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Abstract: In this work, a batch of novel ternary hybrids (SiC@C-Fe3O4), characterized by SiC
nanowires core, carbon shell, and adhered Fe3O4 nanoparticles were controllably synthesized via
surface carbonization of SiCnw followed by hydrothermal reaction. Carbon, which was derived from
SiC with nanometer thickness, possesses an amorphous structure, while Fe3O4 nanoparticles are in
a crystalline state. Simultaneously, the inducement of Fe3O4 nanoparticles can provide significant
magnetic loss, which is well-tuned by changing the molar content of iron precursors (FeCl3·6H2O
and FeCl2·4H2O). SiC@C-Fe3O4 hybrids show great electromagnetic absorption performance owing
to the synergy effect of dielectric and magnetic losses. The minimum refection loss can reach to
−63.71 dB at 11.20 GHz with a thickness of 3.10 mm, while the broad effective absorption bandwidth
(EAB) can reach to 7.48 GHz in range of 10.52–18.00 GHz with a thickness of 2.63 mm. Moreover, the
EAB can also cover the whole X band and Ku band. The outstanding performance of the obtained
material implys that it is a promising candidate as an electromagnetic absorber.

Keywords: SiC nanowires; carbon shell; Fe3O4; dielectric; magnetic; electromagnetic absorption

1. Introduction

Electromagnetic (EM) waves have played an increasingly important role in many
fields, which provide plenty of convenience to our daily lives. However, it is also identified
that EM waves can potentially threaten human health in different forms. To address
this issue, many efforts were made toward exploring EM absorption materials, which
are supposed to possess multiple features, including thin thickness, lightweight, wide
bandwidth, strong absorption, and good environmental adaptability [1–3]. Undoubtedly, it
is still a huge challenge for researchers to achieve this aim unless a suitable component and
appropriate microstructure are designed for EM absorption materials.

Among various EM absorption materials, silicon carbide (SiC) owns unique and
impressive properties (especially for its strong workability in harsh environment condi-
tions) and has attracted much attention in recent decades [4–8]. However, ordinary SiC
is not suitable for EM absorption due to its poor dielectric behavior, which can be effec-
tively improved by changing its morphology in the nanoscale [9–12] or blending with
relatively higher dielectric materials (e.g., CNTs [13], graphene [14], PPy [15]). The doping
or decoration with heterogeneous metal (e.g., Fe [16], Ni [17], Co [18], Al [19], Cu [20])
or compound (Fe3O4 [21], NiO [22], ZnO [23], HfC [24]) is another effective method for
obtaining SiC-based absorbers. Generally, SiC-based EA materials with multiple features
are designed and supposed to exhibit a more impressive performance, and consists of
complicated microstructure and components at the same time. Liang et al. fabricated
one dimensional SiC-Fe3O4 nano hybrids by adopting a convenient polyol technique [21].
Fe3O4 nanoparticles were used to modify SiC nanowires (SiCnw) in situ, which led to
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a significant improvement for EM absorption. The reported minimum reflection loss
(RLmin) was 51 dB at 8.6 GHz. Wu et al. synthesized one-dimensional SiCnw decorated
with ZnO nanoparticles and obtained a broad EAB of 6.60 GHz in range of 11.08 GHZ
to 17.68 GHz [23]. Except for the predominant binary hybrids, some SiC-based ternary
hybrids were also investigated. Guo et al. fabricated carbon-coated Co-SiC nanomateri-
als (Carbon-Co-SiC) through pyrolyzing methane on nanostructured Co3O4-SiC hybrids,
whose RL values below 10 dB nearly covered the whole X or Ku band [25]. To enhance the
EM absorption performance of SiCnw, Zhou and his group [26] obtained SiC@SiO2@Fe3O4
hybrids using carbothermal reduction and a convenient polyol technique, in which silanol-
groups-decorated SiO2 nanoshells (approximately 2 nm in thickness) played an important
role in the growing of Fe3O4 nanoparticles by changing the weak hydrophilicity of SiC.
However, their performances as ideal EA absorbers were still far from satisfying.

