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Abstract: The paper presents the results of studying the effect of borpolymer (BP) on the mechanical
properties, structure, and thermodynamic parameters of ultra-high molecular weight polyethylene
(UHMWPE). Changes in the mechanical characteristics of polymer composites material (PCM)
are confirmed and complemented by structural studies. X-ray crystallography (XRC), differential
scanning calorimetry (DSC), scanning electron microscopy (SEM), and infrared spectroscopy (IR)
were used to study the melting point, morphology and composition of the filler, which corresponds to
the composition and data of the certificate of the synthesized BP. Tensile and compressive mechanical
tests were carried out in accordance with generally accepted standards (ASTM). It is shown that
BP is an effective modifier for UHMWPE, contributing to a significant increase in the deformation
and strength characteristics of the composite: tensile strength of PCM by 56%, elongation at break
by 28% and compressive strength at 10% strain by 65% compared to the initial UHMWPE, due to
intensive changes in the supramolecular structure of the matrix. Structural studies revealed that BP
does not chemically interact with UHMWPE, but due to its high adhesion to the polymer, it acts as a
reinforcing filler. SEM was used to establish the formation of a spherulite supramolecular structure
of polymer composites.

Keywords: ultra-high molecular weight polyethylene; polymethylene-p-triphenyl ester of boric acid;
borpolymer; polymer composite materials

1. Introduction

Currently, polymer composite materials (PCM), due to their high mechanical prop-
erties and other special characteristics, low density, and ease of industrial processing, are
widely used in industry, medicine, and other fields. Ultra-high molecular weight polyethy-
lene (UHMWPE) is one of the promising polymers for manufacturing structural PCMs. It
is known that UHMWPE is characterized by high chemical inertness, excellent mechanical
properties, high impact strength and low coefficient of friction [1]. Due to these properties,
UHMWPE is used, and can potentially be used in many areas from medicine to the space
industry [2,3]. The introduction of micro- and nanosized fillers into UHMWPE increases
the mechanical and tribological characteristics, which expands the application range of
the material [4,5]. It is known that polymer composites based on UHMWPE filled with
nanosized fillers are distinguished by a low coefficient of friction, increased strength char-
acteristics, and resistance to cracking [6,7]. Due to the high specific surface area of particles
and the decompensation of bonds of a significant number of atoms, nanosized fillers are
characterized by their agglomeration, which leads to the appearance of defective regions
and, consequently, to a decrease in the mechanical characteristics of PCM. There are studies
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on the modification of UHMWPE by the introduction of fibrous fillers [8,9], where there is
an increase in the bearing capacity, wear resistance, rigidity, and strength of PCM [4]. The
mechanical characteristics of fiber-filled composites depend on the interfacial interaction at
the “fiber-polymer” interface, which requires additional modification of the fiber surface
or the introduction of adhesion promoters into the PCM composition [10–12]. There are
investigations in which polymers are used as a filler for UHMWPE. Such materials are
characterized by increased wear resistance and low coefficient of friction [13–16], but at the
same time they have low deformation and strength characteristics. For example, in the case
such organic fillers as polyetheretherketones (PEEK) when creating composites based on
UHMWPE, a decrease in mechanical parameters is shown [16]. A great number of studies
are devoted to UHMWPE/PEEK composites and their wide application in the development
of bone and hip implants, due to the biological characteristics of PEEK [17–20]. In [20], it
was found that PEEK is poorly compatible with UHMWPE. However, a slight increase
in the mechanical parameters of composites is explained by the high hardness of PEEK
particles in comparison with UHMWPE [16].

In addition to the use of fillers to improve UHMWPE properties, inoculation tech-
niques are used, including methods of ultrasonic treatment, mechanical activation, high-
speed mixing of composite components, etc. [21–23]. In addition, specific methods of
processing PCM are used, including the following: mixing a filler and polymer in solvents,
adding surfactants [24–26], crosslinking UHMWPE macromolecules, modifying fillers
by CVD—chemical vapor deposition [27], functionalizing fillers, etc. [28,29]. Despite a
large number of publications on the study of the modification of UHMWPE composites
components, the mechanisms for realizing the potential capabilities of PCM components
have not yet been disclosed.

