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Abstract: Electrochemical lithium-sulfur batteries engage the attention of researchers due to their
high-capacity sulfur cathodes, which meet the increasing energy-density needs of next-generation
energy-storage systems. We present here the design, modification, and investigation of a carbon
nanofoam as the interlayer in a lithium-sulfur cell to enable its high-loading sulfur cathode to attain
high electrochemical utilization, efficiency, and stability. The carbon-nanofoam interlayer features
a porous and tortuous carbon network that accelerates the charge transfer while decelerating the
polysulfide diffusion. The improved cell demonstrates a high electrochemical utilization of over
80% and an enhanced stability of 200 cycles. With such a high-performance cell configuration,
we investigate how the battery chemistry is affected by an additional polysulfide-trapping MoS2

layer and an additional electron-transferring graphene layer on the interlayer. Our results confirm
that the cell-configuration modification brings major benefits to the development of a high-loading
sulfur cathode for excellent electrochemical performances. We further demonstrate a high-loading
cathode with the carbon-nanofoam interlayer, which attains a high sulfur loading of 8 mg cm−2, an
excellent areal capacity of 8.7 mAh cm−2, and a superior energy density of 18.7 mWh cm−2 at a low
electrolyte-to-sulfur ratio of 10 µL mg−1.

Keywords: lithium-sulfur batteries; high-loading cathode; lean-electrolyte cell; interlayer;
electrochemistry

1. Introduction

Commercial lithium-ion batteries use insertion chemical reaction to reversibly release
and store lithium ions between the oxide cathode and the graphite anode. The stable
crystalline structure of ceramics provides high cycle stability and underpins the successful
development of the prosperous lithium-ion battery market [1,2]. In mature lithium-ion
technology, the charge-storage capacities of lithium-ion battery cathodes have almost
reached their theoretical values. Moreover, it has been proven that the crystalline structures
of the oxide cathodes limit the full insertion/extraction of lithium ions. Thus, a bottleneck
constrains the increase of battery capacity [2–4]. To meet the demands of the continuously
growing global energy-storage market, the development of next-generation rechargeable
batteries requires novel cathode materials featuring a higher charge-storage capacity and
long-term electrochemical stability [4–6]. Among the newly developed battery chemistries,
lithium–sulfur batteries use sulfur as the cathode material to generate a high theoretical
charge-storage capacity of 1672 mAh g−1 from a conversion battery chemical reaction,
which enables the device to deliver a high energy density of 2600 Wh kg−1 and attain
high electrochemical efficiency. Moreover, the inexpensive sulfur is nontoxic and naturally
abundant. Therefore, great attention is given to lithium–sulfur cells because of their
electrochemical and material properties [7–11].
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However, novel technologies often bring new challenges. The fast progress in
lithium-sulfur batteries has encountered intrinsic material challenges resulting from
the poor charge-transfer nature of solid-state sulfur and sulfides as well as the forma-
tion and diffusion of liquid-state polysulfides [8–12]. The progress in lithium-sulfur
batteries has also been hindered by extrinsic electrochemical limitations encountered in
building high-energy-density cathodes with enough active material in a lean-electrolyte
cell [13–16]. In lithium-sulfur battery chemistry, the active material forms solid-state
materials, such as sulfur and lithium sulfides at the full charge and discharge stages,
respectively. Both solid-state active materials are good insulators, which limits the
electrochemical utilization and reversibility of the active material during redox reac-
tions [10,12]. The solid-state active materials convert to liquid-state lithium polysulfides
at the intermediate stages of discharging and charging the cell. Lithium polysulfides are
soluble in an ether-based liquid electrolyte. The dissolved polysulfides readily diffuse
out from the sulfur cathode region and move uncontrollably across the whole cell. The
irreversible polysulfide diffusion leads to the rapid loss of the active material and the
corresponding degradation of the electrodes and the electrolyte, which results in poor
cyclability and unstable discharge/charge efficiency [12,13]. As a result of the high
resistance brought about by the active material in the solid state and the irreversible
diffusion problem of the active material in the liquid state, the lithium-sulfur litera-
ture usually reports the performance of devices utilizing a sulfur loading less than
1–2 mg cm−2 and a sulfur content lower than 60 wt% in a cell with a high amount
of liquid electrolyte (i.e., an electrolyte-to-sulfur ratio of over 20 µL mg−1) [4,13–16].
Unfortunately, such a cell composition hinders the development and investigation of
high-energy-density lithium-sulfur cells, which require high-loading sulfur cathodes to
achieve high electrochemical utilization of sulfur in a lean-electrolyte condition [16–19].

