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Abstract: Magnetoplasmonics based on composite nanostructures is widely used in many biomedical
applications. Nanostructures, consisting of a magnetic core and a gold shell, exhibit plasmonic
properties, that allow the concentration of electromagnetic energy in ultra-small volumes when
used, for example, in imaging and therapy. Magnetoplasmonic nanostructures have become an
indispensable tool in nanomedicine. The gold shell protects the core from oxidation and corrosion,
providing a biocompatible platform for tumor imaging and cancer treatment. By adjusting the size of
the core and the shell thickness, the maximum energy concentration can be shifted from the ultraviolet
to the near infrared, where the depth of light penetration is maximum due to low scattering and
absorption by tissues. A decrease in the thickness of the gold shell to several nanometers leads to the
appearance of the quantum effect of spatial dispersion in the metal. The presence of the quantum
effect can cause both a significant decrease in the level of energy concentration by plasmon particles
and a shift of the maxima to the short-wavelength region, thereby reducing the expected therapeutic
effect. In this study, to describe the influence of the quantum effect of spatial dispersion, we used the
discrete sources method, which incorporates the generalized non-local optical response theory. This
approach made it possible to account for the influence of the nonlocal effect on the optical properties
of composite nanoparticles, including the impact of the asymmetry of the core-shell structure on the
energy characteristics. It was found that taking spatial dispersion into account leads to a decrease in
the maximum value of the concentration of electromagnetic energy up to 25%, while the blue shift
can reach 15 nm.

Keywords: magnetoplasmonics; discrete sources method; spatial dispersion; non-local optical
response

1. Introduction

Localized surface plasmon resonance (LSPR) is a collective oscillation of conduction
electrons at the interface between plasmon metal and dielectric upon incident light ex-
citation. The LSPR causes an enhancement in the local electric field by several orders
of magnitude on the interface at a distance less than a wavelength, which makes it pos-
sible to concentrate energy in ultra-small volumes. This property finds many practical
applications in electromagnetic energy storage and conversion devices, chemistry, biology,
nanomedicine, and solar cells [1,2].

Plasmonic core-shell nanoparticles have gained huge popularity compared to homoge-
neous ones due to their multifunctional properties achieved by manipulating the materials
of their core or shell. Nanoshells provide greater flexibility in tuning plasmon resonances
over a wide range of wavelength, as well as producing the desired enhancement of elec-
tromagnetic fields. In particular, core-shell particles made from composite materials have
become valuable for energy storage and conversion, optical amplifiers, surface-enhanced
Raman scattering, photothermal enhancement, solar cells, cancer diagnostic and treatment,
and plasmonic nanolaser (SPASER) [3–9], finding various applications in many areas such
as industrial, clinical, biological, environmental, and food analysis.
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Via the latest advances in materials science, it has now become possible to synthesize
nanomaterials with predetermined physicochemical properties, well-defined dimensions,
shape, and composition [3,5]. As a result, nanomaterials now emerge as a basis for the
further development of nanoplasmonics and nanoengineering [10,11]. Magnetoplasmonics
based on composite nanostructures is widely used in numerous biomedical applications.
Special attention is paid to the core-shell FenOm@Au nanostructures, which exhibit both
plasmonic and magnetic properties and are currently used in optical sensors, electrochemi-
cal DNA biosensors, for tumor imaging, and cancer therapy [12–15]. The ability to control
the optical properties of such nanoparticles in a wide spectral range and the adjustable
size of the composite make these nanostructures an important object of magnetoplasmonic
research [15–17].

Magnetoplasmonic nanostructures have become an indispensable tool in nanomedicine
due to a number of advantages. This is primarily due to a high refractive index and the
possibility of cheap and fast synthesis [11]. The gold shell protects the magnetic core from
environmental oxidation and corrosion, thereby providing a biocompatible platform for
tumor imaging and cancer treatment. By adjusting the relative size of the core and the shell
thickness, the LSPR can be shifted from the ultraviolet to the near infrared range, where
the depth of electromagnetic wave penetration is maximum due to low scattering and
absorption in human tissues [13]. Thanks to the magnetic core, FenOm@Au nanoparticles
can be directed to tumor cells by an external magnetic field, localized there, and used for
photothermal therapy. Importantly, photothermal therapy using materials that absorb
near infrared light manifests itself as a promising approach for selectively killing tumor
cells with less harmful effects in healthy cells, while simultaneously promoting faster
recovery [8].

