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Abstract: Chemical sensors with high sensitivity that can be used under extreme conditions and can
be miniaturized are of high interest in science and industry. The nitrogen-vacancy (NV) center in
diamond is an ideal candidate as a nanosensor due to the long coherence time of its electron spin
and its optical accessibility. In this theoretical work, we propose the use of an NV center to detect
electrochemical signals emerging from an electrolyte solution, thus obtaining a concentration sensor.
For this purpose, we propose the use of the inhomogeneous dephasing rate of the electron spin of the
NV center (1/T?

2 ) as a signal. We show that for a range of mean ionic concentrations in the bulk of
the electrolyte solution, the electric field fluctuations produced by the diffusional fluctuations in the
local concentration of ions result in dephasing rates that can be inferred from free induction decay
measurements. Moreover, we show that for a range of concentrations, the electric field generated at
the position of the NV center can be used to estimate the concentration of ions.

Keywords: electrochemical; sensor; concentration; nitrogen-vacancy; dephasing rate

1. Introduction

Accurate detection of ionic concentrations in an electrolyte solution is of fundamental
interest for process control and optimization in the chemical, pharmaceutical, and food
industries. It is also important in environmental applications as a means to detect pollutant
levels, as well as in fundamental studies in chemistry and biology. Examples include
measuring the concentration of copper ions in a copper refinery or measuring the pH of
a solution, which is defined as the negative logarithm of the concentration of hydrogen
ions. In copper electro-refining processes, electrolysis is used to increase the purity of
copper in combination with an electrolyte Cu2+/SO2−

4 solution, and monitoring of the
ionic concentration is required to control the purity of copper with high precision.

Carbon-based materials have been widely used as sensors [1–4]. Among them, the neg-
atively charged nitrogen-vacancy (NV) center in diamond has attracted much attention.
Diamond is a bio-compatible crystal that is resilient to extreme conditions. Moreover,
the electron spin of the NV center can be prepared and read out through optical excita-
tion [5]. The zero field splitting between the spin triplet sub-levels in the ground state
of the NV center is sensitive to various physical parameters, such as crystal strain [6],
temperature [7], electric [8] and magnetic fields [9–12]. The charge state of the NV center
can also be used as a sensor. In Refs. [13,14], the effect of the pH of an electrolyte solution on
the charge state of the NV center in a bulk diamond and in a functionalized nanodiamond
were investigated.

In addition, the coherence time of the electron spin of the NV center is sensitive to
its surrounding environment. The decoherence time of the NV center is used to estimate
fluctuating magnetic fields from paramagnetic impurities [15], a liquid’s diffusion coeffi-
cient [16], the drift velocity inside a microfluid channel [17], and the concentration of ions
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in a cell membrane [18]. In Ref. [19], the decoherence time of the NV center was monitored
during a change in the pH of an electrolyte solution.

Here, we consider an electrolyte–diamond interface, as shown in Figure 1. We propose
the use of the dephasing rate of the electron spin of an NV center in diamond in order
to estimate the concentration of ions in the electrolyte solution. The rationale behind
this choice, as we will explain in detail in the following sections, is that the diffusional
fluctuations in the local concentration of ions in the electrolyte solution generate an electrical
noise signal, which results in an additional dephasing rate, 1/T?

2 , that competes with the
intrinsic dephasing rate of the NV center. As we will show, for a range of mean ionic
concentrations in the bulk of the electrolyte, cb > 0.04 mol/m3, the induced 1/T?

2 is larger
than 10 kHz, and for cb > 100 mol/m3, it is larger than 300 kHz. Therefore, depending on
the intrinsic 1/T?

2 of the electron spin of the NV center, the range of cb that can be estimated
with this method can be larger than 0.04 mol/m3. We also show that for a lower range
of ion concentrations, cb < 0.1 mol/m3, the gradient of the electric field generated at the
position of the NV center is large enough that it may be used to estimate the concentration
of ions.

Diamond

Electrolyte

NV

Figure 1. The proposed experimental setup, which contains a Cu2+/SO2−
4 electrolyte solution in

contact with the surface of a bulk diamond crystal with a nitrogen-vacancy (NV) center (red arrow).
The upper surface of the diamond is taken to be at z = 0 with potential φ0, while z = ∆ is far into
the bulk of the electrolyte solution with potential φb,e. The potential in the opposite surface of the
diamond is shown with φb,d, which is taken to be zero in our simulations.

2. Results and Discussion
2.1. Electrolyte Solution

In this section, we present a brief analysis of the basic physico-chemical mechanisms
governing the diffusion of ionic chemical species in a liquid electrolyte solution, which
is displayed as the sample to be analyzed in the proposed experimental setup (Figure 1).
Since the ionic species and their concentration profiles determine a local charge density,
by solving the Poisson equation, we obtain the electric potential and the electric field inside
the electrolyte solution. Through a further statistical analysis, we then obtain mathematical
expressions for the fluctuations of the electric field inside the electrolyte solution.