In this study, we investigated the effect of polymethylene-p-triphenyl ester of boric
acid (BP) on the mechanical properties, structure, and thermodynamic parameters of
UHMWPE, depending on its content. Polymethylene-p-triphenyl ester of boric acid is a
class of organic boron compounds in which the B (boron) atom in the phenol molecule is
linked through the O (oxygen) atom. Organic boron compounds are widely used in various
fields: to increase the fire resistance of materials [30], to obtain porous materials [31], and
as a polymer modifier [32–34]. There is a great deal of studies devoted to BP as an additive
in epoxy resin and rubber [35–40]. However, borpolymers, in particular BP, as a filler for
UHMWPE have not been investigated practically.

The aim of this research is to study the effect of boron polymer on the mechanical
properties and structure of ultra-high molecular weight polyethylene.

2. Materials and Methods
2.1. Materials and Obtaining of PCM

UHMWPE brand GUR-4022 (Celanese, Nanjing, China) was used as a polymer matrix,
with a molecular weight of 5.0 × 106 g/mol, a density of 0.93 g/cm3, and an average
particle size of 145 µm. A synthesized polymethylene-p-triphenyl boric acid ester-PTBEC,
called borpolymer (BP), was used as a modifying additive. BP was provided by Boroplast
LLC (Boroplast, Biysk, Russia), with an average molecular weight of 2500–3000 a.u. and
with a melting point of 150–160 ◦C.

To remove adsorbed moisture, the initial UHMWPE powder was preliminarily dried
in a PE-0041 oven (Ekopribor, St. Petersburg, Russia) at a temperature of 85 ◦C for 1.5 h.
UHMWPE and BP powder were mixed at room temperature in a paddle mixer with a rotor
speed of 1200 rpm. The samples were prepared using the hot pressing technology in a
PCMV-100 hydraulic vulcanization press (Impulse, Ivanovo, Russia) at a temperature of
175 ◦C, a pressure of 10 MPa, holding for 20 min and then cooling to room temperature.
The borpolymer content in the polymer matrix was varied: 0.2, 0.3, 0.5, 1.0, 2.0, 3.0, and
5.0 wt. %.
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2.2. Research Methods

The mechanical properties of UHMWPE and PCM were studied using the Auto-
graph AGS-J tensile testing machine (Shimadzu, Tokyo, Japan). The tensile strength and
elongation at break were tested according to ASTM D3039/D3039M-14 at the moving
gripper speed of 50 mm/min, the number of samples was six. Compressive strength was
determined according to ASTM D695.

X-ray diffraction patterns of the borpolymer and PCM was determine using X-ray
powder diffractometry (XRD, ARL X’Tra, Thermo Fisher Scientific, Ecublens, Switzerland).
An X-ray tube with a copper anode (λ (CuKα) = 0.154 nm) was used as a radiation source.
For the study, we used samples in the form of plates with dimensions of 30 × 30 × 3 mm.
The degree of crystallinity was determined by the Formula (1):

α =
Ac

Ac + Aa
∗ 100%, (1)

where Ac is the area under the crystalline peaks, and Ac + Aa is the total area of both
crystalline and amorphous regions. The average crystallite size (L) in the direction perpen-
dicular to the crystal lattice plane was determined using the Scherrer Equation (2):

L =
Kλ

β cos θ
, (2)

where β is the width at half maximum of the diffraction peak; K is the crystal lattice
constant (approximately 0.9); λ—wavelength of the beam of monochromatic radiation
CuKα, 0.154 nm; θ corresponds to the Bragg angle, and L corresponds to the average
crystallite size. The distance (d) between the diffraction planes was obtained according to
Bragg’s law (3):

2d sin θ = nλ, (3)

where n is the diffraction order (integer); d—interplanar distance; λ is the wavelength of
X-ray radiation, θ is the Bragg angle.

The supramolecular structure of UHMWPE and PCM and powders of BP were studied
on the JSM-7800F scanning electron microscope (Jeol, Akishima, Japan) with the X-MAX-20
attachment (Oxford Instruments plc, Tubney Woods, Abingdon, UK) in the secondary
electron mode at an accelerating voltage of 1–1.5 kV.

