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Abstract: Lasers distinguish themselves for the high coherence and high brightness of their radiation,
features which have been exploited both in fundamental research and a broad range of technolo-
gies. However, emerging applications in the field of imaging, which can benefit from brightness,
directionality and efficiency, are impaired by the speckle noise superimposed onto the picture by
the interference of coherent scattered fields. We contribute a novel approach to the longstanding
efforts in speckle noise reduction by exploiting a new emission regime typical of nanolasers, where
low-coherence laser pulses are spontaneously emitted below the laser threshold. Exploring the
dynamic properties of this kind of emission in the presence of optical reinjection we show, through
the numerical analysis of a fully stochastic approach, that it is possible to tailor some of the properties
of the emitted radiation, in addition to exploiting this naturally existing regime. This investigation,
therefore, proposes semiconductor nanolasers as potential attractive, miniaturized and versatile
future sources of low-coherence radiation for imaging.

Keywords: semiconductor nanolaser; superthermal emission; speckle reduction; self-feedback;
low-coherence

1. Introduction

Since the first demonstration by Maiman in 1960, lasers have become indispensable
light sources that enable a wide range of consumer technologies and data communication
systems while also promoting fundamental research in different fields [1]. Technological
applications have also driven the search for miniaturization [2–5], which has attained,
with advanced nanotechnology and nanofabrication, ultra-compact dimensions [6]. Ini-
tiated with the Vertical-Cavity Surface-Emitting Laser (VCSEL) [7] and passing through
microdisks lasers (e.g., in whispering gallery configurations [8]), photonic crystal lasers [9]
and plasmonic nanolasers [4,10–12], the cavity volume has shrunk to subwavelength size.
Thanks to the limited number of optical modes in such small cavities, the spontaneous
emission coupling factor β (fraction of spontaneous emission coupled into the lasing mode)
become non-negligible, allowing for the amplification by stimulated emission at lower
pumps; thus, reducing the laser threshold [13]. The emerging small-footprint, ultralow
threshold nanolasers now enable a wide variety of applications in different fields [14–17].
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Laser imaging, among them, has been attracting a great deal of attention thanks to
the high brightness of its radiation, strong directionality, excellent color purity and high
efficiency [18]. One additional advantage is the longer lifetime, normally one order of
magnitude longer than that of arc lamps, while maintaining good properties throughout
its operation [19]. It is, therefore, only natural that lasers should have attracted attention
in the realm of imaging. However, the typical benefit offered by laser light—high spatial
and temporal coherence [20]—does become a shortcoming when illumination is concerned
since it leads to coherence artifacts and cross-talk in full-field imaging and display [21]:
speckle noise is the most common manifestation of such an artifact, stemming from random
interference patterns, which result from the coherent addition of scattered photons. Speck-
les are indeed a longstanding issue that reduce spatial resolution and image quality [22];
thus, hindering the use of lasers in full-field imaging applications [23].

Over the decades, different technologies have been developed for speckle-free laser
illumination, with most strategies based on the reduction of spatial and temporal coherence
of the laser emission [24–26], after early attempts at using Light-Emitting Diodes (LEDs)
proved their strong power limitations [27]. Alternative techniques chose to circumvent the
laser coherence through raster-scanning modalities [20], but the intrinsically slow scanning
speeds strongly limited the temporal response, thus the system’s efficiency.

In order to reduce or eliminate speckle noise, different technologies have been devel-
oped for speckle-free uniform illumination, and most strategies are based on the reduction
of spatial and temporal coherence of laser emission [24–26]. Lamps and LEDs were the
initial choices, with the unfortunate accompanying power limitations [27]. Alternatives
based on raster-scanning modalities in laser-based imaging systems [20] turned out to be
too time-consuming, thus not sufficiently efficient. New cavity geometries [28,29], optical
feedback, other dynamics [25,30–32] and random lasers and supercontinuum sources [20]
were studied as low-coherence sources. Recently, an experimental investigation reported on
the speckle patterns obtained from modulated microlasers and coupled-cavity nanolasers,
where unexpected non-Rayleigh statistics could be related to ultrafast temporal fluctua-
tions [33]. There the authors examine, in parallel, techniques to reduce emission coherence
in an edge-emitting semiconductor laser and in the coupled nanolasers. Notice that an
edge-emitter has a sufficiently large cavity volume (to simplify the image) to be considered
a macroscopic laser, in spite of its reduced physical size [34–36]. This interesting parallel
highlights the intrinsic differences between the two kinds of sources and the potential that
nanodevices hold over macroscopic ones, as long as the photon flux delivers sufficient
illumination.

Following this promising experimental demonstration, we focus here on a simpler
system: a single nanolaser operated in the low-coherence emission regime, which naturally
precedes the laser threshold. The interest resides in characterizing the potential usefulness
of this intrinsic emission region, normally considered a shortcoming of ultra-small devices,
to exploit its features at virtually no cost! Through simulations based on stochastic mod-
eling of the photon emission, we numerically investigate the dynamic properties of their
light in the lasing transition (threshold) region. In particular, we examine the possibility of
exploiting the low coherence of the photon bursts that appear (as a form of Amplified Spon-
taneous Emission—ASE), with superthermal statistics (g(2)(0) > 2): proof of a dynamics
consisting of independent photon spikes. Adding one external degree of freedom—optical
feedback—we study the degree of control that can be gained on the emission properties.
The aim is to study application-oriented, low-coherence light from sources possessing a
very high efficiency, an extremely low thermal load and are so small as to be integrated
on-chip or packaged close to fiber tips.