2.1.1. Diffusion of Ionic Species in Electrolyte Solutions

A typical model for the flux Ns (mol m−2 s−1) of ionic species in a liquid electrolyte
solution, taking into account the effect of the concentration gradient, Fick’s law, and the
effect of an electric field, is given by [20]

Ns = −D(∇cs +
zscsF

RT
∇φ). (1)

In this equation, known as the Nernst–Planck equation, D is the diffusion constant, zs is
the valence of each ion species in the electrolyte solution, and cs is the concentration of
each species. The Faraday constant, F = 96, 485.3365 C/mol, is a measure of charge per
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mole of substance and is the product of Avogadro’s number and the charge of an electron,
R = 8.314 J/(mol K) is the universal constant of gases, T is the temperature in K, and φ is
the electric potential in volts. By requiring mass balance, we obtain the following linear
partial differential equation [20]:

∂cs

∂t
+∇ ·Ns = 0. (2)

The above equation accounts for how the diffusion process involves electrical forces
on each ionic species in an electrolyte solution. To account for the electric field due to the
presence of the ionic species, we consider the Poisson equation:

∇2φ = − ρ

εe
. (3)

Here, εe is the electric permittivity of the electrolyte solution (approximately the same as
in water for concentrations below 103(mol/m3) [21]) and ρ(x) is the local charge density
determined by the ionic concentrations:

ρ = ∑
s=±
Fzscs. (4)

Due to the small thickness of the fluid layer of the sample compared to its transverse
dimensions, we assume that the system presents a concentration gradient and potential gra-
dient only along the direction z normal to the interface (see Figure 1). This approximation
is equivalent to considering an infinitely large interface surface between the liquid solution
and the diamond crystal. Therefore, we can write Ns = ẑNs with the boundary condition
Ns|z=0 = 0, which expresses the fact that the ionic species in the liquid solution cannot pene-
trate into the solid crystal. As a result, in the steady state, i.e., ∂cs/∂t = 0, from Equation (2),
we obtain Ns = 0 for s = ±. With the previous considerations, the simplified system of
coupled non-linear differential equations to be solved is given by

∂cs
∂z

+
zsF
RT

cs(z)
∂φ

∂z
= 0, (5)

∂2φ

∂z2 = − 1
εe

∑
s=±

zsF cs(z). (6)

Taking the integral of Equation (5) from z to ∆, with ∆ being the distance from the
interface far into the bulk of the solution, we obtain

cs(z) = cb,s exp
(
− zsF

RT
(φ(z)− φ(∆))

)
, (7)

where cb,s is the bulk concentration of each species. Taking into account that the electrolyte
should be electrically neutral in the bulk, due to charge conservation, we obtain the electric
potential as (see Appendix A):

φ(z)− φ(∆) =
2RT
zsF

ln

[
1 + tanh( zsFV0

4RT ) exp(−κz)

1− tanh( zsFV0
4RT ) exp(−κz)

]
. (8)
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Here, V0 = φ(0) − φ(∆), where φ(∆) is the potential in the bulk of the electrolyte (see
Figure 1). We have defined κ, the inverse screening length, as

κ2 =
2z2

sF 2cb
RTεe

. (9)

Note that Equation (8) is valid for κ∆� 1 (see Appendix A). From this potential, we can
calculate the electric field, which, on the surface of the diamond inside the electrolyte, is
given by

Eeq(z = 0+) =
2κRT
zsF

sinh
(

zsFV0

2RT

)
. (10)

Here, the subscript eq emphasizes that this corresponds to the local electric field in ther-
mal equilibrium.

2.1.2. Electric Field Fluctuations at the Interface between the Solution and the Diamond

Due to thermal noise, the concentration of ions will have small fluctuations around its
equilibrium value, i.e., δc(z, t) = c(z, t)− ceq(z). These fluctuations in the concentration
will induce fluctuations in the electric field, i.e., δE(z, t) = E(z, t)− Eeq(z). The electric
field fluctuations are directly linked to the fluctuations in concentration through the Pois-
son equation:

∂

∂z
δE(z, t) = − ∂2

∂z2 δφ(z, t) =
δρ(z, t)

εe
=
F
εe

∑
s=±

zsδcs(z, t). (11)

We can integrate this equation over z in the range [z, ∆]. For κ∆ � 1, we have δE(z =
∆, t) ∼ 0. On the other hand, as is shown in Appendix B, the correlation of the fluctuations
of concentration is given by

〈δcs(z1, t)δcs′(z2, 0)〉 = δs,s′
ceq

s (z1)

NA A(4πDs t)1/2 exp
[
− (z1 − z2)

2

4Dst

]
Θ(t). (12)

Therefore, the correlation of the fluctuations of the electric field at the surface of the
diamond from the liquid solution side, i.e., at z = 0+, is obtained as

〈δE(0, t)δE(0, 0)〉 = F 2

NA Aε2
e

∑
s=±

z2
s

∫ ∆

0
dvceq

s (v)
Erf
[

∆−v√
4Dst

]
− Erf

[
−v√
4Dst

]
2

. (13)

Using the equilibrium concentration given in Equation (7), in the limiting case κ∆� 1,
the electric field fluctuations at z = 0+ can be simplified to

〈δE(0, t)δE(0, 0)〉 = F
2∆cb

NA Aε2
e

∑
s=±

z2
s

{
Erf
[

∆√
4Dst

]
− 1

∆

√
4Dst

π

(
1− exp

(
− ∆2

4Dst

))}
. (14)

It is clear that the correlation of the fluctuations is directly proportional to the concentration
in the bulk cb. Figure 2 shows the correlation of the fluctuations of the electric field on the
surface of the diamond as a function of time t for a fixed value of cb = 1 mol/m3.
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Figure 2. Correlation of the fluctuations of the electric field given in Equation (14) versus time. We
have taken A = 4 mm2, ∆ = 1 mm, cb = 1 mol/m3, zs = 2, and D+ = D− = 2.3× 10−9 m2/s.

