) I–t curves of
the photodetector. (d) Rise and decay time were 0.2 ms and 0.25 ms, respectively. Reprinted with
permission from ref. [70]. Copyright 2016, Elsevier.

Xiao et al. [71] fabricated a phototransistor based on MAPbI3 NWs with well-defined
facets and smooth surfaces. The SEM image of the device was shown in Figure 22a. Under
illumination, the I–Vsd curves are nonlinear, and the current reaches saturation at high
Vsd (Figure 22b), which indicates a diode contact barrier. At high Vsd, the saturation
region exhibits a linear laser power-photocurrent curve (Figure 22c). The responsivity
R was calculated to be 0.11 AW−1. A gain was estimated to be 0.25. In addition, they
demonstrated that the photocurrent becomes stronger as the excitation energy close to
the bandgap due to the strong light coupling, which provides new insights to the carrier
transport and dynamics.

Spina et al. [72] fabricated a phototransistor based on MAPbI3 NWs/monolayer
graphene to improve the performance of the pure MAPbI3-based photodetector by using
high carrier mobility in graphene. Schematic diagram was shown in Figure 23a. In this
device, positive charge carriers were injected into the graphene and negative charges
accumulated in the NWs. The accumulating negative charges serve as an additional light
tunable gate, further reducing the Fermi energy of graphene (Figure 23b). The key role
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of MAPbI3 NWs in the photon-induced carrier generation can be revealed by spectral
sensitivity (Figure 23c). The responsivity reaches up to 2.6 × 106 A W−1 (Figure 23e).
The rise and decay time were 55 s and 75 s, respectively (Figure 23f). As the size of the
device is reduced by 5-fold, the photoresponse is increased by about 10-fold. It should be
contributed to the more effective collection of the photogenerated charge carriers.

Chen et al. [73] fabricated a phototransistor based on the C8BTBT/CsPbI3 nanorod
heterojunction. Figure 24a illustrated the schematic of the phototransistor. The ID–VD curve
of the phototransistor exhibit both linear and saturation regions (Figure 24b,c). The transfer
curves (ID–VG) as shown in Figure 24d show a typical p-type semiconductor behavior. The
photocurrent shows that the larger gate voltage applied, the faster photocurrent increased
(Figure 24e). The responsivity of 4.3× 103 A W−1 was obtained, as shown in Figure 24f. The
on/off ratio was calculated to be 2.2 × 106 as shown in Figure 24g. More importantly, due
to the high stabilities of the two materials and device structure, the hybrid phototransistors
possessed long-term stabilities under ambient conditions.

Meng et al. fabricated a phototransistor based on CsPbX3 (X = Cl, Br, or I) NWs
with a uniform diameter of ~150 nm. As shown in Figure 25, these devices exhibit high
performance with the responsivity exceeding 4489 A/W and detectivity over 7.9 × 1012

Jones. The response times are found to be less than 50 ms. The excellent performance can
be attributed to the reduced defect concentration in CsPbX3 NWs as well as the field-effect
transistors (FET) with superior hole field-effect mobility of 3.05 cm2/(V s) [74].

Yang et al. constructed a phototransistor based on CsPbI3 nanorods. The schematic
diagram of the device was shown in Figure 26a. The linear and symmetric I–V curves
demonstrated that the contact was ohmic, as shown in Figure 26b. The as-fabricated device
exhibited a totally excellent performance, such as high responsivity of 2.92 × 103 A·W−1,
large EQE of 0.9 × 106%, fast response time of 0.05 ms, and a high detectivity of 5.17 × 1013