In this study, we design, investigate, and modify the battery configuration by consid-
ering the conversion electrochemical reaction of the lithium–sulfur battery cathode. We
adopt a conductive porous carbon substrate as the carbon-nanofoam interlayer between
the sulfur cathode and the separator [4,19–22]. The interlayer utilizes its conductive carbon
network to improve the cathode conductivity, which results in an improved electrochemical
utilization of sulfur [12,20–22]. During cycling, the interlayer offers a tortuous and porous
network for reducing the migration of liquid-state polysulfides and subsequently trapping
them. The trapped polysulfides are stabilized within the carbon interlayer and the cathode
region so that the active material retains a high electrochemical activity. This results in a
high electrochemical reversibility and cycle stability [20–22]. Thus, our findings demon-
strate that the carbon-nanofoam interlayer allows high-loading sulfur cathodes to attain
sulfur loadings and content of 4–8 mg cm−2 and 70 wt%, respectively, and to exhibit high
discharge capacities of 1087–1131 mAh g−1 at the C/20 and C/10 rates for a long cycle life
of 200 cycles at a low electrolyte-to-sulfur ratio of 10 µL mg−1. The resulting high-loading
sulfur cathodes achieve high electrochemical utilization and, therefore, exhibit a high areal
capacity and energy density of 8.7 mAh cm−2 and 18.7 mWh cm−2, respectively. We
further study the material modification of the carbon interlayer with surface coatings by
adopting a polysulfide-trapping MoS2 layer [23–25] and an electron-transferring graphene
layer [26–28]. The additional layers aid the exploration of the importance of the battery-
configuration design and the material properties toward the electrochemical characteristics
of the high-loading sulfur cathode.

2. Materials and Methods
2.1. Materials and Chemical Characterization

Microstructure inspection and elemental mapping analyses were performed with
an SU-8000 field-emission scanning electron microscope (Hitachi, Tokyo, Japan) and the
equipped XFlash 5010 energy-dispersive X-ray spectrometer (Bruker, Billerica, MA, USA),
respectively. Physical adsorption/desorption analysis was carried out with an Autosorb iQ
MP/MP gas sorption analyzer (Anton Paar, Austria) at 77 K at P/P0 = 10−5 to 100. Specific
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surface area and porosity analyses (e.g., the total pore volume and average pore size) were
performed based on the Brunauer-Emmett-Teller theory and T-plot analysis. The pore size
distribution was analyzed according to Barrett-Joyner-Halenda theory, density functional
theory, and Horvath-Kawazoe theory.

Surface characterization and bonding energy analysis were conducted with a
PHI 5000 VersaProbe III X-ray photoelectron spectrometer (Ulvac-Phi, Chanhassen,
MN, USA). Chemical functional groups were detected using infrared spectroscopy
performed on a Nicolet iS50 Fourier-transform infrared spectrometer (Thermo Fisher,
Waltham, MA, USA). Carbon information was characterized by Raman spectroscopy
conducted on a Labram HR Micro-Raman & Micro-PL spectrometer (Jobin Yvon, Paris,
France) using a 532 nm laser excitation.

2.2. Electrochemical and Cell Performance Characterization

Electrochemical and lithium-sulfur battery performance analyses were conducted
using a BCS-800 series battery-test instrument (Biologic Science Instruments, France). The
lithium-sulfur cells with various configurations (i.e., with the carbon-nanofoam interlayer,
the MoS2-coated carbon-nanofoam interlayer, the graphene-coated carbon-nanofoam inter-
layer, and the reference cathode) were analyzed with a voltage window of 1.8–2.8 V at rates
of C/20 and C/10 to investigate the discharge/charge voltage profiles, electrochemical
polarization, long-term cyclability, and charge-storage capacity. CV analysis was performed
at 0.01 mV s−1 for five scans.

The carbon nanofoam was a commercial carbon-paper substrate (High Tech Material
Solutions, Auburn, WA, USA). The MoS2-coated carbon nanofoam and the graphene-
coated carbon nanofoam were modified by chemical vapor deposition to generate a thin
nanolayer of MoS2 and graphene on the carbon nanofoam (carried out at the Core Facility
of National Cheng Kung University). A MoO3 precursor film with a thickness of 10 nm was
grown on the carbon nanofoam at 300 ◦C and 2 × 10−5 torr and underwent sulfurization
by H2S at 700 ◦C for 60 min, generating the MoS2-coated carbon nanofoam. A gas mixture
of Ar (1500 sccm), H2 (200 sccm), and diluted CH4 (5 sccm) was applied to the carbon
nanofoam at 900 ◦C for 150 min to form the graphene-coated carbon nanofoam.