In the following section, we obtain the fluctuations of the electric field at the position
of the NV center in the diamond. For doing so, we first obtain the electric potential and the
electric field inside the diamond.

2.2. Diamond and the NV Center

The electron spin of the NV center in the diamond is sensitive to the electric field
and to its fluctuations. The fluctuations of the electric field result in dephasing of the NV
electron spin. In this section, we consider an NV center in a bulk diamond in contact with
the electrolyte, as depicted in Figure 1. The electric field inside the diamond is screened
by the dielectric response of the diamond and ionization of donors and acceptors inside
the diamond [22]. We first find the electric field and its fluctuations, resulting from the
concentration of ions in the electrolyte and their fluctuations, at the position of the NV
center. We then find the dephasing rate of the electron spin of the NV center as a result of
the fluctuations of the electric field. Finally, we show that for a range of cb, the gradient of
the electric field induced at the position of the NV center is large enough to be resolved by
a Ramsey measurement.

2.2.1. Potential and Electric Field Inside the Diamond

As is shown in Figure 1, we consider a bulk diamond in contact with the electrolyte
with its interface at z = 0. We assume that the bulk diamond is implanted with nitrogen
ions, forming mainly substitutional nitrogen, Ns, (≈96%) and NV defects (≈4%), and that
the concentration of vacancy defects is negligible. The substitutional nitrogen and the
negatively charged NV center, NV−, act as donors with ionization energies EN

d = 1.7 eV
and ENV−

d = 2.7− 2.8 eV, respectively [23]. The positively charged NV center, NV+, acts
as an acceptor with ionization energy ENV+

a = 0.9− 1.1 eV (see Figure 3) [23]. We take the
areal density of implanted nitrogens to be Ds = 1012 cm−2. Thus, the volume density of
substitutional nitrogen and NV are given by NN

d = 0.96Ds/dmax and NNV
a = 0.04Ds/dmax,

where we take dmax = 14 nm as the maximum implantation depth of nitrogen ions.
The charge density inside the diamond is given by the density of electrons n(z),

density of holes p(z), and density of ionized donors and ionized acceptors

ρd(z) = e
[
p(z)− n(z) + N+

d (z)− N−a (z)
]
, (15)

where e > 0 is the magnitude of the electron charge. Here, we have used the subscript d
for the charge density to avoid confusion with the charge density inside the electrolyte
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solution. Assuming that we can use the Boltzmann approximation, the density of electrons
and holes in the presence of a potential φ(z) can be written as [24]

n(z) = Nc exp
[

µ0 + eφ(z)− Ec

kT

]
, p(z) = Nv exp

[
Ev − µ0 − eφ(z)

kT

]
. (16)

Here, k is the Boltzmann constant, T is the temperature, and Nc and Nv are the effective
density of states in the conduction and valence bands, respectively, given as

Nc = 2
(

m∗nkT
2πh̄2

)3/2
, Nv = 2

(m∗pkT

2πh̄2

)3/2

, (17)

and

µ0 =
Ev + Ec

2
+

3
4

kT ln
(m∗p

m∗n

)
, (18)

in which h̄ is the reduced Planck constant, Ev is the valence band maximum, Ec is the
conduction band minimum, and m∗n = 0.57m0 and m∗p = 0.8m0 are the effective masses of
conduction and valence bands, respectively [23]. The corresponding densities of ionized
donors and acceptors are given by

N+
d (z) =

Nd

1 + exp
[

µ0+eφ(z)−Ed
kT

] , N−a (z) =
Na

1 + exp
[

Ea−µ0−eφ(z)
kT

] . (19)

~

~
~

~

Figure 3. Bandgap of the diamond and the energy level of the defects. Substitutional nitrogen, Ns,
and the negatively charged NV, NV−, act as donors, while the positively charged NV, NV+, acts as
an acceptor.

To find the potential φ(z) inside the diamond, we use the Poisson equation

d2φ(z)
dz2 = −ρd(φ)

εd
, (20)

where εd = 5.8ε0 is the dielectric constant of the diamond, with ε0 being the vacuum
permittivity. At the interface of the electrolyte and diamond, we impose the continuity of
the electric potential and displacement, i.e.,

φ(z = 0)|d = φ(z = 0)|e = φ(0), (21)

εd
dφ

dz
|d = εe

dφ

dz
|e. (22)
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Here, d and e stand for diamond and electrolyte, and εe is the dielectric constant of the
electrolyte. Solving the Poisson equation, we obtain the electric field as

E(z) = −dφ

dz
= sgn(V0)

√(
εe

εd
Ee(0)