2. Experimental Implementability and Practical Interest

In order to motivate the investigation, we are going to examine a couple of possible
implementations to evaluate their degree of interest and their potential impact. Our
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somewhat arbitrary choices are made for the sake of example, knowing that in a short time
technological progress will enable even better schemes.

The first realization that can be envisaged is based on photonic crystal cavity nanolasers,
electrically pumped and coupled to a waveguide, as in [37]. This choice allows us to exam-
ine some important properties of feedback into a nanolaser, under realistic conditions and
with features that match those of actual devices.

Nanolaser output, in this configuration, is coupled into an underlying waveguide
through suitable mode leakage and in an amount that is controlled during manufacturing.
The symmetry of the configuration allows for the insertion of feedback at one end of the
waveguide, which can be coupled to an optical fiber. The fiber length and termination (as
well as fiber properties, such as added nanoscatterers [38]) determine the properties of
the feedback arm: time delay and amplitude of the backscattered component. The other
waveguide end couples the light out of the package, allowing for the inclusion of either
coupling to another fiber to guide the light to the target or of matching optics to obtain a
beam spot of the desired size on the target. Even though this ensemble of functionalities is
not part of a standardized routine, all the steps are well mastered and can be counted upon
to obtain functional components.

As shown in Figure S1, the amount of power to be expected in the nanolaser output–
for the emission regime, which concerns this paper—is in the µWatt range. While such
power levels provide only a very low level of lighting, the compactness of the source
opens the way for a niche of applications where low photon fluxes are more than adequate
and even particularly suitable. Medical probes are the first kind of devices where the
performance of a low-coherence nanolaser may be envisaged, thanks to the close proximity
of the environment and often the need for ultralow light levels (e.g., in ophthalmology).
The extremely reduced footprint, together with very low power consumption and favorable
thermal load, render a nanolaser-based illumination source integrable directly into probes.
The laser’s feedback arm, in the form of a length of fiber, could be integrated into the
bundle cord that supplies power and retrieves information, enabling the construction of a
compact and flexible system.

A second realization targets stronger lighting levels. In Section 5.1, we compare the
nanolaser emission to that of an equivalent-sized LED to show that its output is at least
twice as intense; thus, offering better efficiency. LEDs are ideally suited as low-coherence
illumination sources, being readily available and quite powerful. As such, they easily
surpass the current expectations of nanolasers. However, it is not impossible to envisage
future developments of nanolaser arrays operating in a low-coherence regime with a
construction geometry similar to what is used for pumping solid-state lasers with diodes.
The micropillar nanolaser configuration (based on VCSEL geometry) would be particularly
suited to this task. Its advantages, in addition to superior individual source efficiency,
could be summarized as follows:

1. Different micropillar nanolasers emit independently of one another, resulting in a lack
of mutual coherence; thus, immediately improving on the (low) coherence properties
expected from the source.

2. The useful illumination results from the direct sum of the power output by each source.
3. Collective feedback could reinject light into the array through reflective (or refractive)

optics, mixing the photons emitted by the individual sources [39]; thus, further lowering
the coherence of the array’s output.

4. Diffractive optics, engraved onto the top surface of the array, could be used to control
the overall beam divergence, tailoring to the needs of the envisaged application [40].

Obtaining uniform features across the nanolaser matrix, ensuring the same operating
regime, is a challenge, but similar issues are already being addressed for neuromorphic
computing [41], where locking capabilities impose more stringent constraints than those
imposed by lighting. Arrays with 100 × 100 elements could provide illumination in the
range of 10 mW, offering alternative, compact sources whose tunable properties differ
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from those of LEDs. As such, they would not necessarily position themselves as LED
replacements but rather as sources with complementary properties.

3. Numerical Simulations Based on a Fully Stochastic Method

In order to properly account for the statistical properties of the emission in the
transition region, characterized by photon bursts [42,43], we make use of a Stochastic
Simulator [44] (or Stochastic Laser Simulator, SLS), based on a semiclassical description [45]
of lasing. The intrinsic advantage of the SLS is the rapid prediction of trajectories, and their
statistics, without any hypotheses on the noise structure: all physical processes (including
spontaneous emission, relaxations and photon transmission and reinjection) are modeled as
probabilistic processes based on their characteristic time constants. This approach permits
a high-quality reproduction of the physical properties of a laser without the difficulties that
are inherent in the simulation of added noise sources [46,47]. It is important to stress that
the discrete description of the interaction between photons and emitters—intrinsically dis-
crete since only integer quanta can be exchanged—inherently contains all the noise sources
without any need for additional assumptions while reproducing analytical noise features,
which are much more difficult to obtain from numerical simulations with Langevin noise
sources [47].