The lithium-sulfur cells were prepared with a high-loading sulfur cathode (12 mm in
diameter), the carbon-nanofoam interlayer (12 mm in diameter), a polypropylene mem-
brane (Celgard, 19 mm in diameter), and a metallic lithium counter electrode (Sigma-
Aldrich, 14 mm in diameter). Specifically, the sulfur cathode was prepared by mixing
70 wt% sulfur, 15 wt% Super P carbon, and 15 wt% polyvinylidene fluoride binder in
N-methyl-2-pyrolidone.

The well-mixed paste was then tape-casted on an aluminum-foil current collector
and dried in a convection oven at 50 ◦C for 24 h. The electrolyte contained 1.85 M lithium
bis(trifluoromethanesulfonyl)imide (Acros Organics) and 0.1 M lithium nitrate (Acros
Organics) dissolved in 1,3-dioxolane/1,2-dimethoxyethane solvent. The assembled
cells held high sulfur loadings of 4 and 8 mg cm−2 at a low electrolyte-to-sulfur ratio of
10 µL mg−1.

3. Results and Discussion
3.1. Material Characterization of the Carbon Nanofoams

Figure 1a–c shows the scanning electron microscopy microstructural analysis of the
carbon nanofoam and its two surfacial modification derivatives with the MoS2 coating and
the graphene coating processed by chemical vapor deposition. Surface microstructural
inspection reveals that the carbon-nanofoam substrate has a continuous carbon nanofiber
as the conductive skeleton, on which nanoporous carbon substrates are tightly attached
(Figure 1a).
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Figure 1. Material characterization: microstructural inspection of the (a) carbon nanofoam, (b) MoS2-coated carbon
nanofoam, and (c) graphene-coated carbon nanofoam by field-emission scanning electron microscopy (insets are the
cross-sectional inspection); elemental mapping results of the (d) carbon nanofoam, (e) MoS2-coated carbon nanofoam,
and (f) graphene-coated carbon nanofoam by energy-dispersive X-ray spectroscopy; porosity analysis with (g) nitrogen
adsorption/desorption isotherms, (h) pore size distribution calculated with density functional theory (DFT) and Horvath–
Kawazoe (HK) theory, and (i) Barrett-Joyner-Halenda (BJH) pore size distribution.

With modification by MoS2 and graphene coating layers, the surface morphologies
of the MoS2-coated carbon nanofoam and the graphene-coated carbon nanofoam display
obvious surface coverage (Figure 1b,c). The chemical composition is analyzed by elemental
mapping through energy-dispersive X-ray spectroscopy, the results of which (Figure 1d–f
and Table 1) confirm the obvious elemental carbon signals (marked as green) in the carbon
nanofoam and the graphene-coated carbon nanofoam. Distinct elemental molybdenum
and sulfur signals (marked as orange and red, respectively) brought about by the MoS2
coating can be detected from the MoS2-coated carbon nanofoam.

Table 1. Chemical composition of carbon nanofoams.

Element (%) Carbon Nanofoam Mos2-Coated
Carbon Nanofoam

Graphene-Coated
Carbon Nanofoam

carbon 95.7 72.2 97.5

sulfur 0.0 6.5 0.0

molybdenum 0.0 19.6 0.0

oxygen 4.2 1.6 2.5

fluorine 0.1 0.1 0.0

Figure 1g–i summarizes the surface and porosity analysis of the carbon-nanofoam
samples. The three carbon nanofoams depict similar mixed IUPAC types I and IV isotherms,
showing micropore adsorption at the low relative pressure region (left plot in Figure 1g) and
a mesopore hysteresis loop at the high relative pressure region (right plot in Figure 1g) [29].

The pore-size distribution analysis indicates the appearance of both micropores and
small-sized mesopores with diameters of less than 5 nm (Figure 1h,i). The specific surface
area and total pore volume of the carbon nanofoam, the MoS2-coated carbon nanofoam,
and the graphene-coated carbon nanofoam are 146, 165, and 171 m2 g−1 and 0.86, 0.68, and
0.64 cm3 g−1, respectively. After the surface modification, the increase in surface area and
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the decrease in total pore volume suggest that the deposited coating layers generate slit
nanopores and cover the surface of the carbon nanofoam.