)2
− 2

εd

∫ φ(z)

φ(0)
ρd(φ)dφ. (23)

Here, we have assumed that ρd depends on φ and does not depend explicitly on z. Inte-
grating the above equation gives the potential φ at the position z as

∫ φ(z)

φ(0)

dφ√(
εe
εd

Ee(0)
)2
− 2

εd

∫ φ

φ(0) ρd(φ)dφ

= −sgn(V0)
∫ z

0
dz. (24)

The above equation has to be solved numerically for a specific value of z. Replacing the
obtained potential in Equation (23), we obtain the electric field at the position z. The electric
field and potential inside the bulk diamond are shown in Figure 4 for cb = 1 mol/m3. In this
figure, the potential in the bulk of the electrolyte is taken to be φb,e = 1.5 V at ∆ = 1 mm.
The potential on the surface of the diamond is then found by numerically solving Equation (24)
by setting the potential inside the bulk of the diamond at 100 nm depth to φbd = 0 V. Note
that we have taken the direction of the z axis towards the bulk of the electrolyte. The other
parameters are taken as T = 298 K, A = 4 mm2, and D = 2.3× 10−9 m2/s.

Figure 4. Electric potential, φ, and electric field, E, inside the diamond as a function of z, depth in the diamond, calculated
from the system of equations comprising Equations (15)–(24). The parameters are φbe = 1.5 V, φbd = 0 V, A = 4 mm2,
∆ = 1 mm, cb = 1 mol/m3, zs = 2, D = 2.3× 10−9 m2/s, and T = 298 K.

Figure 5 shows the electric field at the position of NV at 10 nm as a function of cb, as
calculated from the system of equations comprising Equations (15)–(24). The inset of this
figure shows that for values of cb < 0.1 mol/m3, the gradient of the electric field is higher.
In Section 2.2.3, we will show that this feature may be used to sense the concentration of
ions in the electrolyte solution through the Stark effect on the electron spin of the NV center.



Nanomaterials 2021, 11, 358 8 of 18

Figure 5. Electric field at the position of NV at 10 nm versus concentration of ions in the bulk cb, as calculated from the
system of equations comprising Equations (15)–(24). The parameters are the same as in Figure 4. For the range of cb plotted,
we have κ∆� 1. The inset shows the electric field for a smaller range of cb.

2.2.2. NV Center Inhomogenous Dephasing Rate

The electron spin of the NV center has a spin triplet ground state. Its ground state
Hamiltonian in the presence of a magnetic and an electric field is given by (h̄ = 1) [25]

H = DS2
z + γe~B · ~S + HE0 + HE1 + HE2 , (25)

where D = 2.87 GHz is the ground state zero field splitting, γe = 2.8 MHz/G is the electron
gyromagnetic ratio, and HEi are the terms due to the electric field that cause transitions
between the spin states with the difference in the spin projection ∆ms = i,

HE0 = d||S
2
z ENV

z , (26)

HE1 = d′⊥
[

ENV
x {Sx, Sz}+ ENV

y
{

Sy, Sz
}]

, (27)

HE2 = d⊥
[

ENV
x

(
S2

y − S2
x

)
+ ENV

y
{

Sx, Sy
}]

. (28)

Here, ENV
i are the components of the electric field in the NV reference frame. The coupling

parameters are experimentally found to be d|| = 0.35 Hz cm/V and d⊥ = 17 Hz cm/V [26].
On the other hand, the coefficient d′⊥ is expected to be of the same order of magnitude as
d⊥ [27]. We assume that the NV symmetry axis sits in the x, z plane of the laboratory frame.
Therefore, for an electric field that is in the z direction of the lab frame, in the NV frame,
we have

ENV
x =

√
2
3

Ez, ENV
y = 0, ENV

z =

√
1
3

Ez. (29)

Due to the large value of the zero field splitting D and the small values of d|| and d⊥,
we can neglect the HE0 and HE1 terms in the Hamiltonian. Moreover, for weak magnetic
fields, B � D/γe, we can neglect the perpendicular component of the magnetic field.
Therefore, the eigenstates of the Hamiltonian in terms of the eigenstates of Sz are given by
|0〉 and [27]

|+〉 = cos(θ/2)|+1〉+ sin(θ/2)eiϕE |−1〉, (30)

|−〉 = sin(θ/2)|+1〉 − cos(θ/2)eiϕE |−1〉. (31)
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Here, tan θ = ξ⊥/βz, tan ϕE = ENV
y /ENV

x , ξ⊥ = d⊥
√
(ENV

x )2 + (ENV
y )2, and βz = γeBz.