The numerical scheme is the same as the one implemented in [48]; therefore, we refer
the reader to that publication for all details. For this investigation, we set the delay length
to 60 cm, corresponding to 4 ns time delay. This choice represents a compromise between a
sufficiently long delay to simulate interesting incoherent feedback (when the dynamics do
not allow for continuous oscillation) and a short enough one to avoid extremely lengthy
computations. Towards the end of the manuscript, we will discuss the extrapolation to
different delay lengths and their usefulness.

All pump values are normalized by the so-called threshold pump Pth expressed by
Pth = Γc

β [34]. This pump value, which corresponds to the midpoint in the steep portion of
the steady-state curve representing photon number vs. pump [48], should not be confused
with the true laser threshold, which takes place at larger pump values for a nanolaser.
The feedback fraction is the ratio between the photons injected into the laser and the total
output photons, defined by

η =
Sinj

Sout
, (1)

where Sinj denotes the photon number injected into the laser, and Sout represents the
photon number outcoupled from the cavity. We explicitly introduce this parameter to
mimic experimental setups where the reflectivity of one mirror is fixed, but the feedback
tuning can be achieved through an additional element (e.g., an optical filter).

An intrinsic property of the SLS is its reliance on the radiation-matter interaction based
on photon numbers. As such, it is not capable of providing direct spectral (or coherence)
information, a shortcoming around which we need to develop an investigation strategy
to answer questions related to low-coherence emission. Making up for this indubitable
drawback, the SLS is the only existing laser model capable of predicting the (observed) pre-
threshold dynamics. Thus, it is at the present time irreplaceable, in spite of the incomplete
information that it can provide.

4. Investigation Strategy

Although the SLS model does not provide any information about the optical spectrum
or the electric field, we can infer some of the coherence properties with the help of photon
statistics. The statistical properties of laser emission can be characterized through the
second-order correlation function [49]

g(2)(τ) =
〈S(t) · S(t + τ)〉
〈S(t)〉2

(2)
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where 〈·〉 indicates the time averaging (we are ignoring the spontaneous emission contri-
bution, small in the parameter range of interest). As is well-known [50], the second-order
autocorrelation function gives g(2)(τ) = 1 for a coherent signal, since its statistics are pois-
sonian. Thermal (or chaotic) radiation, described by Gaussian statistics, gives g(2)(0) = 2,
which decays towards g(2)(τ) → 1 as τ → ∞: photons that are progressively distant
in time become gradually independent; thus, converging towards a Poisson probability
distribution.

Superthermal statistics, g(2)(0) > 2, correspond to highly bunched photons, whose
mutual, zero-delay (τ = 0) correlation is a representation of pulsing behavior [36,42,43,51].
The physical origin of the pulses is the rapid amplification of a fluctuation through stim-
ulated emission due to an excess of accumulated energy in the material (population
inversion) [43]. The phenomenon is the extreme form of the depletion that occurs when
switching up the pump in a class B laser [52], where coupled oscillations take hold between
population and photon number (e.g., spiraling trajectories in phase space [53]). In lasers
with a particularly large gain, such as Nd:glass ones [54], the first photon pulse is so large
as to deplete the emission to such an extent as to discontinue the stimulated process.

In a nanolaser, the large photon bursts that precede the nanolaser threshold deplete
the energy reservoir, causing their own extinction [43]. Since coherence is established
and maintained by the action of stimulated emission—even though each photon burst is
(partially) coherent with itself (due to the broadband properties of ASE [55–58]), subsequent
pulses are mutually incoherent as they start from a different initiating (spontaneous)
photons. Therefore, averaging over a large number of pulses produces radiation with very
little coherence. Hence, we can use the information provided by g(2)(0) as a first indirect
indicator of (in-)coherence in the photon burst regime.

Figure 1 shows the second-order autocorrelation function of a free-running nanolaser
with β = 0.1. The autocorrelation exhibits a broad peak with a strongly superthermal
maximum [59] at P ≈ 1.5Pth, which slowly decays with a growing pump, not quite reaching
full Poissonian statistics (full coherence) in the displayed pump range. We will later show
(Section 5.1) that the large autocorrelation value matches the emission of independent
pulses, as experimentally observed in a microcavity laser [36].

Superthermal statistics are a guarantee of strong bunching, but the emission of in-
dependent photon bursts extends beyond its features. Experimental measurements on a
microlaser show that independent photon bursts exist until g(2)(0) ≈ 1.6. Thus, we can
infer that low-coherence emissions should exist on a broader pump interval than the one
defined by g(2)(0) > 2. Strengthening this case, the experimental measurement of the
emission spectrum in a nanolaser, through the first-order autocorrelation g(1), showed
broadband emission in concomitance with superpossonian photon statistics [60]. This fea-
ture, normally considered an intrinsic disadvantage of the smallest devices, turns here into
an advantage, rendering the realization of low-coherence beams easier than in standard
semiconductor lasers [33].