Jones (Figure 26c–f). The excellent performance is mainly due to the following two reasons.
First, high absorption coefficient, low recombination of charge carriers and low density of
defects of CsPbI3 nanorods generate strong photoelectric effect. Second, the high-quality
nanorod provides a smooth and short path for carrier transfer, and significantly improves
the response speed [75].
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phene. (b) The band diagram of the MAPbI3 NW/graphene heterojunction. (c) Wavelength-de-
pendent photocurrent. (d) I–V curves of the photodetector. (e) The responsivity as a function of 
the device length. (f) Time response of the phototransistor. Reprinted with permission from ref. 
[72]. Copyright 2015 Wiley-VCH. 
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Figure 23. (a) Schematic diagram of the phototransistor based on MAPbI3 NWs/monolayer graphene.
(b) The band diagram of the MAPbI3 NW/graphene heterojunction. (c) Wavelength-dependent
photocurrent. (d) I–V curves of the photodetector. (e) The responsivity as a function of the device
length. (f) Time response of the phototransistor. Reprinted with permission from ref. [72]. Copyright
2015 Wiley-VCH.
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Figure 24. (a) Schematic diagram of phototransistor based on C8BTBT/CsPbI3 nanorod heterojunc-
tion. ID–VD transistor characteristics in the dark state (b) and under a white-light illumination
(c). (d) Transfer characteristics (VD = −30 V) under different incident power. (e) Photocurrent as a
function of the incident power under different gate voltages. (f) Responsivity as a function of incident
power. (g) On/off ratio as a function of incident power. Reprinted with permission from ref. [73].
Copyright 2018 Springer Singapore.
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American Chemical Society.
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Du et al. developed a phototransistor based on CsPbI3 nanotubes, which can be stable 
for more than two months under air conditions. The schematic diagram was shown in 
Figure 27a. The phototransistor exhibited an excellent performance with an EQE, detec-
tivity, photoresponsivity and response time of 5.65 × 105%, 9.99 × 1013 Jones, 1.84 × 103 A 
W−1 and 3.78 ms/359 ms, respectively (Figure 27b–d). It is comparable to the best of all 
inorganic perovskite photodetectors, which is mainly attributed to the enhanced light ab-
sorption resulting from the light trapping effect within the tube cavity [76]. 

Figure 26. (a) Schematic diagram of the as-fabricated phototransistor based on a single CsPbI3

nanorod. (b) I–V characteristics under dark and 405 nm irradiation. (c,d) Representative, EQE and
Detectivity vs. wavelength. (e,f) I–t curve and response time of the photodetector. Reprinted with
permission from ref. [75]. Copyright 2018 American Chemical Society.
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Du et al. developed a phototransistor based on CsPbI3 nanotubes, which can be stable
for more than two months under air conditions. The schematic diagram was shown in
Figure 27a. The phototransistor exhibited an excellent performance with an EQE, detectivity,
photoresponsivity and response time of 5.65 × 105%, 9.99 × 1013 Jones, 1.84 × 103 A W−1

and 3.78 ms/359 ms, respectively (Figure 27b–d). It is comparable to the best of all inorganic
perovskite photodetectors, which is mainly attributed to the enhanced light absorption
resulting from the light trapping effect within the tube cavity [76].
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2.2.3. Phototransistor Based on Other Nanostructured Perovskites

Kwak et al. [77] constructed a graphene/CsPbBr3-xIx NCs-based photodetector with
high performance. Figure 28a illustrated the schematic of the hybrid photodetector. A
responsivity as high as 8.2 × 108 A W−1 and detectivity of 2.4 × 1016 Jones were achieved
(Figure 28b). The high performance of the phototransistor based on graphene/CsPbBr3-xIx
NCs can be attributed to the fast carrier transport of graphene and strong light absorption
of perovskite NCs. The photocurrent increased obviously with the increasing of incident
power and showed a good on/off switching behavior (Figure 28c). The rise and decay time
as shown in Figure 28d were calculated to be 0.81 s and 3.65 s, respectively.