The rapid progress in the synthesis of magnetoplasmonic nanostructures leads to
their continuous miniaturization [18–20]. Already, FenOm@Au nanostructures can now
be synthesized with an average size of 15–25 nm, including a gold shell thickness of
2–5 nm [21–23]. With a decrease in the thickness of the plasmon shell to several nanome-
ters, the electron-electron interactions in metals should be taken into account much more
accurately. The fact is that when the characteristic size of the metal shell becomes compa-
rable to the Fermi wavelength of electrons in this metal (~5 nm for gold and silver), the
so-called spatial dispersion of the metal arises. In this case, the conventional local rela-
tions between the electric field and the displacement included in the system of Maxwell’s
equations are proved to be insufficient for a rigorous description of the electromagnetic
properties, since the quantum effect of spatial dispersion emerges [24,25]. To study such
effects, one can use a purely quantum approach based on solving the Schrödinger equation
for a cloud of electrons in the metal [26]. However, such an approach becomes computa-
tionally expensive for particles larger than tens of nanometers and for metals with a high
density of free charge carriers inside, similar to noble metals.

There are more popular approaches that allow one to consider the emerging quantum
effects, while remaining within the framework of Maxwell’s electromagnetic theory. One
of such approaches, accounting for the arising spatial dispersion of the plasmonic material,
is the Drude hydrodynamic model [27,28] and its modifications, which are applicable to
core-shell particles [29]. In our research, we use the Generalized Nonlocal Optical Response
(GNOR) theory [30,31], which proved to be an appropriate tool for studying core-shell
particles [32]. The GNOR theory takes into account both the presence of a longitudinal
field inside the metal and additional boundary conditions at the interfaces between the
metal and the dielectric. It was found that accounting for the quantum effect of spatial
dispersion leads to a significant decrease in the plasmon resonance amplitude and a shift
of its position to the short-wavelength region. All these circumstances can significantly
decrease the efficiency of application of the magnetoplasmonic particles in nanomedicine.

We use the GNOR theory within the framework of the Discrete Sources Method
(DSM) [33]. DSM is a rigorous semi-analytical surface-oriented method. It is based on
the representation of electromagnetic fields using a finite linear combination of lowest-
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order distributed multipoles [34] satisfying Maxwell’s semi-classical equations, including
longitudinal fields inside a metal shell. Thus, the field representations in all areas satisfy
the generalized Maxwell system and the infinity conditions. The corresponding discrete
sources (DS) amplitudes are determined from the transmission conditions enforced on the
interfaces of the core-shell particle, including additional boundary conditions required
for the proper determination of the longitudinal field. Compared to the other surface-
based methods, the DSM has some theoretical and numerical advantages. It does not
require mesh generation or an integration procedure over a particle surface. It provides
both near and far fields directly without any additional computational effort. It enables
to solve the scattering problem for all external excitations and polarizations at the same
time. An exceptional feature of the DSM is that it allows to estimate the real error of the
fields obtained by calculating the residual of the fields at the interfaces of the core-shell
particle. This provides an opportunity to compute the near fields with a predetermined
numerical accuracy.

It is important to emphasize that DSM is a rigorous semi-analytical method that allows
one to treat scattering by non-spherical particles in the presence of the nonlocal effect and
obtain results with a high accuracy. DSM has been tested many times and can now be
used as a reference code. In particular, the extension of the T-matrix method to the case of
non-spherical core-shell particles in the presence of a non-local effect was approved using
the DSM computer module. The results obtained with the T-matrix code and the DSM
module showed a high accuracy agreement (see [35]). The features mentioned above have
already made it possible to apply the DSM to the analysis of plasmonic nanostructures by
accounting for the spatial dispersion incorporating the GNOR theory. For instance, the
DSM has been successfully used for simulating plasmonic dimers with subnanometric
gap [36] and plasmonic nanolaser resonator (SPASER) [37].

The paper is organized as following. Section 2 is devoted to the formulation of
the boundary value problem of a plane electromagnetic wave scattering by a core-shell
magnetoplasmonic particle and a description of the DSM scheme proposed for its solution.
Section 3 presents a numerical analysis of the spatial dispersion influence on the absorption
cross-section of magnetic core-shell particles. Some concluding remarks summarize the
obtained results that can be found in Section 4.

2. Problem Statement and Discrete Sources Method
2.1. Scattering Problem Statement

Let us consider a core-shell particle with an axis of symmetry Oz, entirely located in
an unbounded region of space De (see Figure 1). The core of the particle is denoted as Dc,
and the shell area as Ds. Let ∂Dc be the interface between the core and the shell and ∂Ds
the external shell surface. We assume that all media in Di, i = e, s, c are non-magnetic, and
their complex permittivities are εi, i = e, s, c.
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The essence of spatial dispersion (nonlocal effect) is that the relation between the
electric field E(M) and displacement D(M) is significantly changed. That is, the lo-
cal relation D(M) = ε(M)E(M) in space is replaced by an integral one as D(M) =∫

ε(M−M′)E(M′)dM′. One of the consequences of the nonlocality is the appearance
of longitudinal electromagnetic fields inside the metal [24]. Thus, the electric field inside
the metal is no longer to be purely transverse (divET = 0) and for an adequate description
of the ongoing processes, it is necessary to incorporate longitudinal fields (rotEL = 0).