The energy splitting between the |0〉 and |±〉 states is given by

ν± = D±
√

ξ2
⊥ + β2

z. (32)

With our choice of the NV frame, we have ENV
y = 0 and, therefore, ξ⊥ = d⊥ENV

x . It is
shown in Ref. [28] that for nonzero values of Bz, the electron spin is protected from electric
field noise. Therefore, to be able to detect electric field fluctuations, we consider Bz = 0.
For the case of Bz = 0, the fluctuations in ν can be written as

δν = −ξ⊥ +
√
(δβz)2 + (ξ⊥ + δξ⊥)2. (33)

Assuming that δξ⊥, δβz << ξ⊥, we can expand the square root and obtain

δν = δξ⊥ +
(δβz)

2

2ξ⊥
. (34)

Therefore, 〈
δν(t)δν(t′)

〉
=
〈
δξ⊥(t)δξ⊥(t′)

〉
+

1
4ξ2
⊥

〈
(δβz)

2(δβz)
2
〉

, (35)

where we have assumed < (δβz)2δξ⊥ >= 0.
The fluctuations in the energy splitting ν result in dephasing of the electron spin of

the NV center, which can be measured through free induction decay measurement [29].
For this purpose, the spin is prepared in |0〉, followed by a Ramsey sequence that consists
of a π/2 microwave pulse, a free evolution for time τ, and another π/2 microwave pulse
followed by a projective measurement on the electron spin (see Figure 6). The probability
of detecting the electron spin in the state |0〉 after the Ramsey sequence is given by

P0(τ) =
1
2
[1− cos(ψ + δψ)], (36)

where
ψ =

∫ τ

0
2π(ν+ − νmw)dt, δψ =

∫ τ

0
2π(δν)dt. (37)

0 10 ,

readoutpolarization

2
π

2
πτ

MW

laser

Figure 6. The sequence for free induction decay measurement. The electron spin is initially prepared
in |0〉 using a green laser. With the application of a π/2 microwave (MW) pulse, the electron is
prepared in the superposition 1√

2
(|0〉 + |1〉). The electron spin then goes under a free evolution

for time τ. The accumulated phase during the free evolution is projected to the populations using
another π/2 MW pulse. At the end, the state of the electron is read out using a green laser.

Averaging the probability P0(τ) and assuming that δψ is normally distributed, we obtain

〈P0(τ)〉 =
1
2

[
1− e−〈δψ2〉/2 cos(ψ)

]
. (38)
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The exponential decay factor determines the dephasing rate of the NV center. To calculate〈
δψ2〉, we write 〈

δψ2
〉
= 4π2

∫ τ

0
dt
∫ τ

0
dt′
〈
δν(t)δν(t′)

〉
. (39)

We assume that the fluctuations are stationary, i.e, their correlation is a function of the time
difference, 〈δν(t1)δν(t2)〉 = f (t1 − t2). We define τ = t− t′ and T = (t + t′)/2. Thus,∫ τ

0
dt
∫ τ

0
dt′
〈
δν(t)δν(t′)

〉
=
∫ τ

0
dT
∫

dτ〈δν(T + τ/2)δν(T − τ/2)〉. (40)

From Equation (35), the correlation function of the fluctuations in ν due to the electric field
can be written as

〈δν(τ)δν(0)〉 = 〈δξ⊥(τ)δξ⊥(0)〉 = d2
⊥

〈
δENV

x (τ)δENV
x (0)

〉
. (41)

The electric field at the position of the NV center depends on the electric field at the
interface between the electrolyte liquid solution and the diamond, i.e., at z = 0+ in our
coordinate system (see Figure 1). Therefore, the fluctuations of the electric field at the
position of the NV center can be written as

δENV
x =

∂ENV
x

∂Ee(z = 0)
δEe(z = 0). (42)

As a result,

〈
δENV

x (t)δENV
x (t = 0)

〉
=

(
∂ENV

x
∂Ee(z = 0)

)2

〈δEe(z = 0, t)δEe(z = 0, t = 0)〉. (43)

We numerically calculate the partial derivative of ENV with respect to Ee(0) using Equation (23).
Note that φ, which appears as the upper limit of the integral, is also a function of Ee. For the
correlation of the fluctuations of the electric field on the surface, we use Equation (14).
For ∆ ≈ 1 mm and for times up to a few miliseconds, we have ∆/

√
4Dt >> 1. Therefore,

the error functions can be approximated by 1 and the second term in the summation can be
approximated by zero, i.e.,

〈δEe(0, t)δEe(0, 0)〉 ≈ F
2z2

s ∆cb
NA Aε2

e
. (44)

As a result, the exponential decay factor in the free induction decay signal, Equation (38),
scales as t2. The factor of t2 in the exponential gives 1/(T?

2 )
2, i.e.,

(T?
2 )
−2 =

1
2

∂2

∂t2 〈δψ2〉
∣∣∣∣
t=0

. (45)

In Figure 7, we have plotted 1/T?
2 as a function of cb for an NV center at a depth of

10 nm in the diamond. For the numerical simulations (solid line), we considered φb,e = 1.5 V
and φb,d = 0 V. The solid line was obtained by numerically finding the potential on the
surface of the diamond using Equation (24). The dashed red line is a fit to the simulations.
The fit function is 1/T?

2 = AcB
b with A ≈ 39,295 Hz (mol/m3)−B and B ≈ 0.417 (unitless).

In Appendix C, we derive the sensitivity of this scheme in estimating cb.
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Figure 7. The value of 1/T?
2 for the electron spin of an NV center at the depth of 10 nm as a function of the concentration

in the bulk, cb, calculated from Equation (45) (solid black line) and the fit (dashed red line) given by 1/T?
2 = AcB

b with
A ≈ 39, 295 Hz (mol/m3)−B and B ≈ 0.417 (unitless). We set the potential inside the bulk of the electrolyte to φbe = 1.5 V
and the potential inside the bulk of diamond to φbd = 0 V. The other parameters are the same as in Figure 4.