The average pore size decreases from 3.83 nm for the carbon nanofoam to 3.41 and
3.42 nm for the MoS2-coated carbon nanofoam and the graphene-coated carbon nanofoam,
respectively, and thus agrees with the surface-area and pore-volume trends. As a result,
the microstructural analysis affirms the functional decoration on the surface of the carbon
nanofoam with either MoS2 or graphene layers. However, the matrix substrates of the
modified carbon nanofoams are controlled with similar physical material characteristics.

3.2. Chemical Analysis of Carbon Nanofoam

Figure 2 summarizes the X-ray photoelectron spectroscopy (Figure 2a), Fourier-
transform infrared spectroscopy (Figure 2b), and Raman spectroscopy (Figure 2c) results
for the chemical analysis of the carbon nanofoams with and without surfacial modifications.
The X-ray photoelectron survey spectra confirm the sharp difference between, on one hand,
the carbon nanofoam and the graphene-coated carbon nanofoam, both of which feature a
strong carbon peak, and on the other hand, the MoS2-coated carbon nanofoam, which is
characterized by molybdenum and sulfur peaks (Figure 2a). As a reference, the oxygen
signal at 536 eV brought about by the O 1s peak is likely to result from the atmosphere.
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Subsequently, we analyze the X-ray photoelectron elemental characteristic peaks of
the samples. The carbon nanofoam and the graphene-coated carbon nanofoam both show
C 1s characteristic peaks (Figure 2d,g), including sp2 hybridization from the C=C bond
(284.5 eV), sp3 hybridization from the carbon clusters’ C-C bonds (285.5 eV), C-O bonds
(286.7 eV), and C=O bonds (287.7 eV) [26–28,30,31]. In contrast, the MoS2-coated carbon
nanofoam indicates Mo 3d and S 2s characteristic peaks, featuring Mo 3d3/2 (232.9 eV) and
Mo 3d5/2 (229.2 eV), along with S 2s (226.1 eV) arising from S2−.

The S 2p spin orbits are separated into S 2p3/2 (162.7 eV) and S 2p1/2 (163.8 eV), also
arising from S2−, based on the configuration of sulfur in MoS2 (Figure 2e,f) [23–25]. The
chemical analysis affirms the carbon nanofoam as a pure carbon matrix. Furthermore, the
successful modification of the carbon nanofoam with the graphene coating to form the
graphene-coated carbon nanofoam and with the MoS2 coating to generate the MoS2-coated
carbon nanofoam is also affirmed.

Figure 2b,c displays the results of surface chemical analysis using, respectively, Fourier-
transform infrared spectroscopy and Raman spectroscopy. The infrared spectra indicate
that the carbon nanofoams show no obvious differences in the surface functional groups
before and after functional coating with MoS2 and graphene. This conforms with the lack
of any other changes in the chemical properties or the formation of any impurities during
the fabrication processes (Figure 2b).

In consideration of the almost unchanged surface chemical composition, the Raman
spectrum is measured to analyze the carbon nanofoams by characterizing their degree of
graphitization. All carbon-nanofoam samples show the disordered carbon sp3 band due to
the disordered asymmetric vibration at 1350 cm−1 and the graphitic carbon sp2 band due to
the in-plane stretch at 1580 cm−1 (Figure 2c). The MoS2-coated carbon nanofoam displays
two additional characteristic E1

2g and A1g peaks at 381 and 406 cm−1, which are associated
with the in-plane and out-of-plane lattice vibrations of MoS2, respectively [23–25].

The intensity ratios between the disordered carbon band and the graphitic carbon
band are 0.84, 0.94, and 0.78 for the carbon nanofoam, the MoS2-coated carbon nanofoam,
and the graphene-coated carbon nanofoam, respectively. The carbon nanofoam and the
graphene-coated carbon nanofoam display a strong graphitic carbon sp2 band (i.e., a
relatively low ratio), which might result from the highly graphitized carbon backbone and
conductive graphene coating [12,32,33].

The chemical analysis shows that the carbon nanofoams decorated with MoS2 and
graphene only contain surface functional coatings, with no additional changes in the carbon
matrix. These two modification coating layers allow the materials to serve as excellent
platforms to explore the effect of the cathode configuration and material modification on
the electrochemical performance of lithium-sulfur battery cathodes.

3.3. Electrochemical Analysis of Carbon Nanofoam

Figure 3a–d shows the discharge/charge voltage profiles of the lithium-sulfur cells
at the C/20 rate with different carbon-nanofoam interlayers, i.e., the carbon-nanofoam
cathode (marked as the black box), the MoS2-coated carbon-nanofoam cathode (marked as
the red box), and the graphene-coated carbon-nanofoam (marked as the blue box). The
functional coating layers are configured to face the sulfur cathode to investigate their
functional performances. A cell with the conventional lithium-sulfur cell configuration
was prepared as the reference cathode, shown by the green box. The experimental cells
and reference cell all hold a fixed high sulfur loading and content of 4 mg cm−2 and
70 wt%, respectively [4,13–15].