Surendran et al. [78] demonstrated another graphene/CsPbBrxI3-x NCs-based pho-
totransistor. Figure 29a shows the schematic diagram of the hybrid phototransistor. The
PL peak and absorption edge can be redshifted to 650 nm (Figure 29b). The obviously de-
creased PL lifetime of hybrid structure (Figure 29c) indicates that massive charge extracted
from perovskite layer and injected into graphene, and thus improving the photodetector
performance (Figure 29d). The responsivity of 1.12 × 105 A/W and the detectivity of
1.17 × 1011 Jones were achieved in this device (Figure 29e). The rise and decay times were
273.6 ms and 2.26 s, respectively, with excellent reproducibility (Figure 29f). Meanwhile, a
large photoconductive gain of 9.32 × 1010 further demonstrated the potential for detecting
extremely low power light. The device exhibits a significant improvement in stability with
the photocurrent retention of ~82% after 37 h.
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Wu et al. [44] fabricated a phototransistor based on CsPbI3-xBrx quantum dots (QDs)/
monolayer MoS2 heterostructure with high-performance and low-cost. The schematic
diagram of the phototransistor was shown in Figure 30a. The TEM image shown in
Figure 30a inset demonstrated a cubic shape of the CsPbI3-xBrx quantum dots. The linear
and symmetric ID–VD curves indicate a Schottky barriers at the contact interface. As
shown in Figure 30b,c, the on/off ratio exceeds 104, the photoresponsivity reach up to
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7.7 × 104 A W−1, the specific detectivity of 5.6 × 1011 Jones and an ultrahigh EQE over
107%. It should be noted that both R and D* decreased exponentially with increasing
incident power because of high recombination and scattering. Stable and reproducible
showed a good on/off photoswitching characteristic (Figure 30d). The rise and decay times
were 0.59 s and 0.32 s, respectively (Figure 30e).
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Zou et al. [79] report a phototransistor based on CsPbI3 QD/DPP-DTT heterojunction.
The DPP-DTT polymer with narrow bandgap and high carrier mobility was chosen to
improve the detection range and performance. The schematic was shown in Figure 31a.
Figure 31b showed the intersecting surface. The phototransistor exhibits broadband de-
tection from 350 to 940 nm by combining UV–vis absorption of CsPbI3 QDs and NIR
absorption of DPPDTT. A high responsivity of 110 A W−1 (Figure 31c) and a specific de-
tectivity of 2.9 × 1013 Jones (Figure 31d) were achieved due to the heterojunction strategy
and gate modulation. The on/off ratio of 6 × 103 (Figure 31e) indicated good photoswitch-
ing characteristics. In addition, the responsivity can be maintained 80% after one month
demonstrated an excellent stability of the device.

2.3. Photodiode Based on Nanostructured Perovskites

Since most of the photodiode is based on thin film that is constructed by nanos-
tructured perovskites, this part is not divided into different dimensions here. Easy to
combine with other materials makes polycrystalline film a perfect choice for making pho-
todiodes. The first perovskite photodiode using polycrystalline film as the active layer
was reported by Yang et al. The device with the structure of PEDOT: PSS/MAPbI3−xClx/
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PCBM/Al was adopted. PEDOT: PSS served as hole-transporting layer (HTL), PCBM as
electron-transporting layer (ETL), and water/alcohol-soluble conjugated polymer serve as
hole blocking layer. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and poly[(9,9-
bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) were
added to reduce the dark current density under reverse bias (Figure 32a,b). The pho-
todetectors exhibit a high detectivity, a fast photoresponse and a linear dynamic range.
(Figure 32c,d) [80] The performance is even better than commercial Si-based photode-
tectors. The HTL was replaced with cross-linkable N4,N4-Bis(4-(6-([3-ethyloxetan-3-
yl]methoxy)hexyl)phenyl)-N4,N4-diphe nylbiphenyl-4,4-diamine (OTPD) layer to reduce
the dark current (Figure 32e,f). Meanwhile, PCBM/C60 double layer was employed as
the hole blocking layer and C60 can passivate most of the charge traps. As a result, the
dark current was suppressed to 9.1 × 10−9 A cm−2 at −2 V, which was much lower than
the former detector using PEDOT: PSS as HTL. In addition, as shown in Figure 32g,h, the
photodetector exhibits an ultrahigh detectivity of 7.4 × 1012 Jones, a large LDR of 94 dB
and fast response time (120 ns) [81].
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Lin et al. also chose a thick PCBM/C60 interlayer as hole blocking layer to coat
the perovskite homojunction and the dark current was reduced to 5 × 10−10 A cm−2

