

Supplementary Materials

Multifunctional Hydroxyapatite/Silver Nanoparticles/Cotton Gauze for Antimicrobial and Biomedical Applications

Mohamed M. Said ¹, Mohamed Rehan ², Said M. El-Sheikh ³, Magdy K. Zahran ¹, Mohamed S. Abdel-Aziz ⁴, Mikhael Bechelany ⁵ and Ahmed Barhoum ^{1,6,*}

- ¹ Chemistry Department, Faculty of Science, Helwan University, 11795 Helwan, Cairo, Egypt; za3balawyscience@gmail.com (M.M.S.); zahranmk@science.helwan.edu.eg (M.K.Z.)
- ² Department of Pretreatment and Finishing of Cellulosic based Textiles. Textile Industries Research Division, National Research Centre, 33 Bohoth Street, Dokki, P.O. Box 12622, Giza 12522, Egypt; rehan_nrc@yahoo.com
- ³ Nanomaterials and Nanotechnology Department, Advanced Materials Division, Central Metallurgical R&D Institute (CMRDI), P.O. Box 87 Helwan, Cairo 11421, Egypt; saidelsheikh@cmrdi.sci.eg
- ⁴ Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, 33 Bohoth Street, Dokki, P.O. Box 12622, Giza 12522, Egypt; mohabomerna@yahoo.ca
- ⁵ Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France; mikhael.bechelany@univ-montp2.fr
- ⁶ School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
- * Correspondence: ahmed.barhoum@science.helwan.edu.eg or ahmed.barhoum@duc.ie

Figure S1 shows the IR spectrum of chitosan. The strong brand in the region 3291– 3361 cm⁻¹ corresponds to N–H and O–H stretching, as well as the intramolecular hydrogen bonds. The absorption bands at around 2921 and 2877 cm⁻¹ are attributed to C–H symmetric and asymmetric stretching. The presence of residual N-acetyl groups was confirmed by the bands at around 1645 cm⁻¹ (-C=O stretching of amide I) and 1325 cm⁻¹ (C–N stretching of amide III), respectively. The small band at 1550 cm⁻¹ corresponds to the N– H bending of amide II. A peak at 1589 cm⁻¹ corresponds to the N–H bending of the primary amine. The –CH₂ bending and –CH₃ symmetrical deformations were confirmed by the presence of bands at around 1423 and 1375 cm⁻¹, respectively. The absorption band at 1153 cm⁻¹ can be attributed to asymmetric stretching of the C–O–C bridge. The bands at 1066 and 1028 cm⁻¹ correspond to C–O stretching.

Figure S1. FTIR spectra of pure monochoroacetic acid (MCA) and cationic chitosan (Cs).

Figure S2 shows the Raman spectra of the cotton-Ag and cotton-H5-Ag. The obtained peaks are related to the cellulose chain of the cotton gauze. Cotton gauze samples (cotton-Ag and cotton-H5-Ag) showed strong, well-resolved peaks corresponding to v of the C–C ring asymmetric stretching and C–O–C for glycoside link asymmetric and symmetric stretching at 1116,1331 and 1088 cm⁻¹, respectively. The other peaks obtained at 1478, 379 and 1292 cm⁻¹ are attributed to different types of -CH₂ group vibrations, while peaks at 1337 and 995 cm⁻¹ are assigned to C–OH groups (Figure S2a). The peak at 2897 cm⁻¹ is astributed to the methine group in cotton (Figure S2b). The spectrum of cotton-Ag and cotton-H5-Ag were similar. A new peak that appeared at 540 cm⁻¹ is assigned to HAp (Figure S2a).

Figure S2. Raman Spectra of the cotton gauze fabrics coated with Ag NPs and HAp-Ag NPs after washing and drying: (**a**) spectrum from 200 to 1500 cm⁻¹; and (**b**) spectrum from 1500 to 4200 cm⁻¹.

Figure S3. TGA thermal analysis of cotton fiber samples coated with Ag and HAp–Ag NPs: (**a**) TGA weight loss; and (**b**) Weight derivatives. Spectroscopic characteristics of the unmodified (blank) and modified cotton gauze.

Figure S4. SEM-EDX analysis and their corresponding SEM image of the cotton gauze coated with HAp-Ag NPs: (**a**,**b**) cotton gauze coated with 2.5% HAps and 500 ppm Ag NPs; (**c**,**d**) cotton gauze coated with 5% HAps and 500 ppm Ag NPs; (**e**,**f**) cationic modified cotton gauze coated with 5% HAps and 500 ppm Ag NPs; (**g**,**h**) anionic modified cotton gauze coated with 5% HAps and 500 ppm Ag NPs.

	Antimicrobial Activity (Inhibition Zone, nm)				Water Absorp- Air Permeability tion		Tensile Strength
Sample	Gram (+) Bacteria	Gram (–) Bacteria	Fungi	Fungi	cm ³ /cm ² /sec	% (30 min)	(N/cm²)
	S. aureus	E. coli	C. albicans	A. niger			
Blank	0	0	0	0	255.3 ± 1.4	98 ± 1.4	510 ± 2
H2.5	0	0	0	0	252.8 ± 1.8	111 ± 1.3	535 ± 2
C-H2.5	0	0	0	0	249.1 ± 1.0	117 ± 1.2	537 ± 1
A-H2.5	0	0	0	0	250.5 ± 1.6	120 ± 1.4	536 ± 3
H5	0	0	0	0	249.7±1.0	115 ± 1.1	539 ± 6
C-H5	0	0	0	0	248.8 ± 1.3	118 ± 1.4	538 ± 3
A-H5	0	0	0	0	249.6 ± 1.4	122 ± 1.5	537 ± 5
Ag	13	14	13	0	253.3 ± 1.4	105 ± 1.2	520 ± 3
H2.5-Ag	16	17	16	0	252.4 ± 1.2	114 ± 1.1	536 ± 4
C-H2.5-Ag	15	16	14	0	248.9 ± 1.1	119 ± 1.4	538 ± 5
A-H2.5-Ag	18	20	18	0	250.3 ± 1.9	122 ± 1.1	537 ± 4
H5-Ag	15	15	14	0	249.3 ± 1.1	117 ± 1.3	540 ± 3
C-H5-Ag	14	16	13	0	248.5 ± 1.5	120 ± 1.5	539 ± 2
A-H5-Ag	18	19	18	0	249.2 ± 1.1	124 ± 1.4	539 ± 5

Table S1. Antimicrobial activity, air permeability, water absorption, and tensile strength of the prepared cotton gauze samples.