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Section S1. Nanolaser output power and zero-delay second-order autocorrelation

The black curve in Figure S1a shows the output photon number of a nanolaser with =
0.1 (other parameters given in the main paper) as a function of (normalized) pump. If we
suppose that the emission wavelength is A = 1um, we can compute the output power (red
curve and red scale on the right-hand-side of the graph). The power can reach 4 uW for
pump P =5Pu. Figure S1b shows the second-order zero-delay autocorrelation function of
the output photons (¢?(0)) as a function of pump. g@?(0) quickly grows beyond the conven-
tionally fixed “threshold” value[1] (not matching the real threshold in a nanolaser), reach-
ing a maximum at P = 1.5Pu. The ensuing decay is slow and the autocorrelation does not
reach fully coherent emission (¢®(0)=1) even at P =5Pu. The functional shape ofg®(0)indi-
cates abroad transition between fully spontaneous and laser emission. Weremark thatin the
intervall.l S P% < 2.7Pythe autocorrelation g®(0) > 2 indicating superthermal emission

statistics.
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Figure S1. (a) Output photon number as a function of pump (black); power output by the nano-
laser (red). (b) Second-order autocorrelation function (g®(0)) as function of pump. g =0.1.



Section S2. Estimate of the conditions on the relative standard deviation

One of the indicators used in the main paper to assess the presence of photon bursts
is the relative amplitude of the signal’s standard deviation compared to its average. In the
general case, the complex sequence of irregularly shaped and spaced pulses, of widely
different amplitude (over orders of magnitude), which constitute the laser output is diffi-
cult to analyse. However, we can get an idea of the conditions under which the standard
deviation of the signal can exceed its average on the basis of a simple example.

Suppose a square signal s(t) of amplitude A, over a 0 offset, period* T and duty cycle
o:

¥ Periodicity is not indispensable, since the signal can have a single peak in the meas-
urement time T. It renders, however, the rest of the reasoning simpler.

A 0<t <TS

s(@) = {o, TS <t <T (1)

Sampling with a time step 7,supposed commensurate with 6 and T,provides an ensem-
ble of N measured points (N- = T), from which the average is computed in a straightfor-
ward way:

N;AS
N’

()= (82)

= A5, (S3)

since computation over the time interval T suffices for a periodic signal. The same
argument applies for the next step.
Its variance, defined for an ensemble of M samples s; as

52 = 2Ly (sj=(s)?

M-1 (S4)

2 _ Ng8(A—A8)2+N7(1-8)(AS)?
o= (N-D)t (S5)
~ A?[6(1 —86)2 + (1 — 6)67] (S6)
= A2[6 — 62] (S7)

where, in passing from eq. (S5) to eq. (S56), we have supposed a sufficiently large
number of measurement points (N = 10).
Computing the ratio between the variance and the square of the average and impos-

ing
o
5> 1 (S8)
We immediately obtain

o> §-6° s

<S)2 - 62 ( )
§—62> §2 (510)
s< L (S11)

Thus, the only condition to be fulfilled (irrespective of the amplitude A) is that the
pulse should not occupy more than approximately 0.7T. The condition obtained here is
quite simple, thanks to the chosen signal.



In the real situation, the expression will be more complex and will depend on the
different amplitudes, pulse widths and shapes. An equivalent condition will not be as
simple as the one of eq. (S11) and will, in general, need to be solved numerically. However,
the principle stands and its simple illustration helps understanding the reason why the
standard deviation will be larger than the average in a signal which consists of isolated
pulses. Since the independence of the pulses, i.e. their being separated by intervals with 0
stimulated photons, is the key to a broader linewidth - thus low coherence -, then the
criterion employed in the paper is useful and holds.

Section S3. Functional dependence of the relative fluctuations

In order to delimit the range in which the relative fluctuations indicate pulse inde-

pendence, we define the relative standard deviation of the signal as p = %, with the no-

tation of the previous section. The condition expressed by eq. (S8) defines the extrema of
region 2 (yellow) depicted in Figue 3 and 4 of the main paper.

Figure S2 displays the dependence of p on pump for the four feedback cases dis-
cussed in the main paper; the yellow-shaded region is defined by eq. (58) and its infor-
mation is used to delimit its boundaries (normalized pump values) in the main paper.
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Figure S2. Calculated values of p (“Ratio” in vertical scale) for n=0.005 (a); 0.01 (b); 0.05 (c); and

0.1 (d).



Section S4. Time-delayed second-order autocorrelation with optical feedback

Figure S3 shows the temporal second-order correlation functions (g@(t )) for the cor-
responding dynamics. From this figure, it is possible to read off the graph the value of the
zero-delay autocorrelation, used in the discussion of Section 4.2 (main paper).
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Figure S3. Second-order autocorrelation function (g@(t )) with time delay for the dynamics ob-
served at: P =1.6Py and n = 0.005 (a), P = 1.5Pnand 1 =0.01 (b), P = 1.3Ps and = 0.05 (c), and P =
1.15P# and 1=0.1 (d).

When the feedback fraction is very weak, ~0.5%, a large central peak (at zero delay)
and two side peaks are observed (Figure S3a). The central peak associated with g@(t) >
2.5 identifies superthermal photon statistics associated with isolated pulses, while the two
small side-peaks identify a residual autocorrelation at the level of the external cavity
roundtrip. Increasing the feedback fraction to 1% sees a reduction in the superthermal
component, accompanied by a growth of the autocorrelation with the returning pulses. A
further increase, to 5%, enhances the growth of the side-peaks with the autocorrelation
extending to four cavity roundrips and barely superthermal statistics at T = 0. Finally,
when the feedback fraction reaches 10%, g®(t) < 2 signals the end of superthermal statis-
tics; however, we still find g?(0) > 1.6 (cf. main paper). It is interesting to note that at this
feedback value the autocorrelation with the first cavity roundtrip is as large as the one at
©=0 and the decay with additional roundtrips is slower.

S5. Radiofrequency spectra of the signal with optical feedback

Fourier-transforming the temporal signals computed at p;,,, for the different feed-
back levels we obtain the radiofrequency (rf) spectra shown in Figure 54, displayed in
double-logarithmic scale. At the lowest feedback level (panel (a)) the rf spectrum pos-
sesses almost no structure: one can barely recognize a small feature around 1 GHz, match-
ing the nanolaser internal time constants. This peak become slightly more noticeable, to-
gether with a few harmonics, in panel (b), but the overall spectrum remains dominated
by noise. Starting from panel (c) a broad component associated with the external cavity
(at 0.25 GHz for the values taken in the main paper) starts to emerge [2], becoming more
visible in its harmonics and combining with the internal nanolaser’s time constants. The
periodicity now appears quite clearly, although it wasn’t identifiable in the temporal



signal [3]. The features develop even further in panel (d), where a substantial frequency
comb can be recognized on top of a noise floor which is at best approximately 20dB below.
In spite of the visibility of the different frequency components, the rf spectrum remains
quite noisy.
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Figure S4. Nanolaser rf spectra for the temporal dynamics corresponding to: P =1.6Pu and n =
0.005 (a), P =1.5Pm and = 0.01 (b), P =1.3Pmand n=0.05 (c), and P = 1.15Pwand 1 = 0.1 (d).
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