Global considerations predict favorable conditions for illumination applications in a
rather broad pump range. At the same time, the lack of phase information in all models
grounded in the phenomenological description of the interaction [45], even when fully
stochastic [44,61–63], recommends particular care in interpreting the predictions. Thus,
in the following, we will carefully analyze our results to ensure the plausibility of the
predicted low coherence level. Since the latter cannot be quantified within this framework,
we propose the challenge for its a posteriori verification in suitable experiments.



Nanomaterials 2021, 11, 3325 6 of 18

Figure 1. Second-order autocurrelation function (g(2)(0)) of laser emission with pump.

5. Results and Discussion

We focus our study on the coherence properties of semiconductor nanolasers (using
β = 10−1 as a specific example) in the pump range where spontaneous photon bursts
appear, with the addition of optical feedback. As we will see in the following, the latter
allows for a degree of control of the laser output features, enabling the selection of either
larger energy output or of more temporally homogeneous emissions and with better control
on the instantaneous power.

5.1. Average Emission and Fluctuations in a Free-Running Nanolaser

Figure 2a shows the average total photon output 〈LT〉 (where LT = LS + LL, black
curve, with LS and LL stimulated and spontaneous output photons, respectively) and the
average stimulated emission 〈LS〉 (red curve) calculated from the temporal data sequences
in a time window Tw = 2.5µs, shown in logarithmic scale. We are here profiting from
the benefit of the stochastic numerical simulation, which allows us to separately observe
the spontaneous and stimulated processes to gain insight into the natural constituents of
the output—incoherent and coherent photons—a kind of information that is not directly
observable in experiments (and typically not even in most traditional laser models). This
first piece of information permits quantification of the percentage of the illuminating
photons, which are potentially coherent with each other.

The characteristic laser curve, separately displayed for the two components 〈LT〉 and
〈LS〉, shows the smooth transition from a dominant spontaneous emission component into
a fully coherent output: a feature typical of high-β lasers (irrespective of their construction),
leading to the well-known difficulty in identifying the nanolaser threshold [59,64]. As
expected, 〈LS〉 < 〈LT〉 when P < Pth, due to the sizeable contribution of the spontaneous
emission. This region, especially well below Pth, resembles the emission characteristics of
an LED, whose output is certainly incoherent and can be used for illumination purposes
without concern. However, the potential advantages of lasers emerge here. Spontaneous
emission is omnidirectional and remains mostly trapped inside the LED. Technological
development has enabled stronger emission in a cone that can escape the material, but the
collection optics and the transfer of the emission to the sample to be illuminated remains
more challenging than with self-collimated laser light. As a result, the laser naturally
offers a larger amount of exploitable power—for the same amount of provided energy—
without additional efforts; thus, explaining why the oxymoron low-coherence laser light
has attracted so much interest [18–21,23–26,28–33].
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Figure 2. (a) Laser output as a function of (normalized) pump: average total emission 〈LT〉 (black);
average stimulated emission 〈LT〉 (red); standard deviation of the stimulated emission σLS (blue).
The yellow region extends from 1 ≤ P

Pth
. 4.5. (b–d) Temporal dynamics, LT(t), for different pump

values: (b) 0.3Pth; (c) 2Pth; and (d) 6Pth, respectively.

At variance with what is known in macroscopic lasers, Figure 2a shows that the
nanolaser output does not entirely consist of stimulated photons when P > Pth. For the
β = 0.1 (and under the modeling conditions we have chosen) 〈LS〉 ≈ 〈LT〉 only when
P > 4Pth. The actual pump value changes with the chosen parameters and model details,
but the first important message to retain is the existence of a broad pump range in which
a spontaneous component of the emission remains visible (notice the logarithmic scale
of the plot). It is useful to estimate the amount of power emitted in this semi-coherent
regime (and around it) by assuming an emission wavelength λ = 1 µm; thus, converting
the photon number in photon energy. At P = Pth, the conversion gives approximately
100nW of emitted power, growing to the µW range for P > 2Pth. The laser output curve
converted into output power, can be found in Section S1 in the Supplementary Material
(from here on , all references to sections or figures preceded by “S-” automatically direct
the reader to the Supplementary Material). This estimate is useful to have an order of
magnitude in the power expected for illumination purposes, as well as for detection (as
discussed in Section 2).

The presence of spontaneously emitted photons in the laser output confers a degree
of incoherence, but the spontaneous photons alone are not sufficient to provide enough
useful power for illumination. A quantification of photon bursts, also limiting the degree
of coherence, can be achieved through the calculation of the standard deviation, σLS , of
the stimulated photons and shown in Figure 2a (blue curve). Its extremely large value
(compared to 〈LS〉) at the lowest computed pump point originates from the rare presence
of stimulated photons, which amount to only 40% of the laser output at P = Pth (pink
background). However, the interesting point is that the standard deviation σLS > 〈LS〉
well beyond P = Pth (region with yellow background). The information coming from the
relative size of the standard deviation corresponds to the presence of independent photon
bursts. A simple model (Section S2) shows how one can understand that ρ =

σLS
〈LS〉

> 1
corresponds to pulses separated by the absence of stimulated emission. Thus, we can
consider the yellow region as a good candidate for low-coherence emission, even though
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from P > 2Pth more than 90% of the photons stem from a stimulated process. Notice that
superthermal statistics (Figure 1) would provide a narrower pump interval in which to
expect incoherent emission, confirming our previous remarks.