The atomic force microscopy was performed with an NTEGRA instrument manu-
factured by NTegra Prima (NT-MTD, Zelenograd, Russia). The instrument was operated
in ‘semi-contact mode’, which is often also referred to as “tapping mode”. Surface to-
pography and phase images were obtained using NSG 10 golden silicone probes with a
resonant frequency of 140–390 kHz and a force constant of 2.5–10 N/m. The AFM images
obtained were processed using the “Nova” and “Image Analysis” software (NT-MTD,
Zelenograd, Russia).

Fourier transform infrared (IR) spectroscopy (FTIR; Varian 7000, Palo Alto, CA, USA)
was used to record IR spectra with an attenuated total reflection (ATR) attachment over the
range 400–4000 cm−1.

The Raman spectra between 1600 cm−1 and 1000 cm−1 were recorded by using the
NT-MDT NTEGRA (NT-MDT, Zelenograd, Russia) equipped in a 532 nm. The spectra
were collected on three different points in one sample.

The thermodynamic characteristics of UHMWPE and composites were studied on a
DSC 204 F1 Phoenix NETZSCH differential scanning calorimeter (Netzsch, Selb, Germany),
where the measurement error was not more than ±0.1%, the heating rate was 20 ◦C/min,
and the sample weight was 18 ± 1 mg. The measurements were carried out in a helium
medium in a temperature range of 40–180 ◦C. The samples were placed in aluminum
crucibles with a 40 µL. Temperature calibration was performed using standard samples of
In, Sn, Bi, Pb, and KNO3.
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The degree of crystallinity of UHMWPE and PCM was calculated by the follow
Equation (4):

α, % =
∆Hendotherm

∆H f

(
1 − W f

) ·100%, (4)

where ∆Hendotherm—is the melting enthalpy calculated from the area of endothermic melting
peak; ∆Hf—is the melting enthalpy for 100% crystalline UHMWPE, which is equal to
291 J/g; Wf—is the mass content of the filler in PCM [1,41].

3. Results and Discussion
3.1. Characteristics of Borpolymer

Borpolymer belongs to the class of boric esters with a molecular weight distribution of
the basic substance ≥99%. This substance is obtained by the polycondensation reaction of
triphenyl ester of boric acid and 1, 3, 5—trioxane (paraformaldehyde) in an acidic medium.

Figure 1 shows the X-ray diffractogram of borpolymer. Based on the analysis of
XRC diffraction patterns, it was established that the initial borpolymer is an amorphous
compound, and a broad peak characteristic of amorphous compounds with a low intensity
in the region (2θ = 10–30◦) was found. No other peaks in the study area 2θ = 1.5–60◦ were
found in the tested BP sample.
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For a qualitative analysis of the BP composition, the BP structure was studied by IR
spectroscopy (Figure 2).
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As Figure 2 demonstrates, the IR spectrum shows the following characteristic peaks
of BP benzene rings: 1045 and 1095 cm−1, corresponding to the vibrations of the C–H bond
(methyl radical) in the plane of the benzene ring (in plane C–H blending), and a peak at
750 cm−1 due to vibration outside the plane of the benzene ring of the C–H bond of the
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methyl group (out of plane C–H blending). The peaks at 1590–1455 cm−1 correspond to the
vibrations of the C=C bonds of the aromatic ring itself, and the intense absorption band in
the region at 3290 cm−1 refers to the vibrations of the C–H bonds of the benzene ring [42].
The peaks of absorption bands of carbon-boron and oxygen-boron bonds were also found.
Asymmetric stretching vibrations of the B–C bond in triphenylboron correspond to a
peak at 1220 cm−1, while symmetric vibrations of the B–C bond are characterized by the
occurrence of a peak at 825 cm−1. The peak at 1350 cm−1 is caused by bending vibrations
of the B–O bond. Symmetric vibrations of this bond are marked by the occurrence of a
low-intensity peak at 910 cm−1; possibly, the intensity decreases due to the strength of
the B–O bond in the BP polymer [43]. The obtained IR spectra correspond to the chemical
composition of BP.