In this paper, a batch of novel ternary hybrids, characterized by SiCnw core, carbon-
shell, and adhered Fe3O4 nanoparticles (SiC@C-Fe3O4), were fabricated via surface car-
bonization of SiCnw followed by hydrothermal reaction. The inducement of Fe3O4 nanopar-
ticles can provide significant magnetic loss, which is well-tuned by changing the molar
content of iron precursors (FeCl3·6H2O and FeCl2·4H2O), leading to an excellent EM ab-
sorption performance during the microwave band of 2–18 GHz. In addition, the mechanism
of this enhancement is discussed.

2. Experimental Section
2.1. Pristine Materials and Fabrication of SiC@C Nanowires

The pristine SiCnw materials (Diameter: 100~600 nm; Length: >100 µm; Density:
3.21 g/cm3; Purity: ~98%) were purchased from XF Nano Materials Tech Co., Ltd. (Nanjing,
China), whose chemical composition detected by X-ray spectrometer (EDS) technique is
shown in Table S1. For the carbon-coated SiC nanowires (SiC@C), the specific synthesis
process, detailed characteristics and EM absorption performances were described in our
previous work [27]. However, it is noted that the furnace body condition is fixed to the
temperature of 800 ◦C for 1h during surface carbonization of SiCnw.

2.2. Fabrication of SiC@C-Fe3O4 Hybrids

An amount of 40mg SiC@C nanowires was added into 30 mL distilled water in an
ultrasonic bath, followed by magnetic stirring to achieve a uniform suspension. Two iron
precursors (FeCl3·6H2O, FeCl2·4H2O) with different molar contents (4 mmol/4 mmol,
2 mmol/2 mmol, 1 mmol/1 mmol), dissolved in distilled water, were added to the sus-
pension with constant stirring, respectively. Then, we added NH3·H2O drop by drop,
which aimed to obtain an alkaline environment of pH 9~10. Finally, the mixtures were
transferred to a polytetrafluoroethylene hydrothermal reactor. The hydrothermal reaction
condition in stove box was controlled at 180 ◦C with a dwelling time of 12 h. At last, the
final products were obtained after filtering, washed with distilled water, and dried at 50 ◦C
under vacuum. For convenience, we labeled these products as SCF4-4, SCF2-2, and SCF1-1,
respectively, in which the number ratio of 4-4 indicates the 4 mmol/4 mmol molar content
of FeCl3·6H2O and FeCl2·4H2O.

2.3. Characterization and Measurement

Morphology for SCF materials was characterized through scanning electron micro-
scope (SEM) and transmission electron microscopy (TEM) technique. TEM tests are oper-
ated with a FE-HRTEM, Tecnai G2 F20UTwin, FEI microscope (FEI, Hillsboro, OR, USA)
at 200 kV. SEM was performed on samples with no sputter coating and operated at 15 kV,
and the energy dispersive X-ray spectrometer (EDS) was operated with an accelerating
voltage of 20.0 kV. Crystalline analysis was managed by X-ray diffraction (XRD) and Raman
technique, which were operated on Bruker D8 advance (Bruker, Billerica, MA, USA) and a
Renishaw microspectrometer (532 nm, Renishaw, Wotton-under-Edge, UK), respectively.
The relative complex permittivity (εr) and permeability (µr) in 2–18 GHz were obtained
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through a vector network analyzer (N5242A PNA-X, Agilent, Santa Clara, CA, USA). The
uniform mixture of SCF samples/wax was pressed into toroidal shaped compact (Diameter:
Douter = 7.00 mm, Dinner = 3.04 mm).

3. Results and Discussion

For all SCF samples, several sharp diffraction peaks (35.6◦, 41.4◦, 60◦, 71.8◦, and 75.5◦)
can be detected, which point to the lattice plane (111), (200), (220), (311) and (222) of β-SiC
(Figure 1). Different from pristine SiC, there are several new peaks (30.1◦, 35.5◦, 43.1◦, 53.5◦,
57.0◦, and 62.6◦) for SCF samples. These peaks correspond to the lattice plane (220), (311),
(400), (422), (511), and (440) of the magnetite Fe3O4 phase (Cubic structure, PDF#88-0866),
respectively. It is easy to find that the relative intensity of Fe3O4 becomes more distinct with
the increasing molar content of iron precursors (FeCl3·6H2O and FeCl2·4H2O). Moreover,
a broad peak at 26.5◦, corresponding to the (002) reflection of the carbon phase can also be
detected for SCF samples, which is inferred as an amorphous carbon phase based on the
previous work [27]. A similar phenomenon also occurs for some other carbon materials
with solid crystalline characteristics or an amorphous solid state [28].
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Figure 1. XRD spectra for all samples investigated.