Figure 2b–d shows examples of computed temporal laser output for three different
pump values: below threshold (P = 0.3Pth, panel (b)), in the low-coherence region (P = 2Pth,
panel (c)) and for (predominantly) coherent emission (P = 6Pth, panel (d)). A fluctuating
photon number characterizes the below-threshold signal (Figure 2b) mostly constituted
by spontaneously emitted photons. Twice above Pth, the output consists of large photon
bursts separated by a very low (spontaneous) background: here the peak photon number is
more than one order of magnitude larger than its average (Figure 2c). This is the ASE-like
regime where low phase coherence arises from the independence of the pulses since each
of them grows out of noise; thus, devoid of a correlation with previous ones. Figure 2d
shows the shape of the signal emitted when the pump is six times above Pth: a noisy,
continuous output is interrupted by strong fluctuations in the shape of bursts or groups of
bursts, whose amplitude can be more than four times the average. However, the (nearly)
uninterrupted stream of photons generated by the laser through stimulated emission is an
indication of a degree of coherence presumably too large for illumination, even though the
substantial amount of photon noise belies what is normally considered good lasing.

5.2. Introduction of Optical Feedback

The photon burst region illustrated above also exists in macroscopic lasers—as pre-
dicted by stochastic simulations—but the corresponding pump interval is so narrow as to
be extremely difficult to find numerically (less than 10−4 in the normalized units used here)
and entirely inaccessible in experiments (well below any reasonable pump stabilization).
Thus, the macroscopic burst region, spanning a few units in normalized pumps, represents
a regime with properties peculiar to nanodevices. Optical feedback does not render the
photon bursts coherent but excites new ones under the action of a fraction of a previous
burst reinjected into the cavity [65]. Here, we are going to examine its influence on the
dynamics and infer the changes that it imposes on the coherence of the laser output.

Figure 3 repeats the information given in Figure 2a, for the free-running regime, in
the presence of varying amounts of feedback (the maximum considered is 10%, in order to
save most of the output power for illuminating the sample). The progression shows that
the photon burst region shrinks with increasing feedback, with the stimulated emission
becoming gradually more dominant and its standard deviation more rapidly reducing to
the level of the average coherent signal (cf. discussion in Section 5.1). We thus conclude
that the coherent fraction is growing, with a corresponding reduction of the fluctuation
amplitude. These remarks strongly hint to a transformation of the signal into a coherent
output, but, as shown below, this would be an incorrect deduction.

Inspection of the temporal dynamics (Figure 4) provides illuminating evidence to
interpret the results of the previous figure. Examples of dynamics for different feedback
levels are chosen at pump values, for which the relative standard deviation is at a maximum
(ρmax) (cf. Section S2). The time traces, which display the total emission (i.e., including the
spontaneous contribution), clearly show the persistence of sharp photon bursts, mostly in-
terrupted by returns to zero (stimulated emission). Instead, what changes is the amplitude
and the frequency with which photon bursts occur: at smaller feedback, the pulses reach a
larger photon number but remain less frequent. Thus, the increase in the fraction of the
stimulated emission does not come at the expense of the establishment of a continuous
stream of photons emitted since there is (almost) always a return to zero (stimulated)
photons between subsequent pulses.

The physical change corresponds to a reduction in pulse amplitude in favor of de-
creased interpulse time delay. Since the population is accumulated in the time intervals
with no (or little) emission, the more frequent pulses—stemming from a more efficient rein-
jection (due to larger feedback)—use the excess population more readily, which, therefore,
cannot grow to levels that are as large as the lowest feedback. This way, it is possible to gain
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a degree of control on the (average) frequency with which light is shone onto the sample
and on its granularity (i.e., fluctuations). It is interesting to notice that the average photon
number decreases with increasing feedback (cf. figure caption). The figures also show
a slight increase in the background (spontaneous emission contribution) for increasing
feedback. The decrease in average photon number is not due to a strange effect of feedback
but, rather, to the choice of operating the laser at the pump value corresponding to ρmax.
Since the photon burst region shrinks with increasing feedback, the laser is operated at
lower pump values, hence the lower total output.

Figure 3. Average total emissions (black) and stimulated fractions (red) in a β = 0.1 nanolaser
for feedback fraction: 0.5% (a) ; 1% (b); 5% (c); and 10% (d), respectively. The blue curves are the
corresponding standard deviations of the stimulated emission.

Finally, the autocorrelation function g(2)(0) (cf. Figure S3) confirms that superthermal
statistics are found for the conditions of Figure 4a–c and that g(2)(0) ≈ 1.8 for those of
Figure 4d (thus above the experimentally observed limit, g(2)(0) & 1.6, for photon bursts—
Section 4). This finding supports the statement of independent pulses, thus enabling the
inference of low field coherence.