Analysis of the DSC data indicates the presence of two melting peaks at 74 ◦C and
150 ◦C. The presence of two peaks indicates a polydisperse molecular weight distribution
of the borpolymer, as the lower molecular weight portion of BP begins to melt at a relatively
low temperature. The main melting peak on the DSC BP curve corresponds to 150 ◦C, and
with its increase BP completely transforms into a molten state. It is known that BP is one of
the promising heat-resistant additives for thermosetting plastics that increase the strength
and wear resistance of materials [35–38]. Based on the temperature data, BP is suitable for
the processing temperature range of UHMWPE based composites.

The sizes and morphology of the crushed BP particles were studied using a scanning
electron microscope, the micrographs of which are shown in Figure 3.
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The micrographs in Figure 3 show that the surface of the crushed particles is charac-
terized by microdefects resulting from brittle fracture of BP. It was found that glass-like
particles of BP are easily crushed; nevertheless, there is a wide variation in the size of
crushed particles. It is noteworthy that the smaller BP particles are deposited on the sur-
face of the larger ones. Obviously, at the stage of mixing the components of the polymer
composition in a paddle mixer, due to mechanical effects, the BP particles will be dispersed
with a fairly uniform distribution in the volume of the polymer.

3.2. Study of the PCM Structure
3.2.1. IR Spectra of Composites

In order to determine the chemical effect of BP on the polymer matrix, the IR spectra
of the initial UHMWPE and the UHMWPE/5 wt. % BP composite were studied (Figure 4).
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The IR spectra revealed the main peaks of UHMWPE at 2920, 2850, and 1470 cm−1, related
to stretching and bending vibrations of -CH2 bonds and 1365 cm−1, corresponding to
bending vibrations of -CH3. A crystallinity peak at 720 cm−1 was also found, due to
pendulum vibrations of the polymer chain.
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As can be seen from Figure 4, the IR spectrum of the UHMWPE/5 wt. % BP composite
differs from the initial UHMWPE by the appearance of a broad absorption band in the
1260–1030 cm−1 region, which is characteristic of vibrations of the boron—oxygen bond,
ether bond, or methyl group relative to the plane of the benzene ring. In addition, there is
an insignificant peak at 1510 cm−1, which indicates the presence of carboxyl groups (C=O)
or a C=C bond of the benzene ring of BP. It can be seen that the intensity of the detected
peaks is minimal. It can be assumed that BP will not chemically interact with UHMWPE
macromolecules and will not oxidize during PCM processing.

3.2.2. Morphology of PCM

During the formation of composites and at the stages of processing, structural changes
occur associated with a change in the supramolecular structure and the development
of molecular orientation of polymer macromolecules. These changes in the structure of
the polymer matrix determine the complex of mechanical properties of PCM. Due to
the difference in the formation of the supramolecular structure, composites of the same
polymer are often characterized by different values of mechanical parameters. Therefore,
in order to determine the processes of structure formation in the supramolecular structure,
UHMWPE and PCM conducted a SEM study, the results of which are shown in Figure 5.

Figure 5 shows that the supramolecular structure of the initial UHMWPE is character-
ized by a lamellar structure. The introduction of BP into UHMWPE transforms the lamellar
structure into a spherulite structure of the radial type with irregularly shaped elements.
Composite with 0.5 wt. % BP is characterized by the formation of large spherulites with
clearly defined boundaries. In the case of 1 wt. % BP in UHMWPE, a decrease in the
size of spherulite structures is observed. The supramolecular structure of the composite
containing 2 and 5 wt. % filler becomes more disordered, defect regions are recorded,
which will further affect the mechanical properties of the material. At the same time, these
composites contain fan-shaped spherulites.
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3.2.3. Investigation of the Structure of Composites by the AFM Method

Structural studies of the composites were carried out using the AFM method in a
semicontact mode, which makes it possible to obtain a high contrast in the visualization
of submicron structures and to recognize various components in heterogeneous polymer
systems (Figure 6). In the case of a smooth but chemically dissimilar surface, it is possible
to visualize surface areas that differ in phase composition. Since the detection of the
oscillation phase occurs simultaneously with the acquisition of the surface topography
with the amplitude detection of the probe position in the feedback, it is possible to obtain
information on the phase composition of the sample from the comparison of the amplitude
and phase images. In this work, the object of study was a composite based on UHMWPE
and BP, where the latter particles act as a dispersed phase. Therefore, the phase-contrast on
the AFM made it possible to estimate the degree of BP distribution in the volume of the
matrix and to measure the size of the crushed filler particles during the processing of the
composite [44].