under −0.5 V [82]. Meanwhile, as a low shunt capacitor, the interlayer plays a key role
in improving the diode temporal response. The interlayer also provides electro-optical
control of the spectral response. Sutherland et al. fabricate a photodiode with a structure
of Au/Spiro/MAPbI3/TiO2/FTO [83]. Addition of Al2O3 and PCBM layer between TiO2
and MAPbI3 can effectively reduce the dark current and improve the responsivity, which
should be consistent with the posited passivation of charge-trapping recombination cen-
ters at the interface (Figure 33a,b). High sensitivity throughout the visible and into the
near-infrared region. As shown in Figure 33c,d, both the peak responsivity (0.395 A W−1)
and specific detectivity (1012 Jones) can be comparable to those of commercial silicon pho-
todetectors [84,85]. Furthermore, the photodetector exhibits bias-independent responsivity
and stable photocurrent after the detection of one billion laser pulses. These parame-
ters indicate that perovskite materials have great potential in high-performance photode-



Nanomaterials 2021, 11, 1038 26 of 32

tectors. Dong et al. fabricated a photodiode with a structure of Ag/MoO3/4,4′-bis[(p-
trichlorosilylpropylphenyl)phenylamino]-biphenyl(TPD-Si2)/MAPbI3. TPD-Si2 serves as
the blocking layer. MoO3 is used for anode work function modification. PCBM/C60
passivation layers were cancelled to reserve surface trap states (Figure 33e,f). The large
gain, which results from the hole traps caused by large concentration of Pb2+ cations in the
perovskite film surface, makes the as-fabricated devices work as photoconductor rather
than photodiode under illumination. The photodetector exhibits a broadband response
ranging from the UV to the NIR, very high responsivity of 242 A W−1, a short response
time and an excellent LDR of 85 dB (Figure 33g,h) [86].
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Figure 32. (a) The schematic of the photovoltaic device. (b) Energy diagram of the device. (c) EQE
and detectivity of the photodetector at different wavelength. (d) Transient photocurrent response of
the photodetector at a pulse frequency of 1 MHz with a device area of 0.1 cm2 (blue line) and 0.01 cm2

(red line), respectively. Copyright 2014, Nature Publishing Group [80] (e) The schematic of perovskite
photodetectors. (f) The energy diagram of the perovskite photodetectors. (g) Dynamic response of
the photodetector. (h) The short photoresponse time of the device. Reprinted with permission from
ref. [81]. Copyright 2015 Wiley-VCH.
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In Table 2, we summarize some key parameters of the photoconductors based on
nanostructured perovskites. It seems that 1D perovskite-based photodetectors are much
more studied and often perform better than 2D perovskite-based photodetectors. This may
be due to the relatively better crystal quality of 1D perovskites and better ohmic contact
between 1D perovskites and electrodes.
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Table 2. Key characteristics of nanostructured perovskites-based photodetectors.

Device Dimension Perovskite R D EQE On/Off Ratio Gain LDR Rise/Decay Time Ref.