In Figure 3a–d, the as-prepared cells are initially discharged to 1.8 V and subsequently
charged to 2.8 V as the cut-off discharge and charge voltage values, respectively, at the
C/20 rate. The discharge/charge voltage profiles depict two distinguishable discharge
plateaus. The upper discharge plateau starting at 2.3 V represents the reduction conversion
of solid-state elemental sulfur to liquid-state long-chain lithium polysulfides featuring
the chemical formula Li2Sx with x = 4–8. The formation of lithium polysulfides at this
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stage generates dissolved polysulfides, which have a high reactivity and function as the
catholyte, in the liquid electrolyte.
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This contrasts with a conventional sulfur cathode, in which it is common to observe
the rapid diffusion and uncontrollable migration of the dissolved polysulfides out of the
cathode, which causes the loss of active material, degradation of the cathode, and irre-
versible capacity loss [4,12,13]. The lower discharge plateau starting at 2.1 V is associated
with the subsequent conversion from the liquid-state lithium polysulfides to solid-state
lithium sulfides as a mixture of Li2S2/Li2S.

The liquid-to-solid conversion and material reduction reaction, along with the re-
deposition of the diffusing polysulfides on the surface of electrodes as the inactive zone
with high resistance, are sluggish processes [10,13]. In our work, all of the high-loading
sulfur cathodes with different types of carbon-nanofoam interlayers show approximately
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unchanged upper discharge plateaus and overlapping lower discharge plateaus during
100 continuous cycles, demonstrating the superior polysulfide retention and outstanding
reaction capability, respectively (Figure 3a–c).

In contrast, the reference sulfur cathode with a conventional cathode configuration
suffers from the inefficient and unstable electrochemical reaction of lithium-sulfur batteries,
showing a low peak discharge capacity of 559 mAh g−1 and requiring an activation process
of 20 cycles before reaching the maximum electrochemical utilization of the high amount
of insulating sulfur (Figure 3d). During the charge state, the two overlapping charge
plateaus at 2.2–2.3 V correspond to two reversible oxidation conversions: (1) from solid-
state lithium sulfides to lithium polysulfides (Li2S4–8) and (2) from Li2S4–8 to a Li2S8/sulfur
mixture [12,30,31].

The analysis of the discharge/charge voltage profiles demonstrates that the adoption
of the carbon-nanofoam interlayer endows the high-loading sulfur cathode with (1) strong
polysulfide retention because the tortuous and porous network of the carbon nanofoam
inhibits the rapid leakage of liquid polysulfides out of the cathode, and (2) high reaction
kinetics because the conductive network of the carbon-nanofoam interlayer enables rapid
electron transfer in the cathode, as shown in the electrochemical impedance data.

The impedance data demonstrated the significant decrease of the cathode resistance
of the cell with the carbon-nanofoam interlayer (Figure 3e), which also maintained a
low cell impedance after cycling (Figure 3f). Moreover, the polysulfides trapped in
the cathode region of the cells function as a catholyte because of the strong reactivity
of dissolved polysulfides. They further improve the electrochemical utilization of the
high-loading sulfur cathode, resulting in enhanced high charge-storage capacity values
of 1381–1484 mAh g−1 [4,12,22].

Subsequently, we investigate the voltage values of the long, flat lower discharge
plateau and the charge plateau to characterize the electrochemical polarization of the cells.
Figure 3a–d displays the relatively weak polarization of the cells with carbon-nanofoam in-
terlayers. This demonstrates that the adoption of the carbon-nanofoam interlayer mitigates
the increasing large-voltage hysteresis originally brought about by the continuous diffusion
of the liquid-state polysulfides and the repeated deposition of insulating solid-state active
materials on the cathode.

We further design an analytical cell with an additional carbon paper to examine
the polysulfide-trapping capability of the modified cell with the carbon-nanofoam inter-
layer. Specifically, the designed cell has a sulfur cathode, a carbon-nanofoam interlayer,
a polypropylene membrane, additional carbon paper, another polypropylene membrane,
and a metallic lithium counter electrode. Figure 4a,b displays the microstructural and
elemental analysis of the cycled additional carbon paper facing the cathode side and the
anode side, respectively.
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Our analytical results confirm almost no sulfur-related morphology and elemental
signals that can be detected, demonstrating the excellent polysulfide retention and related
high chemical stability. This provides solid evidence for the advantages of using the
carbon-nanofoam interlayer to improve the active-material utilization and electrochemical
stability [20–22]. Furthermore, it is found that the carbon-nanofoam interlayers modi-
fied with the MoS2 and graphene surface coatings display similar discharge and charge
performances to the unmodified coatings, implying similar improvements in the battery
electrochemistry (Figure 3b,c).