1 
 

 
Figure 6. AFM 3D image of topography and phase-contrast of the composite slice, containing 0.5 wt. % BP.

Figure 6 shows 3D images of the topography and phase-contrast of the composite
slice containing 0.5 wt. % BP. The choice of this composition of the composite for research
on AFM is due to its better mechanical properties. The scanning area was 1 × 1 µm. It was
found that the distribution of BP particles in the matrix volume is chaotic. Phase-contrast
analysis revealed the presence of a scatter in the sizes of BP particles (from 8.5 nm to
~70 nm). In this case, small BP particles form agglomerates, which, upon crystallization
of UHMWPE, orient the crystal growth with the formation of spherulites, where they
act as crystallization centers. It was registered that some part of nanosized BP particles
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are concentrated along the boundaries of spherulite formations due to their migration
during pressing. It is known that if a multicomponent material contains several different
(non-gaseous) phases, in which at least one of the phases has at least one dimension of the
order of nanometers, then it belongs to nanomaterials. Thus, we have shown the formation
of a nanocomposite upon the introduction of nanosized BP particles into UHMWPE.

3.2.4. XRC of Composites

Structural studies of UHMWPE and PCM were carried out by X-ray structural analysis
(Figure 7). From the X-ray diffraction patterns of all samples, two obvious intense peaks at
2θ ≈ 21.5◦ and 24.0◦ can be distinguished, corresponding to the crystallographic planes
(110) and (200) of the UHMWPE polymer [45]; no other peaks were found. The original BP
is an amorphous compound as noted above. When BP was injected into UHMWPE, no
additional peaks were recorded on PCM radiographs.
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Figure 7. X-ray diffraction patterns of UHMWPE and PCM.

Table 1 shows the results of XRD analysis of UHMWPE and UHMWPE/BP composites.

Table 1. Results of X-ray structural analysis.

Samples
X-ray Structural Analysis

α, % 2θ (◦) L, nm d, nm

initial UHMWPE 58 21.5096 34.15 0.41

UHMWPE + 0.2% BP 56 21.4988 33.35 0.41

UHMWPE + 0.5% BP 55 21.4938 33.17 0.41

UHMWPE + 1% BP 56 21.4933 34.41 0.41

UHMWPE + 2% BP 56 21.4640 32.39 0.41

UHMWPE + 3% BP 56 21.4394 31.75 0.41

UHMWPE + 5% BP 50 21.4547 31.83 0.41
Notes: α—degree of crystallinity, %; 2θ—angle θ, (◦); L—crystallite size, nm; d—interplanar distance, nm.

As Table 1 suggests, the introduction of a borpolymer into UHMWPE reduces the
degree of crystallinity by 3% at a filler content from 0.2 to 3 wt. %, calculated from the ratio
of the intensities of the crystalline and amorphous phases. The degree of crystallinity of the
UHMWPE/5 wt. % BP composite decreased by 14% relative to the initial polymer. This
may be due to the effect of agglomeration of the filler, which limits the molecular mobility
of polymer chains and prevents the crystallization of the polymer [46]. The crystallite sizes
of PCM, calculated according to the Scherrer equation at a content of 0.2 to 1 wt. % BP,
remain at the level of the initial polymer; with a further increase in the BP content from
2 to 5 wt. % in UHMWPE, a decrease in the crystallite size is observed.
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3.2.5. Raman Spectra of Composites

Figure 8 shows the Raman spectra of the initial UHMWPE and the composite contain-
ing 5 wt. % BP. Raman spectra are sensitive to vibrations of the crystal lattice (crystalline
state) of polyethylene; due to this, these spectra are used to explain the effect of fillers on
the phase state of the matrix [47]. In this case, vibrational absorption bands are recorded
in the region of 1000 and 1600 cm−1, caused by the twisting of the δ(CH2) bond and the
stretching of the bonds (CC).
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Figure 8. Raman spectra of the initial UHMWPE and composite UHMWPE/5 wt. % BP.

