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Abstract: Solution–processing methods were investigated as viable alternatives to produce the
polymer-bonded barium hexaferrite (BaM). BaM powders were first synthesized by using the sol-gel
auto-combustion method. While the ignition period in two synthesis batches varied, the morphology
of hexagonal microplates and nanorods, as well as magnetic properties, were reproduced. To prepare
magnetic polymer composites, these BaM powders were then incorporated into the acrylonitrile-
butadiene-styrene (ABS) matrix with a weight ratio of 80:20, 70:30, and 60:40 by using the solution
casting method. Magnetizations were linearly decreased with a reduction in ferrite loading. Com-
pared to the BaM loose powders and pressed pellet, both remanent and saturation magnetizations
were lower and gave rise to comparable values of the squareness. The squareness around 0.5 of
BaM samples and their composites revealed the isotropic alignment. Interestingly, the coercivity was
significantly increased from 1727–1776 Oe in loose BaM powders to 1874–2052 Oe for the BaM-ABS
composites. These composites have potential to be implemented in the additive manufacturing of
rare-earth-free magnets.

Keywords: magnetic polymer composite; sol-gel auto-combustion; acrylonitrile-butadiene-styrene;
barium hexaferrite; rare-earth-free magnet

1. Introduction

The developments of polymer-bonded magnets were initially focused on NdFeB [1–6]
as well as SmCo [7]. Recent attention has been paid to rare-earth-free magnets like man-
ganese alloys [8] and hard ferrites [3,9]. The M-type barium hexaferrite (BaFe12O19 or BaM)
exhibits ferrimagnetism, which has been deployed in low-cost permanent magnets [10].
In addition to hard magnetic properties with large magneto-crystalline anisotropy, high
Curie temperature, high saturation magnetization, and coercivity, the BaM has excellent
chemical stability, corrosion resistivity, and low cost [10–13]. These characteristics remark-
ably fulfill the requirement of rare-earth-free permanent magnets. Several techniques have
therefore been investigated to synthesize the high-performance BaM, i.e., hydrothermal
synthesis [14], carbon combustion synthesis of oxides [15], reverse microemulsion tech-
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nique [16], co-precipitation-calcination [17,18], oxalate precursor method [19], and sol-gel
based combustion [11–13,20–28].

In the sol-gel based combustion technique, barium nitrate and iron nitrate were
commonly used as precursors with a fuel that also functions as a chelating agent, e.g., citric
acid [13,20,21,23,26] and some carbohydrate sugars [12,22]. The conditions of the sol-gel
auto-combustion [13,20–23,25], the citrate-EDTA complexing method [24], and the sol-gel
method without water and surfactants [27] were specifically studied to enhance the hard
magnetic properties. For the sol-gel auto-combustion process, a stoichiometric amount
of metal nitrate and fuel [13], pH effect [21], and amount of Fe3+/Ba2+ ratio, causing
the impurity phase formation [22–24], were influential. Magnetic properties could be
improved by doping Sr, Sm, Tm, Co, and Cu into crystalline structures during the sol-gel
syntheses [11,20,27].

The BaM phase formation, morphology, and magnetic properties are also sensitive to
the heat treatment on sol-gel derived products. Widyastuti et al. reported that the α–Fe2O3
phase dominated after calcining at 750 ◦C and 850 ◦C, whereas the BaM was dominant as a
result of higher temperature calcination at 950 ◦C. Accordingly, the highest magnetization
of 63.5 emu/g and 3542 Oe were obtained after sintering at 950 ◦C as the particles grew
from the average size around 0.2 to 0.7 µm with increasing sintering temperatures [23].
Wang and Zhang suggested that higher temperature and longer holding times promoted
crystal grain growth. By sintering at 1000 ◦C for 5 h, hexagonal microplates of BaM with a
grain size of around 1–2 µm were obtained. The Differential Scanning Calorimetry (DSC)
revealed two exothermic peaks at about 380 ◦C related to the decomposition of remaining
esters and 850 ◦C attributed to the formation of BaM [24]. Mali and Ataie showed that the
amorphous dried gel transformed to the crystalline powder after the combustion, and the
pure BaM phase was obtained after calcination at 900 ◦C. Besides, the increase in sintering
temperature from 1000 ◦C to 1100 ◦C resulted in the agglomeration of spherical particles
of 0.4 µm in diameter into the hexagonal microplates with an average size of around
2.5 µm [25].