Figure 2 shows that there are several Raman peaks for SCF samples, located at
680 cm−1, 796 cm−1, 973 cm−1, ~1342 cm−1, and ~1600 cm−1. Therein, the peak at 680 cm−1

points to the Fe3O4 phase, whose intensity gradually increases as a function of molar
content of iron precursor, further confirming that SiC@C-Fe3O4 hybrids are successfully
synthesized. Moreover, the 796 cm−1 peak should be attributed to the signals of transversal
of SiC, while the 973 cm−1 peak to longitudinal optical phonons while tested. These two
peaks for SCF samples are very weak or hard to detect owing to the special structures and
complex compositions, which formed after all synthesis procedures. Simultaneously, the
peaks at ~1342, ~1600 cm−1 for all SCF samples are apparent and not shown in the pristine
SiCnw sample. Based on our previous work, it is demonstrated that they are caused by the
disordered D-mode and ordered G-mode of carbon, respectively [29–31]. This means the
core–shell structure may be reserved well after the growing process (Figure S1) of metal
oxide, which can be proven by microstructure observation.
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Figure 3 depicts TEM or HRTEM images taken from the final SiC@C-Fe3O4 samples
investigated. It can be seen that SCF samples are all composed of three parts, corresponding
to SiC, carbon, and Fe3O4 nanoparticles, respectively. Clearly, the hybrids are characterized
by SiC core and a carbon shell, as well as the Fe3O4 nanoparticles outside the carbon shell,
which is in line with results of the SEM images (Figure S2). The increase in the molar content
of iron precursor led to an increase in the loading density of Fe3O4 nanoparticles on carbon
(Figure 3a–c). The nanowires are composed by four elements (C, Si, O, Fe) from the line
scanning profiles, as shown in Figure 3d, which is in line with the results by EDS technique
(Table S1). Moreover, the C line is broader compared with the Si element, confirming the
core–shell structure of SiC@C. Simultaneously, the Fe and O lines cover nearly all ranges
with weak fluctuations, inferring that a large quantity of Fe3O4 nanoparticles attach to the
whole surface of SiC@C. Figure 3f shows the interface between SiC core and the carbon
middle shell [27], and the interface between the carbon shell and Fe3O4 nanoparticles.
It is apparent that β-SiC and the Fe3O4 phase possess crystal structures, featured with
plane (111) and plane (311), respectively. The predominately amorphous carbon phase
has a very important effect on the nucleation of Fe3O4 nanoparticles, possibly owing to
some groups (C–OH, COOH) on SiC@C that are helpful for the formation of the hydrogen
band between carbon atoms and Fe3O4 [32]. Differently, Liang et al. reported that the
transitional silica layer between the SiC phase and Fe3O4, was decorated by Si–OH groups,
which helped form Fe3O4 nanoparticles [21]. Moreover, it is observed that the Fe3O4
nanoparticles with a relatively homogeneous size of about 11 nm cluster in some degree
and seem to be loose areas, which are possibly caused by the magnetic dipole−dipole
attraction [32]. Additionally, this phenomenon is more clear as the molar content of iron
precursor increases, which might lead to a decline in the synergy effect on attenuating
EM waves.
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and Fe recorded along the line labeled in HRTEM image (e) of SCF1-1; HRTEM image (f) derived from the area M in (e).

To further study the magnetic character of the SCF samples, the field-dependent
magnetization curves of SiC@C-Fe3O4 samples were analyzed and drawn in Figure 4.
The hybrids for SCF1-1, SCF2-2, SCF4-4 had magnetic saturation values of 36.9, 45.2,
and 58.3 emu·g−1, respectively. Clearly, increasing the molar content of iron precursor
accelerates the formation of Fe3O4 nanoparticles on the surface of the carbon shell and
helps to obtain a high level of magnetic saturation. Simultaneously, it can be inferred that
the strategy used in this paper is feasible for adjusting the magnetic property by changing
the molar content of iron precursors.
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Figure 4. Room temperature field-dependent magnetization curves of SiC@C-Fe3O4 hybrids.