As can be seen from Figure 8, in the Raman spectrum of UHMWPE and PCM, charac-
teristic peaks in the region of 1060 and 1123 cm−1 are visible, referring to symmetric and
asymmetric stretching vibrations of the C–C bond in the crystalline phase of PE. The peak
at 1292 cm−1 corresponds to the bending torsional vibrations of the CH2 group in the crys-
talline phase. The absorption bands in the region of 1440 and 1461 cm−1 refer to bending
vibrations of the CH2 group of the amorphous phase of polyethylene [48,49]. In the Raman
spectrum, the indicator of crystallinity of polyethylene is a peak at 1416 cm−1, which is
weakly expressed in the initial UHMWPE and PCM. It was found that the introduction of
BP into UHMWPE leads to broadening of the absorption band related to vibrations in the
amorphous phase. There is also a decrease in the intensity of the 1292 cm−1 peak of the
τCH2 crystalline vibration. The results obtained indicate a decrease in the crystallinity of
UHMWPE upon the introduction of BP, and, on the whole, agree with the results of X-ray
diffraction analysis. Thus, the introduction of BP into UHMWPE leads to a decrease in the
crystallinity of the composite.

3.3. Thermodynamic Properties of PCM

Figure 9 shows the DSC data curves obtained by heating the samples, and Table 2
presents the data of the study results.

As evident from Figure 9 and Table 2, the temperature of the onset of melting of PCM
does not change over the entire concentration range. Some shift of the melting peaks is
observed, but these changes are insignificant and are included in the measurement error
range. There is a narrowing of the DSC curves of the composites in comparison with the
original UHMWPE.

It was shown that the degree of crystallinity of the initial UHMWPE is 58.7%. After the
introduction of BP, a decrease in the degree of crystallinity by 18% is observed. In general,
the degree of crystallinity of composites in the entire concentration range of filling is 47–48%.
DSC crystallinity values differ from XRC data. However, both methods demonstrate a
similar change trend, which is associated with the amorphization of UHMWPE with the
introduction of BP, which leads to a decrease in the degree of crystallinity. Thus, the
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filler affects the growth and shape of crystallites in the process of PCM structuring, which
consists in some deformation of the crystalline regions [50].
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Table 2. Melting point, melting enthalpy, and degree of crystallinity of UHMWPE and composite.

Samples
Thermodynamic Properties

Tonset, ◦C ∆Hme, J/g α, %

initial UHMWPE 127.7 171.1 58.7

UHMWPE + 0.2% BP 128.4 139.3 47.9

UHMWPE + 0.5% BP 128.0 138.5 47.8

UHMWPE + 1% BP 127.6 137.2 47.6

UHMWPE + 2% BP 128.1 138.4 48.5

UHMWPE + 3% BP 127.9 135.7 48.1

UHMWPE + 5% BP 128.4 135.2 48.9
Notes: Tonset—melting point onset temperature, ◦C; ∆Hme—melting enthalpy, J/g; α—degree of crystallinity, %.

It was found that the enthalpy of melting of the composites decreases in comparison
with the initial UHMWPE. In a series of composites, the enthalpy of melting gradually
decreases with an increase in the BP content, which is associated with the loosening of the
UHMWPE structure. The authors in [41] argue that the decrease in enthalpy is caused by
the nature of the interaction in the compositional system. If the interaction between the
polymer and the filler prevails, where the active surface of the filler acts as a nucleating
agent (to heterogeneous nucleation) during crystallization, this leads to an increase in
the enthalpy of melting and the degree of crystallinity. This tendency is observed in
heterogeneous systems, where the filler has a high surface activity [51–54]. In the case of a
predominant interaction between filler particles, the formation of agglomerates is observed,
which limits the rate of polymer crystallization. Thus, it was shown that with an increase
in the BP content in PCM, agglomeration between filler particles intensifies, which leads
to a decrease in the enthalpy of melting by 20% compared to the initial UHMWPE. In
this case, the formation of less perfect and defective structural elements—spherulites is
observed in the supramolecular structure of PCM (Figure 5d,e). Nevertheless, a decrease
in the degree of crystallinity and enthalpy of melting does not lead to a deterioration in
the mechanical properties of the composite. It is known that the amorphous phase in
UHMWPE contributes to an increase in the impact toughness of the material, due to the
effect of linkage of through-feed chains [55].