Additive manufacturing is increasingly important in many technologies because novel
products of complex shape can be fabricated with less weight and minimal wastes [1,29–32].
Its versatilities have been demonstrated in the direct 3D metal printing of permanent mag-
nets of varying shapes and sizes by selective laser melting [33,34], laser beam melting [35],
electron beam melting [29,36], and binder jet [37]. Moreover, the fused deposition model-
ing (FDM) can facilely produce the polymer-bonded magnets with a complex net-shape
and functionality, becoming an alternative to the injection molding commonly available
for industrial productions [1,22–25,30,38]. Common 3D-printing is compatible with mag-
netic polymer composites in the form of filaments [39]. Besides, some 3D-printers have
been developed for production with polymer-bonded composites in the form of gran-
ules [40]. It follows that the investigation on printable magnetic polymer composites has
been intensified. Thermoplastics, such as polylactic acid (PLA) [7], polyamide (PA) [1,2,5],
polyethylene (PE) [8], polyphenylene sulfide (PPS) [4], acrylonitrile-butadiene-styrene
(ABS) [9], ethylene ethyl acrylate (EEA) [2], and nylon [6], were tested as the polymeric
matrix for embedding magnetic powders. Predefined external field [5,41] and big area
additive manufacturing [5,42] techniques were also developed to improve the performance
of polymer-bonded magnets.

In this research, BaM-ABS composites are fabricated for further uses in the additive
manufacturing of rare-earth-free magnets. Following requirements in industrial produc-
tions, the reproducibility of magnetic properties of BaM from the sol-gel auto-combustion
is firstly investigated. The solution-processing method is also used to incorporate sol-gel
derived BaM powders in ABS granules. While the largest ferrite loading straightforwardly
leads to the largest magnetization, the homogeneity and mechanical properties need to
be considered [9,30]. The incorporation of magnetic powders affects the viscosity of the
polymeric matrix, which limits the working in additive manufacturing and the loadings
of 45–65% are typically used in the case of magnetic thermoplastic filaments [29]. The
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variations of BaM from 60% to 80% by weight are selected for this research because, from
the preliminary test, these loadings led to printable magnetic polymer composites.

2. Materials and Methods
2.1. Synthesis and Characterization of BaM Powders

In the sol-gel auto-combustion synthesis of BaM, the molar composition of iron(III) ni-
trate nonahydrate (Fe(NO3)3·9H2O) (Sigma-Aldrich, Singapore: ACS reagent, 98.0–101.0%),
barium nitrate (Ba(NO3)2) (HIMEDIA, India: ACS 99.00–102.00%) and citric acid
(C3H5O(COOH)3 was 12:1:0.75. Following the suitable condition for forming a single-
phase BaM in the previous reports [17,19,23,24], the mole ratio of Ba to Fe in the precursors
was selected as 12:1. The citric acid acted as a chelating agent in the bonding of anions
(citrate(3−) and citrate(2−)) to the Fe3+ and Ba2+ cations. The starting reagents were suc-
cessively dissolved in deionized (DI) water with a mass (g) per volume (mL) ratio of 1:6.
Under constant magnetic stirring, the aqueous acidic solution was obtained. The pH was
adjusted to 7 by adding ammonium hydroxide (27% NH4OH). The solution was then
heated and continuously stirred at 90–100 ◦C for around 3 h to evaporate the solvents. The
viscous brown gel was formed and eventually dried. Afterwards, the temperature was
promptly increased to 150 ◦C. As a result, the dried gel swelled up until reaching ignition.
The auto-combustion took place and propagated throughout the gel within a minute. The
obtained brown powders were ground and then heated at 450 ◦C for 2 h to remove residual
carbon compounds [13,20]. The subsequent calcination at 1050 ◦C for 3 h finally allowed
for the formation of BaM [10,20]. The changes from the solution to the final solid product
are shown in Figure 1.

Figure 1. Stepwise photographs of sol-gel auto-combustion synthesis of BaM nanoparticles.