For an NV center in a bulk diamond with an abundance of 13C isotopes ranging
from very low to natural, 1/T?

2 due to the surrounding nuclear spins is of the order of
a few kHz to a few hundred kHz, respectively [30–32]. To be able to detect fluctuations
of the concentration, the corresponding 1/T?

2 should be larger than the intrinsic 1/T?
2

of the NV center. For cb > 100 mol/m3, the electric field fluctuations produced by the
diffusional fluctuations in the local concentration of ions result in 1/T?

2 > 300 kHz, and for
cb > 0.04 mol/m3, they result in 1/T?

2 > 10 kHz. Therefore, the range of concentrations
that can be estimated with this method depends on the properties of the diamond sample.
We note that, for an NV that is positioned at a smaller distance from the surface of the
diamond, the induced electric field at the position of the NV is larger and the induced T?

2
is larger.

In the next section, we show that for a suitable range of concentrations, the Stark effect
may also be used to estimate cb.

2.2.3. Electric Field Sensing

To be able to measure the electric field, the electron spin needs to be prepared in a
state that is susceptible to the term HE2 of the Hamiltonian (Equation (28)) [8,33]. As the
HE2 term causes a transition between the ms = ±1 states, such a state is a superposition
of |ms = ±1〉 states. A perpendicular magnetic field much smaller than the zero field
splitting, D, in the absence of an axial magnetic field, can prepare the states [33]

|−〉 = 1√
2

(
|+ 1〉 − e2iϕB | − 1〉

)
, |+〉 = 1√

2

(
|+ 1〉+ e2iϕB | − 1〉

)
, (46)

where ϕB is the azimuthal angle of the magnetic field. The energy shifts of these states due
to HE2 are

〈−|HE2 |−〉 = d⊥ENV
x cos(2ϕB), 〈+|HE2 |+〉 = −d⊥ENV

x cos(2ϕB), (47)
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where we have taken ENV
y = 0. As can be seen from Figure 5, for cb < 0.1 (mol/m3),

a change of one order of magnitude in cb results in a change of about 230 kV/m in the
electric field at the position of the NV center, ENV

x . This change in the electric field results in
an energy shift of about 39 kHz for ϕB = 0. This change in the electric field can be resolved
in a Ramsey sequence by preparing the NV center in the superposition state of |0〉 and
either of the |±〉 states and measuring the energy shift.

3. Conclusions

We considered an NV center in a bulk diamond in contact with an electrolyte. The fluc-
tuations in the concentration of ions induce a fluctuating electric field at the position of the
NV center. We first showed that the dephasing rate of the electron spin of the NV center,
1/T?

2 , can be used to estimate the concentration of ions in the electrolyte for a range of
concentrations cb > 0.04 mol/m3, depending on the intrinsic 1/T?

2 of the electron spin of
the NV. For this range of cb, the induced 1/T?

2 resulting from the fluctuations of the concen-
tration of charged species is larger than 10 kHz. We also showed that for cb < 0.1 mol/m3,
the gradient of the electric field induced at the position of the NV center is large enough to
be resolved through Ramsey spectroscopy for a change of one order of magnitude in cb.
Therefore, through the estimation of the electric field, cb can be estimated.

Using a dynamical decoupling sequence, such as the spin echo or Carr–Purcell–
Meiboom–Gill sequence, the 1/T?

2 of the electron spin of the NV center due to surrounding
nuclear spins can be decreased to a few kilohertz. In that case, the NV center would be
sensitive to the fluctuations in the concentration over a wider range of cb.
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Appendix A. Electric Potential and Electric Field Inside the Electrolyte

In this appendix, we give details of the derivation of the electric potential and the
electric field inside the electrolyte. First, we define a dimensionless potential as

Φ(z) =
zsF
RT

(φ(z)− φ(∆)), (A1)

where φ(∆) is the potential in the bulk of the electrolyte (see Figure 1). In the bulk,
the solution should be electrically neutral due to charge conservation, i.e.,

∑
s=±

zscb,s = 0, (A2)
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with zs being the valence of the ion species and cb,s being the bulk concentration of the
species. Assuming z+ = −z− = zs, we can write cb,+ = cb,− = cb. Therefore, in terms of
the dimensionless potential, the Poisson equation given in Equation (6) can be written as

∂2Φ
∂z2 = 2

z2
sF 2cb
RTεe

sinh (Φ(z)). (A3)

We first consider the limit where cb → 0. Since Φ is proportional to cb, because the
second derivative of Φ is proportional to cb, in the limit of cb → 0, we can linearize the
above equation and obtain

∂2Φ
∂z2 = κ2Φ(z), (A4)

where κ is defined in Equation (9). The solution of this differential equation can be written as

Φ(z) = A cosh(κ(∆− z)) + B sinh(κ(∆− z)). (A5)

The constants A and B can be obtained by considering the boundary conditions Φ(0) =
zsFV0/(RT) and Φ(∆) = 0. Thus, we obtain

Φ(z) =
Φ(0) sinh(κ(∆− z))

sinh(κ∆)
. (A6)

Therefore, the electric field can be written as

E(z) = −dφ

dz
=

κV0 cosh(κ(∆− z))
sinh(κ∆)

. (A7)

In the limit of cb → 0, i.e., κ → 0, we obtain

E(z) =
κV0

κ∆
=

V0

∆
. (A8)

This is the expected electric field between two parallel plates with the distance ∆ and the
potential difference V0.