Thus, the introduction of BP contributes to an overall decrease in the degree of
crystallinity and the enthalpy of fusion of UHMWPE.



Nanomaterials 2021, 11, 3398 12 of 17

3.4. Mechanical Properties of PCM

BP is actively used as a hardening modifier for thermosetting plastics and industrial
rubber goods, which explains the increased interest in this material. The mechanical
characteristics of UHMWPE filled by BP are presented in Table 3 and Figure 10.

Table 3. Elongation at break, tensile strength, and Young’s modulus of UHMWPE and PCM with
borpolymer (BP).

Samples σT, MPa εb, % E, MPa

initial UHMWPE 32 ± 3 339 ± 16 420 ± 26

UHMWPE + 0.2% BP 49 ± 1 434 ± 14 472 ± 34

UHMWPE + 0.5% BP 50 ± 1 417 ± 10 524 ± 37

UHMWPE + 1% BP 45 ± 1 389 ± 8 499 ± 19

UHMWPE + 2% BP 43 ± 2 383 ± 18 519 ± 32

UHMWPE + 3% BP 43 ± 1 369 ± 12 524 ± 21

UHMWPE + 5% BP 39 ± 1 327 ± 14 520 ± 22
Notes: σT—tensile strength, MPa; εb—elongation at break, %; E—Young’s modulus in deformation 0.1–0.3%, MPa.
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For the stress–strain curve, we took the test data of composites, which are similar to
the average values after statistic processing.

Analysis of the results of PCM mechanical characteristics showed that 0.2 and 0.5 wt. %
BP content leads to a significant increase in the strength and elasticity of the material. The
increase in tensile strength of PCM was noted by 53% and 56% relative to the original
polymer, respectively. At the same time, there is an increase in the elongation at break by
28% and 23%. A further increase in BP content leads to a gradual decrease in these param-
eters. However, the value of the elongation at break of the composite containing 5 wt. %
BP, remains within the measurement error. The tensile strength of the UHMWPE/5 wt. %
BP composite is 18% higher compared to unfilled UHMWPE. The modulus of elasticity of
the composites and the original UHMWPE does not undergo significant changes, which
indicates that the rigidity of the material is preserved throughout the entire concentration
range of filling.

Based on studies of the supramolecular structure of PCM, it was found that the
introduction of low concentrations of BP forms a fine-spherulite structure, which explains
the maximum increase in mechanical parameters. At high concentrations, the occurrence
of defective areas is observed, which leads to a slight decrease in mechanical parameters
relative to PCM with a lower BP content, and does not decrease as compared to the
original UHMWPE.

Studies on the modification of the UHMWPE matrix with thermosetting polymers or
organic compounds of the ester class are poorly understood. In addition, the use of this
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borpolymer as a thermoplastic modifier has not been previously considered. Wang et al.
showed the effect of thermosetting polymers on the wettability of UHMWPE fibers [56,57].
It was found that thermosetting binders of various types increase the wettability of
UHMWPE fibers, thereby increasing the strength of the material by enhancing the ad-
hesive interaction between the components of the composite. In [11] it was found that
polyphenyl ether combined with carbon fibers increases the wear resistance of PCM, also
due to the enhancement of interfacial interaction between the components, and due to the
participation of ether in the formation of secondary structures on the friction surface. BP is
known to be used effectively in elastomeric materials as a reinforcing agent. In this case,
BP acts as a modifier of the rubber matrix, contributing to the formation of a stable three-
dimensional vulcanization network. Moreover, the presence of a boron atom enhances
the interaction at the polymer–filler interface, which indicates the reactivity of BP during
vulcanization [35]. However, the results of IR spectroscopy of the UHMWPE/5 wt. %
BP composite (Figure 4) indicate that the filler particles do not interact with the polymer
macromolecule. Thus, BP acts as a reinforcing modifier for the polymer matrix.