To support the above-mentioned performance comparison, Figure 5 summarizes
the discharge/charge voltage profiles of the cells at the C/10 rate. At the cycling rate
of C/10, the cells with various carbon-nanofoam interlayers display similar high elec-
trochemical performances. The overlapping discharge and charge curves indicate the
superior cycle stability, while the similar discharge and charge capacity values represent
the high electrochemical reversibility of the sulfur cathode, which is contributed to by these
carbon-nanofoam interlayers [4,10,12].
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However, the voltage hysteresis caused by the high current density increases when
the carbon-nanofoam interlayers are decorated with functional coatings. This might
be associated with the covering of the carbon nanofoam by the functional coatings as
revealed in the physicochemical analysis. Although the coating layers contribute to a
slight increase in the surface area and additional electrochemical functions, they block
access to the nanopores, in which polysulfides would be trapped and stabilized to serve
as the electrochemical catholyte.

Thus, the MoS2-coated carbon-nanofoam and graphene-coated carbon-nanofoam
interlayers provide limited improvements, which suggests that the modification of the
cell configuration with the carbon-nanofoam interlayer affords a major improvement
in conversion lithium–sulfur battery cathodes. In sharp contrast with the modified
cathode, the reference cathode cannot normally cycle with such a high amount of sulfur.
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At a high current density, the insulating sulfur and the serious polysulfide diffusion
in the high-loading sulfur cathode pose challenges in developing high-energy-density
lithium–sulfur cells with the conventional cathode configuration—namely, the high
electrochemical polarization, the inefficient electrochemical utilization, and the poor
reaction stability [13–16,32–34].

Additional electrochemical evidence is shown in Figure 6, which summarizes the
cyclic voltammetry (CV) curves of the high-loading sulfur cathodes with and without the
carbon-nanofoam interlayers at a 0.01 mV s−1 scanning rate. The CV curves of the cells
with the carbon-nanofoam interlayers agree with the discharge and charge voltage profiles,
depicting the stable and reversible redox reactions (Figure 6a–c). The IR drop shown in the
cell might result from the use of the high amount of sulfur and the reducing amount of
electrolyte, while causing limited impacts on the redox scans.

Nanomaterials 2021, 11, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 6. Electrochemical analysis: cyclic voltammetry (CV) analysis of the sulfur cathodes with (a) the carbon-nanofoam 
interlayer, (b) the MoS2-coated carbon-nanofoam interlayer, (c) the graphene-coated carbon-nanofoam interlayer, (d) the 
reference cathode, and (e) various carbon-nanofoam interlayers. 

3.4. Lithium-Sulfur Cell Performance of Carbon Nanofoam 
Figure 7a,b shows the cycling performance of the high-loading sulfur cathodes with 

and without the carbon-nanofoam interlayers at the C/20 and C/10 rates for 200 cycles. In 
Figure 7a, the cells with the carbon-nanofoam interlayer, the MoS2-coated carbon-
nanofoam interlayer, the graphene-coated carbon-nanofoam interlayer, and the reference 
cathode show peak discharge capacity values of 1381, 1462, 1484, and 558 mAh g−1, re-
spectively, and reversible discharge capacity values of 757, 552, 572, and 357 mAh g−1, 
respectively, after 100 cycles at the C/20 rate.  

The cycling performances demonstrate that the modified cathode configuration with 
the carbon-nanofoam interlayer results in a significant improvement in the electrochemi-
cal utilization from 33% to 82–89%. Moreover, the carbon-nanofoam interlayers, which 
accelerate the charge transfer, solve the problem of inefficient activation of the high-load-
ing sulfur reference cathode. Among these interlayers, the cell with the carbon-nanofoam 
interlayer retains the highest reversible discharge capacity and the best cycle stability after 
the long period of cycling with an extended cycle life toward 200 cycles. 