Photoconductor

2D
CsPbBr3 0.25 53% 19 µs/25 µs [43]
MAPbI3 1210 [53]

CsPbBr3/CNTs 31.1 7488% 16 µs/0.38 ms [55]

1D

MAPbI3 13.57 5.25 × 1012 [56]
MAPbI3 0.04 0.6 × 1012 0.84 × 104 178 µs/173 µs [57]

MAPbBr3 61.9 0.12 s/0.086 s [58]
MAPb(I1-xBrx)3 1.25 × 104 1.73 × 1011 36,800 150 [59]
MAPb(I/Br)3 103 2000 0.68 s/0.66 s [60]

MAPbI3 0.45 2 × 1013 4000 <0.1 ms [61]
MAPbI3 1.2 2.39 × 1012 160 [62]
CsPbI3 1294 2.6 × 1014 0.85 ms/0.78 ms [42]
CsSnI3 0.054 3.85 × 105 83.8 ms/243.4 ms [63]

CsCu2I3 32.3 1.89 × 1012 2.6 × 103 6.94 µs/214 µs [64]

others
CsPbBr3 0.0209 1.6 × 105 0.2 ms/1.3 s [65]
CsPbX3 105 24 ms/29 ms [52]

GQDs/CsPbBr3 0.24 2.5 × 1012 57% 7.2 × 104 1.16 ms (Decay) [66]

Phototransistor

2D
MAPbX3 22 1012 20 ms/40 ms [67]
CsPbBr3 17.8 ms/(14.7 ms/15.2 ms) [68]

1D

MAPbI3 0.35 ms/0.25 ms [69]
MAPbI3 0.3 4.02 × 103 0.2 ms/0.25 ms [70]
MAPbI3 0.11 0.25 [71]
MAPbI3 2.6 × 106 55 s/75 s [72]

C8BTBT/CsPbI3 4.3 × 103 2.2 × 1066 [73]
CsPbX3 4489 7.9 × 1012 <50 ms [74]
CsPbI3 2.92 × 103 5.17 × 1013 0.6 × 106% 50ms [75]
CsPbI3 1.84 × 103 9.9 × 1013 5.65 × 105% 3.78 ms/539 ms [76]

others

Graphene/CsPbBr3-xIx 8.2 × 108 2.4 × 1016 0.81 s/3.65 s [77]
Graphene/CsPbBrxI3-x 1.12 × 105 1.17 × 1011 9.32 × 1010 273.6 ms/2.26 s [78]

CsPbI3-xBrx 7.7 × 104 5.6 × 1011 107% 0.59 s/0.32 s [44]
CsPbI3/DPP-DTT 110 2.9 × 1013 6 × 103 [79]
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3. Conclusions and Outlook

In summary, the research advancements of nanostructured perovskite-based pho-
todetectors are reviewed. The performances of the detectors are influenced by the type of
devices as well as the structures of nanostructured perovskites with different morphology.
As a whole, photodetectors based on nanostructure perovskites perform well due to long
carrier lifetime, great carrier mobility, and low carrier recombination result from few grain
boundary and lower trap state density. Our conclusion is that nanostructured perovskites
have great potential to be applied in low-voltage, low-cost, fast-response, high-detectivity,
and ultra-highly integrated optoelectronic devices.

Despite great progress has been made on the perovskite photodetectors, there are
still many challenges. First, both the photoconductors and phototransistors only achieve
part of photodetection parameters enhancement. However, an ideal photodetector should
improve performance including high responsivity, large detectivity, fast speed, etc. Second,
perovskites easily degrade in air with the presence of oxygen and moisture. Thus, the
instability of perovskite impedes the commercial use of the device. It is of great signifi-
cance to improve the perovskite with new protection strategies though the heterojunction
structures exhibit relatively better stability. In addition, some literatures only reported
the best performance of the device, but ignored the average performance of the device,
which would lead to a misleading effect on the industrialization direction, and also show
that the authors have no confidence in the stability of the device. Finally, the toxicity of
perovskite has cast a shadow over its application because of the use of lead in widely
studied materials, such as MAPbI3, and CsPbBr3. Therefore, more efforts should be made
to prepare environmental perovskite materials with non-toxic elements instead of Pb.
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