The complex permittivity (εr = ε′ − jε′′ ), permeability (µr = µ′ − jµ′′ ) characteriza-
tions, as well as the corresponding dielectric tangent, magnetic tangent loss of different
materials are shown in Figure S3. It is apparent that these materials show a similar fre-
quency dependency. Nevertheless, both ε′ and ε′′ of SCF samples have lower values
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compared with SiCnw in the same condition, which should be explained by nature dis-
tinction of SiC and Fe3O4. SiC belongs to typical dielectric loss material for microwaves,
while Fe3O4 belongs to a magnetic material. In our previous work [27], it was found that
the dielectric property of SiCnw was enhanced by surface carbonization, which led to the
achievement of SiC@C. It is also inferred that the controllable inducement of magnetic
Fe3O4 nanoparticles may further change the dielectric properties [32,33]. It can be observed
from Figure 5 that the magnetic tangent loss has a great increment for the SiC@C-Fe3O4
hybrids in comparison with SiCnw, while the value of dielectric tangent loss for SiCnw and
SCF samples stays at a similar level. However, the curves for the latter are more even than
SiC. Moreover, it seems that increase the molar content of iron precursor cannot help to
increase the dielectric tangent loss or magnetic tangent loss, inferring that a moderate molar
proportion of iron precursor is needed to synthesize SiC@C-Fe3O4 with good dielectric and
magnetic properties for microwave absorption at the same time.
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Figure 6 shows the reflection loss of the composites/wax versus frequency. Therein,
the microwave absorption performance is simulated based on the transmission line theory.
Undoubtedly, SCF1-1 has a higher level of EM absorption compared with other samples.
The value of RLmin for SCF1-1 reaches −63.71 dB at 11.20 GHz at a thickness of 3.10 mm.
Its effective absorption bandwidth (EAB) less than −10 dB can reach to 6.88 GHz (11.00–
17.88 GHz) with a thickness of 2.62 mm. Furthermore, the EAB of this sample can cover
the X band and Ku band with thicknesses of 2.43 and 3.44 mm, respectively. However, the
broadest EAB of 7.48 GHz (10.52–18.00 GHz) is achieved under a thickness of 2.63 mm when
the loading of SCF1-1 decreases from 40 wt% to 30 wt% (Figure S4b). This phenomenon
infers that the EM absorbing property could be further controlled by adjusting the loading
of the absorbers. The value of RLmin for SCF2-2 and SCF4-4 can reach to −63.68 dB with
a thickness of 3.86 mm when the loading is 40 wt%, and −61.12 dB with a thickness of
3.48 mm when the loading is 50wt% (Figure S4e), respectively. In conclusion, the value
of RLmin for SiC@C-Fe3O4 is lower than SiCnw and SiC@C samples. Moreover, the EAB
value (7.48 GHz) for SCF1-1 at a loading of 30 wt% is also broader. Compared with other
microwave attenuation materials, such as SiC@Fe3O4 [21], 3D Fe3O4-MWCNTs [33], the
present materials exhibit a better behavior (lower RLmin and broader EAB), demonstrating
a successful strategy for microwave absorbers, as this paper details.
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same loading of 40 wt.% ((a): SiCnw; (b): SCF1-1; (c): SCF2-2; (d): SCF4-4).

The possible enhancement mechanisms of EM absorption for the obtained final SiC@C-
Fe3O4 hybrids are shown in Figure 7. In general, the synergy effect of dielectric and
magnetic loss is a very important characteristic for excellent EM absorbers. When the input
impedance of the EM absorbers reaches the impedance of free space, there is little reflection
on the surface of the materials for the incident EM wave, which leads a strong attenuation
of EM wave energy inside the materials, and a higher efficiency EM absorption. From
this point, it is an efficient way to introduce magnetic loss to typical dielectric absorbers
(Figure 7a). Without a doubt, a moderate proportion of Fe3O4 in the final SiC@C-Fe3O4
materials and rational loading in SiC@C-Fe3O4/wax is needed to get close to the ideal
balance of permeability and permittivity, as well as the impedance match of the materials.
Generally, the magnetic loss can originate from exchange resonance, natural ferromagnetic
resonance and the eddy current effect, etc. The scale of Fe3O4 nanoparticles in this study is
approximately 11 nm by measure (close to the exchange length), indicating the possible
existence of exchange resonance. Figure S5 shows the frequency dependence of the C0