5.3. Possible Feedback-Induced Pulse Interdependence

The question arises naturally, at this point, whether feedback can induce interde-
pendence and to what extent this can influence the coherence of nanolaser output. The
radiofrequency spectra of signals taken in the same conditions of Figure 4 provide some
information, which can be summarized as follows (cf. Figure S4 and additional information
in Section S5): at a low feedback level (η . 0.01), only a minor trace of the frequency
stemming from the feedback arm is visible, as well as weak components of the intrinsic
frequency associated with the recovery time of the system after the depletion caused by
the photon bursts (close to four times the feedback frequency); at a larger feedback level,
a very noisy frequency component associated with the action of the feedback arm can be
recognized, together with a clear comb of frequencies which are multiples of the “external
cavity”, strengthened by the closeness with the intrinsic recovery (inverse) time constant.
The comb is most pronounced at η = 0.1.
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Figure 4. Sample of temporal dynamics obtained under the following conditions: P = 1.6Pth,
η = 0.005, 〈LT〉 ≈ 27.1 (a); P = 1.5Pth, η = 0.01, 〈LT〉 ≈ 24.1 (b); P = 1.3Pth, η = 0.05, 〈LT〉 ≈ 19.4
(c); P = 1.15Pth, η = 0.1, 〈LT〉 ≈ 16.4 (d).

These considerations raise concerns about the possible instauration of coherence
through the cyclic renewal of pulses through reinjection. We, therefore, resort to a more
detailed analysis of the conditions under which the pulses are generated.

Simultaneously extracting from the numerical code, as separate entities, the number
of intracavity stimulated photons and that of reinjected (stimulated) ones, we can per-
form a cross-correlation analysis to investigate the presence of information transfer from
previous into subsequent pulses. We ignore the spontaneous photons for two reasons: 1.
their much smaller number renders the likelihood of reinjection negligible; 2. even if a
spontaneously emitted photon were to stimulate a pulse, its consequent phase would be
randomly distributed with respect to the other pulses. Thus, we only concentrate on the
stimulated fraction.

It is important to reiterate the fact that all processes are stochastic, including the
reinjection; thus, the feedback percentage is to be interpreted in the sense of a probability
and not as a proportionality constant. This point is crucial because there is no deterministic
relationship between the returning pulse—and its arrival time—and the actual presence
of a reinjected photon inside the cavity: the first reinjected photon may belong to the
middle or even the tail of the pulse and, therefore, may arrive, in time, when the intracavity
pulse has already developed. Throughout the paper, whenever we speak of a pulse, it is
to be intended as one which starts and ends with S = 0, i.e., the absence of stimulated
photons. Thus, we are certain that there is no interdependence in the coherence properties
among pulses.

The relationship between intracavity pulse emergence and reinjected (stimulated)
photons is illustrated in Figure 5, where the left panel shows the reinjected photon (red line)
anticipating the intracavity generation process (black line): we can plausibly assume that
the reinjected photon may have induced the generation of the large pulse (notice the widely
different vertical scales) and may have imposed a phase coherence between the previous
pulse (of which the “red” photon is the messenger) and the new pulse. The right panel,
instead, shows a situation where one single reinjected photon arrives in the middle of the
intracavity pulse (in time) and adds to the already existing intracavity stimulated photons,
which outnumber it by more than four orders of magnitude: it is more than plausible that
no phase relationship will exist between the black pulse and the preceding one from which
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the reinjected photon stems. In addition, we see that in this example, the largest part of the
photons that make up the black pulse has already been emitted through decay.

Figure 5. Temporal superposition of intracavity pulse generation (black line) and reinjection of
stimulated photons from a previous pulse (red line). (a) The injected photon takes place at the
beginning of the black pulse (a second one is coupled into the cavity at the end); (b) the injected
photon intervenes in the middle of the pulse (in time, but late in terms of photon fraction). Notice
that the scales for the two kinds of curves differ by five orders of magnitude. This example is taken
for the lowest value of η considered; thus, the reinjection consists mostly of one photon at a time.
For η = 0.1, pulses with up to nine photons are observed (with small likelihood), but their number
remains small compared to the intracavity photon number.

One additional point about synchronicity emerges from these pictures. The intracavity
pulses have random shapes, which are not maintained during the transmission through
the output mirror since the process is stochastic, while free-space propagation maintains
the shape of the pulse once it has escaped the cavity, the reinjection, as a stochastic process,
further reshapes the reinjected pulse. Hence, no strict timing relationship can be expected
in the potential synchronization between intracavity and reinjected pulses. These con-
siderations help to understand the broad peaks in the radiofrequency spectra shown in
Section S5.

Finally, η represents the fraction of the output that is fed back towards the laser, but
not the actual probability of reintroduction into the cavity, since the output coupler has to
be crossed: the actual probability of reinjection is, therefore, much lower.

The computation of the (normalized) cross-correlation uses the standard definition [66,67]:

Co, f =
〈[S(t)− 〈S〉] · [Sinj(t)− 〈Sinj〉]〉√
〈[S(t)− 〈S〉]2〉 ·

√
〈[Sinj(t)− 〈Sinj〉]2〉

(3)

where the indices o and f stand for “output” and “feedback”, respectively, and 〈·〉 repre-
sents, as usual, the time average. The two terms in the denominator are a shorthand form
for the standard deviation of each signal (S and Sinj). As is well-known, this normalized
form of the cross correlation provides results in the range −1 < Co, f < 1.