To verify the reproducibility of the sol-gel auto-combustion, two batches of BaM,
referred to as BaM_ex1 and BaM_ex2, were prepared by using the same procedure. It
was noted that the combustion step might have occurred before the gel was completely
dried. As a result of the wet gel ignition, the ignition period of 1 min for the BaM_ex2
sample was much longer than the 20 s observed in the BaM_ex1 sample. Morphology and
elemental compositions of both samples were, respectively, examined by the field-emission
scanning electron microscope (FESEM: Zeiss Merlin Compact, Carl Zeiss Microscopy
GmbH, Germany) and the energy-dispersive X-ray spectroscopy (EDS: Oxford Aztec,
Oxford Instruments, UK). The ferrite phases were identified by using a single crystal X-ray
diffractometer (XRD, Rigaku SuperNova diffractometer with a HyPix 3000 detector, Rigaku
Corporation, Poland) using Cuα radiation (λ = 1.54184 Å). Data reduction, scaling and
absorption corrections were performed using CrysAlisPro software in the micro powder
mode. A vibrating sample magnetometer (VSM: in-house developed and calibrated with
Lakeshore 730,908 using a Ni sphere of 3 mm in diameter) was used to measure the
magnetization (M) as a function of the external magnetic field (H) between −17,500 and
17,500 Oe.
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2.2. Synthesis and Characterization of BaM-ABS Composites

To prepare the magnetic polymer composites for further uses in additive manufactur-
ing of rare-earth-free magnets, the sol-gel derived BaM powders were incorporated into
the ABS matrix via the solution casting method. Firstly, the ABS pellets (GA800, Polimaxx,
IRPC Public Company Limited, Thailand) were completely dissolved in acetone under
constant stirring with a magnetic bar for 2 h at room temperature. Then, the BaM powders
were added to the solution, and the stirring continued for 1 h to thoroughly disperse the
BaM in the ABS. 20 mL acetone was required for 2.5 g of BaM and ABS in total. After
that, the residual acetone was eliminated by evaporation. The product was dried at room
temperature for 24 h, resulting in the BaM in the ABS matrix. The weight ratios of BaM:ABS
varied as 60:40, 70: 30, 80:20, and magnetic properties of these composites, respectively re-
ferred to as BaM60-ABS40, BaM70-ABS30, and BaM80-ABS20, were measured by the VSM.
In addition, a gram of BaM powder was pressed under a uniaxial pressure at 60 kg/cm3 for
5 min with an automatic hydraulic machine to compare the magnetic properties of this BaM
pellet with those of the BaM-ABS composites. From hysteresis loops, the coercivity (Hc)
and the remanent magnetization (Mr) were, respectively, determined from the x-intercept
and the y-intercept.

3. Results and Discussion
3.1. Characterization of BaM Powders

The sol-gel derived products after calcining at 1050 ◦C for 3 h revealed the morphology,
as shown in Figure 2a,c. Both BaM_ex1 and BaM_ex2 samples are similarly composed of
hexagonal plates and nanorods. The size of hexagonal plates ranges from less than 0.3 µm
to over 1 µm. Compared to the previous reports on BaM, Mali and Ataie obtained hexagonal
plates with an average size of about 2.5 µm after the calcination at 1100 ◦C for 1 h [25] and
Wang and Zhang observed the hexagonal microplate with a grain size of 1–2 µm from the
powder received heat treatment at 1000 ◦C for 5 h [24]. The EDS spectra in Figure 2b,d
reveal peaks corresponding to Fe, Ba, O, and C elements. Since an artificial carbon peak
is normally visible on EDS spectra, these spectra are consistent with the composition of
BaM. However, measurements at some other points do not yield a clear Ba peak, indicating
inhomogeneity. The phase composition is therefore not conclusive from the EDS results
and other minor phases cannot be ruled out. The calcination temperature at 1050 ◦C tends
to promote the pure phase BaFe12O19 formation [28], and the appropriate high temperature
and holding time for calcination significantly affect the crystalline structure of BaM [24,25].
While the DSC, differential thermal analysis (DTA) and thermogravimetric analysis (TGA)
spectra revealed the BaM phase formation at 840–860 ◦C [24–26], the calcinations at higher
temperatures were reported to promote the hexagonal structures as well as the crystalline
size of BaM [17,19,25].

The phase implied by the EDS results is confirmed by XRD. In Figure 3, the spectra
from both BaM_ex1 and BaM_ex2 samples exhibit characteristic peaks of the M-type
BaFe12O19 (JCPDS 43-0002). The diffraction peaks at 23.0◦, 30.3◦, 31.3◦, 32.2◦, 34.1◦, 37.1◦,
38.5◦, 40.3◦, 42.4◦, 46.6◦, 50.3◦, 53.3◦, 53.8◦, 55.1◦, 56.6◦, 60.0◦, 63.2◦, 65.6◦, 67.3◦, 72.6◦, and
75.5◦ correspond to the crystallographic planes of (006), (110), (112), (107), (114), (203),
(204), (205), (206), (1011), (209), (2010), (300), (217), (2011), (2012), (220), (2111), (2014), (317),
and (403), respectively. In addition to BaFe12O19, the minor phase of magnetite (Fe3O4) are
indexed at 35.6◦(311) and 74.5◦(533) (JCPDS 75-0033) and a low-intensity diffraction peak
of maghemite (γ-Fe2O3) phase is also detected at 43.3◦(400) (JCPDS 39-1346).