Figure 6. Electrochemical analysis: cyclic voltammetry (CV) analysis of the sulfur cathodes with (a) the carbon-nanofoam
interlayer, (b) the MoS2-coated carbon-nanofoam interlayer, (c) the graphene-coated carbon-nanofoam interlayer, (d) the
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Among these optimal cathode configurations, the cathode with the carbon nanofoam
displays the highest electrochemical reversibility, featuring the shift of the reduction peaks
toward high voltages (marked by a red arrow), while the oxidation peaks shift toward low
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voltages (marked by a blue arrow) [7,12,13]. In stark contrast, the reference sulfur cathode
shows a decrease in the electrochemical reversibility and an increase in the polarization.
Moreover, it suffers a low electrochemical utilization (Figure 6d,e).

3.4. Lithium-Sulfur Cell Performance of Carbon Nanofoam

Figure 7a,b shows the cycling performance of the high-loading sulfur cathodes with
and without the carbon-nanofoam interlayers at the C/20 and C/10 rates for 200 cycles. In
Figure 7a, the cells with the carbon-nanofoam interlayer, the MoS2-coated carbon-nanofoam
interlayer, the graphene-coated carbon-nanofoam interlayer, and the reference cathode
show peak discharge capacity values of 1381, 1462, 1484, and 558 mAh g−1, respectively,
and reversible discharge capacity values of 757, 552, 572, and 357 mAh g−1, respectively,
after 100 cycles at the C/20 rate.
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The cycling performances demonstrate that the modified cathode configuration with
the carbon-nanofoam interlayer results in a significant improvement in the electrochemical
utilization from 33% to 82–89%. Moreover, the carbon-nanofoam interlayers, which acceler-
ate the charge transfer, solve the problem of inefficient activation of the high-loading sulfur
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reference cathode. Among these interlayers, the cell with the carbon-nanofoam interlayer
retains the highest reversible discharge capacity and the best cycle stability after the long
period of cycling with an extended cycle life toward 200 cycles.

When the cycling rate increases to C/10, Figure 7b shows that the cells with the carbon-
nanofoam interlayer, the MoS2-coated carbon-nanofoam interlayer, and the graphene-
coated carbon-nanofoam interlayer all display high peak and reversible (given in parenthe-
ses) discharge capacities after 200 cycles of 1125 (500), 1109 (413), and 1115 (428) mAh g−1,
respectively. However, the reference cathode shows low peak and reversible capacities of
432 and 222 mAh g−1, respectively, after 100 cycles. The cells with the carbon-nanofoam
interlayers again demonstrate the highest electrochemical utilization and stability at this
high cycling rate.

High-rate testing also confirms the significant improvement in the cell performance
with the use of the carbon-nanofoam interlayer. The carbon-nanofoam interlayer again
outperforms the modified samples. In contrast, the reference cathode encounters low
utilization of 25% and basically fails after 40 cycles. The performance metrics on each type
of interlayer, and the references are summarized in Table 2 as a reference. In addition to the
cell capacities, the Coulombic efficiency agrees with the capacity performance and shows
enhancement when the carbon-nanofoam interlayer is applied in the cell.

Table 2. Performance comparison of the cells with each type of interlayer at the C/20 and C/10 rates.

Carbon-Nanofoam
Interlayer

MoS2-Coated
Carbon-Nanofoam

Interlayer

Graphene-Coated
Carbon-Nanofoam

Interlayer
Reference

C/20 analysis

peak capacity
[mAh g−1] 1381 1462 1484 558

reversible capacity
[mAh g−1] 680 552 572 357

cycle life 200 100 100 100

retention rate 49% 38% 39% 64%

C/10 analysis

peak capacity
[mAh g−1] 1125 1109 1115 432

reversible capacity
[mAh g−1] 500 413 428 222

cycle life 200 200 200 100

retention rate 44% 37% 38% 51%

The cell without the carbon-nanofoam interlayer suffers an unstable Coulombic ef-
ficiency during the initial activation cycling and faces a relative low efficiency in the
subsequent cycles. In contrast, the carbon-nanofoam interlayers function as the additional
upper current collector in the cell, which offers fast electron transfer and lithium-ion
diffusion. Thus, the modified cells have high and stable Coulombic efficiency in the
cycling-performance analysis.