(C0 = µ′′ (µ′)−2 f−1 ) of different SCF samples with 40% loading weights as well as the
SCF1-1 sample with different loading weights, whose value is approximately constant
when the frequency exceeds 15 GHz, which is likely contributed to by the eddy current
effect [33].
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Figure 7. Schematic diagram of EM absorption mechanism of SiC@C-Fe3O4 hybrids ((a) Magnetic loss introduced by
Fe3O4 nanoparticles; (b) Multiple polarization between carbon shell and Fe3O4 nanoparticles or SiC; (c) Conductive loss
contributed almost by carbon; (d) Schematic diagram of energy dissipation among hybrids).

Moreover, the present SiC@C-Fe3O4 hybrids have many other features which are also
beneficial for attenuating EM waves. For example, the Fe3O4 nanoparticles do not stick
to the SiCnw directly. There is a middle layer, namely the carbon shell on the surface of
SiCnw, which has a relatively better conductivity and helps to increase conductivity loss
(Figure 7c) [34]. Moreover, the carbon shell between the SiC and Fe3O4 phase possesses
many pores (mesopores or macropores) demonstrated by previous work [27], implying
that there are many defects that can cause the dipole polarization and Debye relaxations
by breaking the balance of the charge distribution [35,36]. In addition, phase boundaries
among the SiCnw core, the porous carbon shell, and the Fe3O4 nanoparticles on the surface
of carbon, possibly cause the surface charge redistribution and generate multiple interfacial
polarization (Figure 7b). Furthermore, owing to the macro-porous characteristic of the
SiC@C-Fe3O4 hybrids derived from three-dimensional interlaced stacking in wax, more
multiple reflections and scattering will be generated to attenuate or dissipate the EM wave
energy (Figure 7d). Thus, the SiC@C-Fe3O4 hybrids with core–shell microstructures can be
regarded as an ideal EM absorber.
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4. Conclusions

In conclusion, a novel and simple strategy for the controllable fabrication of SiC@C-
Fe3O4 hybrids via surface carbonization and hydrothermal reaction was raised. The
microstructure, permeability, as well as permittivity of the final hybrids can be well adjusted
by changing the molar content of the iron precursors (FeCl3·6H2O and FeCl2·4H2O). The
nanoporous carbon shell should have an important effect on the nucleation of Fe3O4
nanoparticles (with a small size of about 11 nm), possibly derived from the hydrogen
band effect between the C atoms and the Fe3O4 phase. This will also help to improve
the homogeneity or quality of hybrids. However, the Fe3O4 nanoparticles cluster can
also be observed to some degree. This phenomenon is possibly caused by the magnetic
dipole−dipole attraction, and easily occurs at a high molar content of the iron precursor.
Thus, the moderate condition during synthesis is vital. Comparatively, SCF1-1 exhibits the
best EM absorption performance among the final hybrids; its RLmin can reach −63.71 dB
and EAB can reach 7.48 GHz in the range of 10.52–18.00 GHz. The excellent EM absorption
performance of the final hybrids can be attributed to their good synergy of dielectric loss
(including conductive loss and polarization relaxations) and magnetic loss (introduced by
magnetic Fe3O4 nanoparticles), indicating a promising nanomaterial as an EM absorber.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11123438/s1, Figure S1: Schematic illustration for fabrication of SCF hybrids, Figure S2:
SEM images of SiCnw and SCF1-1 sample, Figure S3: The complex permittivity and permeability
characterizations of SiCnw and SCF samples with the same loading of 40 wt.%, Figure S4: 3D-RL
plots of the SCF samples with other loading weights, Figure S5: Frequency dependence of the C0 of
the SCF samples with a loading weight of 40% (a) as well as the SCF1-1 sample with different loading
weights (b), Table S1: Chemical compositions of pristine SiCnw and SCF hybrids.
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