Figure 4 shows similar hysteresis loops from BaM_ex1 and BaM_ex2 samples indi-
cating the reproducibility required for productions of hard magnetic BaM. The solution-
processing methods can be scaled up and some ferrite syntheses have been developed at
lower temperatures for commercial productions [43]. The maximum magnetizations reach
62.4 and 63.6 emu/g in the applied external magnetic field of 17,500 Oe. The remanent
magnetizations are 31.1 and 32.2 emu/g, as listed in Table 1. These magnetizations, as
well as the coercivity of about 1750 Oe in Table 1, are functional characteristics of hard
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magnetic materials [30]. Magnetic properties can be further improved by the varying
condition of heat treatments that influences phase purification, crystalline size, and mor-
phology [17,19,25,26].

Figure 2. Morphology and elemental composition of sol-gel derived products after the calcination; (a) FESEM image and (b)
EDS spectra of BaM_ex1; (c) FESEM image and (d) EDS spectra BaM_ex2.

Table 1. Coercivity (Hc), remanent magnetization (Mr), and maximum energy product ((BH)max) of BaM powders, pressed
BaM pellet, and BaM-ABS composites.

Samples
Compositions Magnetic Properties from Hysteresis Loops

BaM (wt%) ABS (wt%) Mr (emu/g) Hc (Oe) (BH)max (MGOe)

BaM_ex1 100 0 31.1 1777 1.30
BaM_ex2 100 0 32.2 1727 1.31

BaM pellet 100 0 32.9 1909 1.39
BaM80-ABS20 80 20 27.8 1874 1.32
BaM70-ABS30 70 30 23.3 2052 1.98
BaM60-ABS40 60 40 20.5 1983 1.31
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Figure 3. XRD patterns of sol-gel derived products after calcination.

Figure 4. M-H curves of BaFe12O19 powders.
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3.2. Magnetic Properties of BaM-ABS Composites

Hysteresis loops of BaM-ABS composites are compared to the pressed BaM pellet in
Figure 5 and the corresponding magnetic parameters are listed in Table 1. Magnetizations
of pressed BaM pellets are almost identical to the value measured in the form of the
BaM powder with the remanent magnetization around 32 emu/g. As the magnetization
of magnetic polymer composites is only attributed to magnetic filler, the reduction in
magnetizations is consistent with the replacement of magnetic materials by the polymeric
matrix. Nevertheless, the highest magnetization obtained from the BaM:ABS ratio of 80:20
is as high as 87% of the values in BaM loose powders and pressed pellet.

Figure 5. Hysteresis loops of BaM-ABS composites with varying ferrite loading of 60%, 70%, and 80%, as well as a pressed
BaM pellet.

Unlike magnetizations, the coercivity of the pressed BaM pellet is higher than that
of the powder form. The powder compaction induced the stress that influenced the
dislocations and associated the lattice distortion, enhancing the coercivity [44–46]. Likewise,
the polymer-bonded BaM magnets have higher coercivity because of the induced stress [29].
These results are consistent with the reported by El-Sayed et al. on a marked increase in
coercivity of the BaM composite in polystyrene [47]. The coercivity differs slightly with
the ferrite loading and the BaM:ABS ratio of 70:30 results in the highest coercivity of about
2050 Oe. It follows that the maximum energy product compared in Table 1 is at the highest
in the case of this ratio.

As all hysteresis loops in Figure 5 do not reach the saturation in the maximum field
supplied, the law of approach to saturation is then used to estimate the saturation magneti-
zations. With the contribution of magneto-crystalline anisotropy, the change in magnetiza-
tion at high magnetic fields near the saturation of hard ferrites follows Equation (1) [48–54]:

M = Ms

[
1 − B

H2

]
(1)
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where B is a constant. Rearranging the terms leads to a linear form in Equation (2).

M = (−MsB)· 1
H2 + Ms (2)

The plots between M and 1/H2 in a regime approaching 17,500 Oe, the maximum
applied field, are shown in Figure 6. All graphs can be linearly fitted, consistent with
Equation (2). The saturation magnetization (Ms) is then approximated from the y-intercept
as listed in Table 2. The slope equals the B value, which is related to the effective anisotropy
constant (Keff) for uniaxial magnetic hexagonal crystals as in Equation (3) [48–54].