We now obtain the exact solution of Equation (A3). We first define the dimensionless
quantity ξ = κz, where κ is the inverse screening length given in Equation (9). Therefore,
we can write

∂2Φ(ξ)

∂ξ2 = sinh (Φ(ξ)). (A9)

Multiplying by ∂Φ/∂ξ and integrating over the interval [ξ, κ∆] we obtain(
∂Φ
∂ξ

)2

κ∆
−
(

∂Φ
∂ξ

)2

ξ

= 2[cosh(Φ(κ∆))− cosh(Φ(ξ))]. (A10)

From Equation (A3), we have Φ(κ∆) = 0. Moreover, for κ∆� 1, due to ion screening, we
can assume ∂Φ/∂ξ|κ∆ = 0. Thus, we can write(

∂Φ
∂ξ

)2
= 2(cosh(Φ(ξ))− 1) = 4 sinh2(Φ(ξ)/2). (A11)

In Section 2.1.1, we introduced φ(0)− φ(∆) = V0. Therefore, if V0 > 0 (< 0), the slope of
Φ must be negative (positive). As a result, we can write

∂Φ/∂ξ = −2 sinh(Φ(ξ)/2). (A12)
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This is a separable equation that can be integrated directly, yielding

1− e−Φ/2

1 + e−Φ/2 = tanh
(

zsFV0

4RT

)
e−ξ . (A13)

Solving for Φ gives

Φ(ξ) = 2 ln
[

1 + tanh(Φ(0)/4)e−ξ

1− tanh(Φ(0)/4)e−ξ

]
. (A14)

Therefore, in terms of φ and z, we can write

φ(z)− φ(∆) =
2RT
zsF

ln

[
1 + tanh( zsFV0

4RT ) exp(−κz)

1− tanh( zsFV0
4RT ) exp(−κz)

]
. (A15)

Appendix B. Thermal Fluctuations in the Local Concentration of Chemical Species

In this appendix, we derive the fluctuations of the concentration of ions in the elec-
trolyte. From the statistical point of view, the local concentration of chemical species is the
average number of particles per unit volume 〈n(x, t)〉, where n(x, t) is a random variable
subject to stochastic dynamics due to Brownian motion. The corresponding average then
satisfies the diffusion equation

∂

∂t
〈n(x, t)〉 = D∇2〈n(x, t)〉, (A16)

where D is the diffusion constant. This equation possesses a Green function G(x, t; x0, t0),
which represents the transition probability for a particle to diffuse from a point x0 at time
t0 to a point x at time t. This transition probability satisfies the differential equation

∂

∂t
G(x, t; x0, t0) = D∇2G(x, t; x0, t0), (A17)

with the initial condition

G(x, t0; x0, t0) = δ(x− x0). (A18)

Equation (A17) has an explicit solution (in d dimensions) given by

G(x, t; x0, t0) =
1

(4πD(t− t0))
d/2 exp

(
− |x− x0|2

4D(t− t0)

)
. (A19)

Following Ref. [34], we define the two-particle correlator

[n(x1, t)n(x2, t)] ≡ 〈n(x1, t)n(x2, t)〉 − 〈n(x1, t)〉〈n(x2, t)〉 − δ(x1 − x2)〈n(x1, t)〉. (A20)

It can be shown that this two-particle correlator satisfies the following equation:

∂

∂t
[n(x1, t)n(x2, t)] = D

(
∇2

1 +∇2
2

)
[n(x1, t)n(x2, t)]. (A21)

We now define the particle number fluctuations δn(x, t) = n(x, t)− 〈n(x, t)〉, which, by
definition, satisfy the following properties:

〈δn(x, t)〉 = 0,

〈δn(x1, t1)δn(x2, t2)〉 = 〈n(x1, t)n(x2, t)〉 − 〈n(x1, t)〉〈n(x2, t)〉
= [n(x1, t)n(x2, t)] + δ(x1 − x2)〈n(x1, t)〉. (A22)
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Combining Equations (A21) and (A22), after some algebraic manipulations, one obtains
the differential equation for the correlator of fluctuations in the particle number(

∂

∂t
−D∇2

1 −D∇2
2

)
〈δn(x1, t)δn(x2, t)〉 = 2D∇1 · ∇2{δ(x1 − x2)〈n(x1, t)〉}. (A23)

The steady-state (equilibrium) solution to this equation is

〈δn(x1)δn(x2)〉eq = 〈n(x1)〉eqδ(x1 − x2). (A24)

We can now consider the time evolution of the fluctuation correlator by using the condi-
tional probability (Green’s function) as follows:

〈δn(x2, t2)δn(x1, t1)〉 =
∫

dx3 G(x2, t2; x3, t1)〈δn(x3)δn(x1)〉eq. (A25)

Inserting Green’s function from Equation (A19) and calculating the integral, we obtain

〈δn(x2, t2)δn(x1, t1)〉 =
〈n(x1)〉eq

(4πD(t2 − t1))
d/2 exp

(
− |x2 − x1|2

4D(t2 − t1)

)
Θ(t2 − t1). (A26)

Here, Θ(t) is the step function. This equation clearly shows an exponential decay of the
correlation of the fluctuations with the relative distance |x2 − x1|.