On the basis of the electrochemical characteristics analyzed above, we optimize the
cell with the carbon-nanofoam interlayer and attain an increased (doubled) sulfur loading
of 8 mg cm−2 and a decreased electrolyte-to-sulfur ratio of 10 µL mg−1 to evaluate the
feasibility of our cell design. Figure 7c shows that the high-loading sulfur cathode with the
carbon-nanofoam interlayer attains a high discharge capacity of 1087 mAh g−1, approaches
65% utilization, and features a high electrochemical reversibility at the C/20 rate in the
lean-electrolyte lithium-sulfur cell.
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The development of a high-loading sulfur cathode with a high electrochemical utiliza-
tion is the key for the lithium–sulfur battery to attain a high energy density. Accordingly,
we analyze the specific areal capacity and energy density of the cell, as shown in Figure 7d.
The cells featuring the high-loading sulfur cathode and lean-electrolyte conditions attain
high specific areal capacity and energy density of 8.7 mAh cm−2 and 18.7 mWh cm−2,
respectively. At the C/10 rate, the same high-loading sulfur cathode realizes a long cycle
life of 200 cycles and a high discharge capacity of 1057 mAh g−1, which corresponds to
high areal capacity and energy density of 8.4 mAh cm−2 and 18.2 mWh cm−2, respectively
(Figure 7e,f).

Therefore, the application of the carbon-nanofoam interlayers results in outstanding
performance improvements and outperforms the values needed for powering electric
vehicles (i.e., 2–4 mAh cm−2) and for serving as an alternative to the conventional lithium-
ion battery cathode (i.e., 11 mWh cm−2) [4,9–12]. Moreover, a comparison with other state-
of-the-art works in high sulfur loading systems suggests the carbon-nanofoam interlayer
that could attain a good balance in the battery performances (e.g., high amount of sulfur
and low amount of electrolyte) and electrochemical characteristics (e.g., discharge capacity,
areal capacity, and cycle life, etc.).

Thus, the comparison demonstrates the cell configuration of adopting the carbon-
nanofoam interlayer and the related progresses in references as possible cell development
in future lithium-sulfur research (Table 3) [35–45].

Table 3. Comparative analysis of the battery performances and electrochemical characteristics of the
high-loading sulfur cathode systems.

a b c d e f g h

8 10 1057 8.4 42 200 C/10 This work

3 20 1085 3.3 95 50 C/5 [35]

3 20 867 2.6 90 200 1C [35]

8.5 30 1150 9.8 79 100 C/2 [36]

8.5 30 952 8.1 75 200 C/5 [36]

12 20 1126 13.5 71 50 C/5 [37]

4 31 800 3.2 85 100 1C [38]

6 31 600 3.6 75 100 1C [38]

6 31 1059 6.3 78 100 1C [38]

8 6.25 663 5.3 85 100 C/5 [39]

6.8 12 1000 6.8 88 10 C/20 [40]

6.3 13 1100 6.9 87 10 C/20 [40]

5 20 1104 5.5 72 80 C/10 [41]

6.8 20 1387 9.4 69 30 C/10 [41]

4 20 1000 4 70 70 C/5 [42]

4 10 1084 4.3 75 100 C/10 [43]

4 20 981 3.9 60 50 C/10 [44]

6 20 637 3.8 69 50 C/10 [44]

3.2 8 1150 3.7 45 120 C/10 [45]

a. sulfur loading [mg cm−2]; b. electrolyte-to-sulfur ratio [µL mg−1]; c. peak capacity [mAh g−1]; d. areal capacity
[mAh cm−2]; e. capacity retention [%]; f. cycle life; g. cycling rate; and h. reference.

4. Conclusions

In summary, we designed, modified, and investigated the effect of applying a carbon-
nanofoam interlayer in lean-electrolyte lithium–sulfur cells with high-loading sulfur cath-
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odes. The carbon-nanofoam interlayer inserted between the sulfur cathode and the separa-
tor possessed a tortuous and porous carbon network for decreasing the migration of liquid
polysulfides and increasing the transfer of electrons and lithium ions in the high-loading
sulfur cathodes.

As a result, lithium-sulfur cells with a carbon-nanofoam interlayer enabled the cathode
to hold a high sulfur content of 70 wt% and a high sulfur loading of 8 mg cm−2, while
attaining a high charge-storage capacity of 1087 mAh g−1 at a low electrolyte-to-sulfur
ratio of 10 µL mg−1; these are the necessary parameters for developing a lithium-sulfur
battery cathode with a high energy density.

In support of this, the high-loading sulfur cathode demonstrated a superior areal
capacity of 8.7 mAh cm−2 and an excellent energy density of 18.7 mWh cm−2, which are
comparable to currently available lithium-ion cells (2–4 mAh cm−2 and 11 mWh cm−2).
Moreover, our comparison analysis of the modification of the cell configuration and the
material properties demonstrates that the modified carbon-nanofoam interlayers also
improved the overall electrochemical characteristics. The major contribution resulted from
the configuration design, namely, the adoption of a carbon nanofoam as the interlayer in
the cell.
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