Ke f f = Ms

[
15B

4

] 1
2

(3)

Figure 6. M against 1/H2 plots of (a) BaM pellet as well as BaM-ABS composites with varying ferrite loading of (b) 80%; (c)
70%, and (d) 60%.
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Table 2. Magnetic parameters of pressed BaM pellet and BaM-ABS composites from the linear fitting
according to the law of approach to saturation.

Samples
Magnetic Parameters of Linear Fitting

Ms
(emu/g) Mr/Ms

Keff × 103

(emu·Oe/g)
Ha

(kOe)

BaM pellet 66.8 0.49 500.50 14.98
BaM80-ABS20 59.3 0.47 471.57 15.90
BaM70-ABS30 48.3 0.48 425.59 17.62
BaM60-ABS40 43.5 0.47 383.16 17.62

The anisotropy field (Ha) can then be calculated by using the Keff value from
Equation (4) [48–54].

Ha =
2Ke f f

Ms
(4)

In Table 2, the saturation magnetizations from the linear fitting are comparable to
the literature [20,26,27,55–57]. From these experiments, the saturation magnetization from
undoped BaM ranges from 49–70 emu/g. Remarkably high magnetizations of 88 and
89 emu/g in BaM were, respectively, obtained from the solid state reaction [58] and ball
milling [59]. The Keff, also listed in Table 2, is significantly reduced with the decreased
in ferrite loading. However, the reduction in Ms results in the increase in Ha with the
decreasing loading from 100% (i.e., a pressed pellet) to 70%. However, the squareness
computed from the ratio Mr/Ms is rather insensitive to the ferrite loading. The value
around 0.5 of both BaM and BaM-ABS composites corresponds to the isotropic BaM,
commonly found in randomly oriented bulk ferrite magnets [60]. The anisotropic BaM can
be produced by heat treatment in the magnetic field. The magnetically oriented grains lead
to the squareness close to one along the c-axis [10].

In Figure 7, both remanent and saturation magnetizations exhibit linear decreases
with the decreasing BaM loading in the composites. Such variations follow the rule
of mixture, which was previously applicable to the magnetization of composites with
ferrite fillers in either plastic [61] or rubber matrix [62]. In cobalt ferrite-polypropylene
composites, the loading of 5–45 wt.% gave rise to a graph fitting passing through the
origin [61]. However, the projections of trend lines in Figure 7 predict non-zero remanent
and saturation magnetizations of, respectively, 1.66 and 7.73 emu/g at the zero magnetic
loading. In the case of remanent magnetization, the R2 from the linear fitting is higher and
the discrepancy from the line projection is smaller because the values are directly obtained
of the y-intercept of hysteresis loops. The uncertainty is increased for the saturation
magnetization calculated from the law of approach to saturation.

Figure 7. Remanent magnetization (Mr) and saturation magnetization (Ms) as a function of ferrite
loading in BaM-ABS composites. The loading of 100% corresponds to the BaM pellet.
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4. Conclusions

The M-type BaM were successfully synthesized by the sol-gel auto-combustion. By
heating and stirring at 90–100 ◦C for approximately 3 h, the solution of nitrate nonahydrate,
barium nitrate and citric acid transformed into viscous and eventually dried gel. By
increasing the temperature to 150 ◦C, auto-combustion arose and was then terminated
within a minute. Despite the variation in the ignition period, magnetic hysteresis loops of
BaM from two synthesis batches are almost identical. The results indicated the potential
of reproducibility in the sol-gel auto-combustion synthesis for commercial productions.
To fabricate magnetic polymer composites, the sol-gel derived BaM was dispersed in the
ABS matrix via the solution casting method. The weight ratio of BaM and ABS was varied
as 80:20, 70:30, and 60:40 to examine the optimum ferrite filler loading. The excessive
loading of BaM may severely deteriorate the mechanic properties desirable in the additive
manufacturing, but the loading up to 80% in this research still gave rise to printable
composites. All the composites exhibited significant increases in coercivity, while the
magnetization values linearly decreased with the reduction in ferrite loading. The highest
coercivity of about 2050 Oe was obtained in the BaM-ABS composite with a weight ratio of
70:30. The squareness of every composite was approximately 0.5, indicating the randomly
oriented BaM in the ABS matrix.
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