Figure 6 shows the calculated cross-correlation coefficients between the injected and
emitted pulses with different feedback fractions. Aside from a low homogeneous offset,
the correlation is entirely positive with the main peak placed at the external cavity time
2τext. Asymmetric lateral peaks appear, with a bias in favor of τ = 0, given that the double
roundtrip experiences more losses than the zero-delay in the temporal sequence. Starting
from η ≈ 0.05, several lateral peaks emerge from the cross-correlation at multiples of the
external cavity time, and the central peak grows considerably. This mirrors the behavior of
the autocorrelation (Figure S3 and discussion in Section S4), where multiple peaks appear
and the statistics barely reach (or dip below) the superthermal regime. At the same time,
the radiofrequency spectra (Section S5) also show a multitude of recurrences in the form of
a comb of frequencies. It is, therefore, legitimate to speculate on the possible instauration
of a regime of mutually coherent pulses mediated by the optical feedback. If this were the
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case, we could expect a growing degree of coherence, albeit not fully developed, given
the persistent irregularity of the temporal spikes (Figure 4). It is worth noticing, in any
case, that the autocorrelation, as well as the radiofrequency spectra, show the emergence
of a substantial periodicity, while the indications coming from the cross-correlation are
much weaker, signaling the possibility that periodicity and coherence may not be strongly
interrelated: the resurgences taper off much faster, as visible from the comparison between
Figures 6 and S3.

Figure 6. Cross-correlations between intracavity stimulated photons and fraction of reinjected
(stimulated) photons from previous pulses. Parameters: P = 1.6Pth, η = 0.005 (a); P = 1.5Pth,
η = 0.01 (b); P = 1.3Pth, η = 0.05 (c); P = 1.15Pth, η = 0.1 (d).

5.4. Detailed Pulse Analysis with Optical Feedback

In order to delve a bit deeper into the understanding of the picture, we identify the
intracavity photon bursts that coincide with the coupling of an external photon into the
cavity. We are starting from the assumption, illustrated by Figure 5, that injected photons
that intervene after the generation of the intracavity pulse will not introduce a robust
phase relationship. This is quite reasonable, especially observing that the number of
reinjected photons is typically at least three orders of magnitude smaller than the number
of intracavity stimulated photons: an external signal will stand a chance of introducing
phase coherence only if it is the initiator of the pulse. One should also keep in mind the
fact that pulses, as mentioned in the introduction for ASE, possess a moderate amount of
coherence (typical bandwidths can be a couple of nanometers); thus, one should not expect
a strong coherence to emerge.

The results are summarized in Table 1, where the first column gives the percentage of
the emitted pulses reinjected into the cavity, and the second one the ratio of the intracavity
pulses that do not coincide with a reinjection (“spontaneous”) to the total number of pulses
detected in time Tw. The trend agrees with the previous considerations since for η . 0.01,
the majority of pulses is “spontaneously” generated, while above the reverse holds.
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Table 1. Percentage of spontaneous and stimulated pulses within total pulses

Feedback Fraction Ratio Spontaneous/All Pulses Independent Pulse Trains

0.5% 0.76 18.2
1% 0.67 19.3
5% 0.35 21.5
10% 0.24 22.9

Armed with all the previous considerations, which warn against larger feedback
fractions, we perform an additional step in the analysis: we measure the amount of energy
contained in each pulse, assuming an emission wavelength λ = 1µm. The results are
plotted in Figure 7. There is a very clear modification in the statistics of the energy carried
by each pulse as a function of feedback: for η . 0.01, the likelihood of more energetic
pulses is higher and shows a clear maximum around 0.4 pJ, with the largest pulses as large
as 0.8 pJ in the sample we have considered. Instead, for stronger feedback, we not only see
more frequent pulses, but their energy distribution progressively becomes a monotonically
decreasing function with the highest (and unlikely) energy reaching the typical energy of
the peak at low feedback. This result is encouraging since weaker pulses are less likely
to bring a strong phase imprint onto following ones, given their smaller photon number,
which reduces the mutual influence. We, therefore, see that increasing feedback introduces
a (partial) temporal regularization of the nanolaser emission while also reducing the spread
in the energy carried by each pulse and introducing a strong bias towards low-energy
pulses. This is good news if one desires to have a more regular illumination at short
timescales, but also if one wants to avoid pulses that are particularly energetic.

Figure 7. Histogram of energy distribution for feedback fractions η =: 0.005 (a); 0.01 (b); 0.05 (c); and
0.1 (d), respectively. Pump: P = 1.6Pth; P = 1.5Pth (b); P = 1.3Pth (c); and P = 1.15Pth (d).