For the particular case of a three-dimensional system that, due to physical constraints,
is subjected to concentration gradients and fluctuations along only one dimension (for
instance, the z-direction), i.e., n(x, t) = n(z, t), the particle concentration is still defined per
unit volume, i.e., in units of 1/m3. In this case, the equilibrium correlator, Equation (A24),
must be modified as

〈δn(z1)δn(z2)〉eq =
〈n(z1)〉eq

A
δ(z1 − z2), (A27)

where the Dirac delta function is one-dimensional (with units of 1/m) and A is the area
transversal to the direction of the gradients (the surface area of the bulk diamond).

With this argument, Equation (A25) is now given by a one-dimensional integral
with Green’s function for d = 1 as

〈δn(z1, t)δn(z2, 0)〉 =
∫

dz3 G(z2, t; z3, 0)〈δn(z3)δn(z1)〉eq

=
〈n(z1)〉eq

A(4πD t)1/2 exp
[
− (z2 − z1)

2

4Dt

]
Θ(t). (A28)

From the above equation, the concentration fluctuations on a molar basis for two species
s, s′ = 1, 2 correspond to

〈δcs(z1, t)δcs′(z2, 0)〉 = δs,s′
ceq

s (z1)

NA A(4πDs t)1/2 exp
[
− (z1 − z2)

2

4Dst

]
Θ(t), (A29)

where NA = 6.02× 1023 (particles/mole) is Avogadro’s number, and Ds the diffusion
constant for each species.

Appendix C. Sensitivity

In this appendix, we derive the sensitivity of the proposed scheme in estimating cb.
The sensitivity, η, is defined as the square root of the product of the variance of cb and the
measurement time

η =
√
(∆cb)2t. (A30)
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As cb is estimated by estimating the dephasing time T?
2 , from the error propagation formula,

we can write

(∆cb)
2 =

(∆T?
2 )

2

|∂T?
2 /∂cb|2

. (A31)

From the fit to the numerical simulations of 1/T?
2 versus cb (see Figure 7), we have

∂T?
2 /∂cb = −(B/A)c−B−1

b , where A ≈ 39, 295 Hz (mol/m3)−B and B ≈ 0.417 (unitless).
On the other hand, T?

2 is estimated by measuring the electron spin of the NV center through
the detection of its photoluminescence. Thus, the observable that is used to estimate T?

2
can be taken as M = a|0〉〈0|+ b|1〉〈1| [35]. The parameters a and b are random variables
that determine the number of photons collected during the readout interval (about 300 ns)
if the spin state is in the |0〉 and |1〉 states, respectively, with their averages over many
measurements given by α = 〈a〉 and β = 〈b〉. The variance of T?

2 can then be written as

(∆T?
2 )

2 =
(∆M)2

|∂〈M〉avg/∂T?
2 |2

, (A32)

where (∆M)2 = 〈M2〉avg − 〈M〉2avg, with the average being over many measurements.
For a free induction decay measurement with evolution time t, we obtain [35]

〈M〉avg =
α + β

2
+

α− β

2
e−(t/T?

2 )
2

cos(ψ), (A33)

and

(∆M)2 =
α + β

2
+

α− β

2
e−(t/T?

2 )
2

cos(ψ) +
(α− β)2

4
(1− cos2(ψ)e−2(t/T?

2 )
2
), (A34)

where ψ is the accumulated phase during the evolution time t given in Equation (37). Note
that, in Section 2.2.2, we found that the exponential decay factor scales with t2. Taking the
derivative of Equation (A33) and substituting into Equation (A32), we obtain

(∆T?
2 )

2 =
15(T?

2 )
6e2(t/T?

2 )
2

2α t4 cos2(ψ)
, (A35)

where we have used α = 3β/2, and since α ≈ 0.03, therefore, 1/α >> 1, and we only
considered the first term in Equation (A34) [35]. Thus, the sensitivity is obtained as

η =

√
15t
2α

(
A
B

)
cB+1

b t−2(T?
2 )

3e(t/T?
2 )

2
(A36)

where, to obtain a limit, we have taken cos(ψ) ≈ 1. As an example, we obtain η for
cb = 10 mol/m3, for which we have found T?

2 ≈ 10 µs. Taking t = 10 µs, we obtain
η = 3.27 mol m−3 Hz−1/2. This sensitivity can be improved by a protocol in which t is
changed during the measurement repetitions. An extra enhancement may be achieved by
optimizing the measurement sequence using a Bayesian approach [12]. In addition, the
sensitivity can also be improved by increasing the photon collection efficiency, which can
be achieved by, for instance, coupling the NV to a photonic waveguide [36] or improving
the spin readout of the NV center through spin-to-charge conversion [37].
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