In addition to the effect of strengthening the polymer matrix, an increase in the
deformation and strength characteristics is due to the formation of the spherulite structure
of PCM [4,58]. It is known [59] that PCMs with small spherulites are usually more rigid
than composites consisting of large spherulites (Figure 5). Mechanical deformation of
composites with a spherulite structure first destroys the boundary regions of the spherulites,
i.e., the interlamellar amorphous part. Then the inner part of the spherulites undergoes
deformation, since the crystalline ordered phase of the polymer is stronger [60]. Thus,
composites characterized by a large amount of spherulites, for example, in a fine-spherulite
structure, will have increased strength, while in composites characterized by the formation
of an inhomogeneous and coarse-spherulite structure, the boundary regions are usually
weak [58]; therefore, with an increase in the filler content, the occurrence of defective
regions in the supramolecular structure of PCM is observed, which is accompanied by a
slight decrease in mechanical parameters (Figure 5d,e). In [61], data are provided showing
that organic fillers with a low molecular weight plasticize the UHMWPE matrix during
stretching, facilitating relaxation processes. The increase in the relative elongation of
composites containing BP can be explained by the plasticizing effect of BP.

The results of studying the effect of borpolymer on the compressive strength of PCM
at different relative deformations are presented in Table 4 and Figure 11.

Table 4. Melting point, melting enthalpy, and degree of crystallinity of UHMWPE and composite.

Samples
Compressive Strength

2.5%
Deformation

10%
Deformation

25%
Deformation

initial UHMWPE 4 ± 1 17 ± 2 30 ± 1

UHMWPE + 0.2% BP 11 ± 2 28 ± 2 29 ± 2

UHMWPE + 0.5% BP 9 ± 1 21 ± 1 26 ± 2

UHMWPE + 1% BP 9 ± 2 23 ± 1 30 ± 1

UHMWPE + 2% BP 13 ± 2 26 ± 2 31 ± 1

UHMWPE + 3% BP 11 ± 1 24 ± 3 33 ± 1

UHMWPE + 5% BP 10 ± 2 25 ± 1 34 ± 1
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It was found that the introduction of BP into the polymer leads to an increase in com-
pressive stress, at a specified relative deformation of 2.5%, by about 2–3 times compared
with the initial UHMWPE. High values of the compressive stress at a specified relative defor-
mation of 10% are observed for the composite with the composition UHMWPE/0.2 wt. %
BP and UHMWPE/2 wt. % BP, in which an increase of 65% and 53% is noted, respectively.
The compressive stress, at compressive strength at 25% strain of the composites, changes
insignificantly depending on the filler content and remains within the measurement error.
The increase in compressive strength values is attributed to an increase in the material’s
resistance to deformation during compression, due to the formation of a reinforced PCM
system [62]. In addition, it is assumed that, due to the high molecular weight of UHMWPE,
regions with large overlaps of long macromolecule chains are formed. The occurrence of
such zones with large overlap increases the ability of PCM to transfer a large compressive
force from molecule to molecule [63].

Thus, the introduction of BP into the polymer leads to an increase in the deformation-
strength characteristics and compressive strength, even at a low filler content.

4. Conclusions

The effect of borpolymer on the mechanical properties and structure of UHMWPE has
been studied. It was found that the use of borpolymer as a UHMWPE modifier made it
possible to increase the mechanical characteristics of the material at low BP concentrations
(at 0.2 and 0.5 wt. %). At these concentrations, a maximum increase in tensile strength
of 56% and elongation at break of 28%, relative to the original UHMWPE, was recorded.
An increase in compressive strength was established at a specified relative deformation
of 2.5% and 10% in the entire concentration range of PCM; the maximum values of these
indicators were 13 MPa and 28 MPa, respectively. No significant changes in the modulus
of elasticity are observed. The study of the processes of structure formation by the SEM
method revealed the formation of a spherulite structure upon the introduction of BP, which
explains the increase in the tensile strength of PCM. By means of IR spectroscopy, it was
found that the borpolymer does not enter into chemical interactions with UHMWPE during
processing. The presence of the main peaks of absorption caused by the vibrations of bonds
of the initial components UHMWPE and BP was found. DSC and XRC studies of the
degree of crystallinity revealed a general decrease in this parameter caused by loosening
and amorphization of the structure with increasing BP concentration. These changes lead
to a decrease in the enthalpy of melting by 20% compared to the initial polymer. The
increase in the elasticity of the material is explained by the fact that the introduction of
an amorphous filler into UHMWPE facilitates relaxation processes when an external load
is applied.

Thus, BP is an effective filler for UHMWPE, helping to increase the tensile strength
and elongation of a composite.
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