The information obtained from Figure 7 presents only the energy side of the question.
Figure 5 shows that the pulse shapes can be quite different; thus, conferring a different
level of power to each pulse. Making the assumption that the photon number is regularly
distributed over its time duration (an assumption that is belied by Figure 5, but which can
be used to get some average guidance information), we can obtain the power distribution
by dividing the energy of each pulse by its duration. The results are shown in Figure 8.
The distributions are even more peaked towards low power values; thus, showing that
the power distribution of the illumination source is even more uniform when using larger
feedback fractions.
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The orange curves show the integral of the histogram; thus, conveying information
about the total amount of power carried by the weaker pulses. The largest feedback
provides the fastest growth; thus, confirming the comment about the temporal uniformity of
the power distribution: the 80% mark is reached, for η = 0.1 at a value that is approximately
three times lower than for η = 0.005.

Figure 8. Histograms of pulse power distribution for feedback fractions η =: 0.005 (a); 0.01 (b); 0.05
(c); and 0.1 (d), respectively. Pump: P = 1.6Pth; P = 1.5Pth (b); P = 1.3Pth (c); and P = 1.15Pth (d).

The question about possible coherence is still not entirely settled. One piece of infor-
mation, however, provides precious insight. The last column of Table 1 shows the average
number of pulses contained in an external cavity roundtrip time 2τext. The average is
around 20 (somewhat lower for lower feedback, higher for a larger one). This implies the
presence of independent trains of pulses, which (irregularly) repeat in a way similar to the
pictorial illustration of Figure 9.

Figure 9. Illustration of the multiple repetitions of pulses in an external cavity roundtrip time 2τext:
the colors indicate independent pulse trains.

The origin of the multiple pulses per external cavity roundtrip is grounded in the in-
ternal time constants of the laser at the pump rates that we consider and in the approximate
synchronization mentioned above. Since the nanolaser can emit pulses with preferential
frequency larger than the external cavity roundtrip, the different trains that appear in the
output, measured as the average number of pulses in 2τext, are independent of one another.
Thus, there is no expected mutual phase relationship since the considered trains have been
generated during the reinjection time. As a consequence, the amount of coherence, which
could be expected from previous indicators—such as the cross-correlation, which does not
take into account the origin of the pulses but only counts the “coincidences”—has to be
reduced by the number of effective pulse trains. This realization, compounded with the
predominance of small pulses at larger feedback values, lends confidence to the possibility
of obtaining a low coherence output even from larger feedback.



Nanomaterials 2021, 11, 3325 15 of 18

The fact that multiple trains of pulses can exist in a cavity roundtrip time suggests
checking whether the observation still holds for longer feedback arms. Considering a
roundtrip time 2τext = 10 ns and η = 0.1, we obtain results that are extremely similar to
those at a shorter delay time, the main difference being that the average number of pulses
passes from ≈24 to ≈57, i.e., a multiplicative factor nearly equal to the ratio between the
feedback arms. This implies that the amount of residual coherence could be controlled in
this way, with longer feedback arms providing a better nanosource for illumination. The
arm length for 10 ns delay amounts to 1 m if an optical fiber is employed: a reasonable
length that ensures good coupling and sufficient stability. The main difference will be a
longer initial transient, from the switch-on of the source until the pulses have settled in a
statistically stable configuration. As already mentioned, most of our simulations have been
done with a shorter delay to keep the computing time down to more reasonable values.

6. Conclusions

The presence of “unusual”—for macroscopic lasers—spontaneous pulsing offers the
possibility of obtaining low-coherence directional emission from a nanolaser. The great
advantage is that this kind of emission is naturally present below the threshold and does
not require any engineering effort. The features of this emission can be, however, tailored
to the users’ needs by introducing a small amount of optical feedback. The analysis has
shown that the latter can regularize the emission in time by introducing smaller and more
frequent pulses organized in independent trains whose number depends on the length
of the feedback arm. The latter can be constructed by coupling the output into an optical
fiber of easily handled length (of the order of one meter) to substantially modify the power
distribution.

The current analysis has been based on a fully stochastic simulation of the laser
operation, an important feature, since it has allowed for the proper simulation of the
probabilistic nature of the transmission (in output and in reinjection) both concerning the
photon number (thus the pulse shape) and the time at which the event takes place. As
discussed in Section 3, the unavoidable shortcoming of this approach is the lack of direct
information on the linewidth—thus coherence. These promising forecasts now need to be
tested experimentally to answer whether nanolasers can be truly used as low-coherence
sources for speckle-free (or speckle-reduced) illumination.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11123325/s1, Figure S1: (a) Output photon number as a function of pump (black); power
output by the nanolaser (red). (b) Second-order autocorrelation function (g(2)(0)) as function of
pump. β = 0.1. Figure S2: Calculated values of ρ (“Ratio” in vertical scale) for η = 0.005 (a); 0.01
(b); 0.05 (c); and 0.1 (d). Figure S3: Second-order autocorrelation function (g(2)(τ)) with time delay
for the dynamics observed at: P = 1.6Pth and η = 0.005 (a), P = 1.5Pth and η = 0.01 (b), P = 1.3Pth
and η = 0.05 (c), and P = 1.15Pth and η = 0.1 (d). Figure S4: Nanolaser rf spectra for the temporal
dynamics corresponding to:P = 1.6Pth and η = 0.005 (a), P = 1.5Pth and η = 0.01 (b), P = 1.3Pth and
η = 0.05 (c), and P = 1.15Pth and η = 0.1 (d).
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