To account for the spatial dispersion in the metal shell we use the GNOR theory [30].
Within the GNOR, Ohm’s law is generalized for the conduction current inside the metal,
that is, the following transition occurs

J = σE⇒ ξ2grad(divJ) + J = σE, (1)

where σ is the conductivity of the metal, and ξ is nonlocal parameter, the so-called cor-
relation length [38]. Therefore, the corresponding equation for the magnetic field in
the Maxwell’s system is changed. As it was mentioned above, inside the metal shell,
the electric field consists of transverse and longitudinal fields, that is Es = ET

s + EL
s ,

divET
s = 0, rotEL

s = 0. It can be shown [35] that these fields inside the shell satisfy the
following Helmholtz equations

∆ET(M) + k2
TET(M) = 0, (2)

∆EL(M) + k2
LEL(M) = 0, (3)

where k2
T = k2εs, k2

L = εs/ξ are the transverse and longitudinal wave numbers, and k =
ω/c. The correlation length parameter is defined as ξ2 = εs

(
β2 + D(γ + jω)

)
/
(
ω2 − jγω

)
,

where ωp is the plasmon frequency of the metal, γ is the damping coefficient, β is the
hydrodynamic velocity in the plasma associated with the Fermi velocity vF by the relation
β2 = 3/5v2

F, and D is the diffusion coefficient of electrons [39].
Let us consider the boundary value scattering problem of linearly polarized plane

wave {E0, H0} propagating at an angle π − θ0 to the axis of symmetry Oz (see Figure 1).
Then, the boundary value problem statement can be written as:

Maxwell equations inside the magnetic core and the external medium

∇×Hi = jkεiEi, ∇× Ei = −jkHi in Di, i = c, e;

Maxwell equations inside the metal shell

∇×Hs = jk
(

εs + ξ2∇∇·
)

Es(M),∇× Es = −jkHs in Ds;

Transmission conditions for the fields on the interfaces of the core-shell particle
including the additional boundary conditions for the normal component of the fields [39]

nc × (Ec(P)− Es(P)) = 0,

nc × (Hc(P)−Hs(P)) = 0,

εcnc · Ec(P) = εLnc · Es(P),

P ∈ ∂Dc,

ns × (Es(P)− Ee(P)) = ns × E0(P),

ns × (Hs(P)−He(P)) = ns ×H0(P),

εLns · Es(P) = εens · (Ee(P) + E0(P)),

P ∈ ∂Ds;

(4)

Silver-Muller radiating conditions for the scattered fields at infinity [40].

lim
r→∞

r ·
(

He ×
r
r
−
√

εeEe

)
= 0, r = |M| → ∞ in De.

Here {Ee, He} is the scattered field in the external medium De, {Ec,s, Hc,s} are the total
fields in the corresponding domains Dc,s, nc,s are the unit normals to the surfaces ∂Dc,s,
k = ω/c and the media parameters are chosen so that Imεe = 0, Imεc,s ≤ 0, ImεL ≤ 0,
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where εL = εs −ω2
p/
(

jγω−ω2). The time dependence has the form exp{jω t}. We will
assume that the formulated boundary value problem (4) has a unique solution.

2.2. Discrete Sources Method

We will construct an approximate solution to the boundary value problem (4) based
on the DSM scheme, accounting for the axial symmetry of the core-shell particle and P/S
polarization of the incident plane wave [36]. The field of a linearly P-polarized plane wave
has the form

EP
0 = (ex cos θ0 + ez sin θ0)ψ0(x, z),

HP
0 = −√εeeyψ0(x, z)

(5)

and for S-polarization can be written as

ES
0 = eyψ0(x, z),

HS
0 =
√

εe(ex cos θ0 + ez sin θ0)ψ0(x, z),
(6)

where ψ0(x, z) = exp{−jke(x sin θ0 − z cos θ0)}, and ex, ey, ez are the unit vectors of the
Cartesian coordinate system.

An approximate solution for the transversal fields is presented by means of the
following vector potentials

A(1)i
mn =

{
Yi

m(η, zi
n) cos(m + 1)ϕ;−Yi

m(η, zi
n) sin(m + 1)ϕ; 0

}
,

A(2)i
mn =

{
Yi

m(η, zi
n) sin(m + 1)ϕ; Yi

m(η, zi
n) cos(m + 1)ϕ; 0

}
,

A(3)i
n =

{
0; 0; Yi

0(η, zi
n)
}

, i = c, e, s±,

(7)

written in a cylindrical coordinate system. The following notations used here are: Yc
m(η, zc

n)

= jm(kcrηzc
n)Pm

m (cos θzc
n) , jm(.) is spherical Bessel function, Ys±

m (η, zs
n) = h(2,1)

m (ksrηzs
n)

Pm
m (cos θzs

n) , h(2,1)
m (.) are spherical Hankel functions, corresponding to “outward” and

“inward” waves, Ye
m(η, ze

n) = h(2)m (kerηze
n

)
Pm

m (cos θze
n) , Pm

m (cos θzi
n
) = (ρ/rηzi

n
)m, r2

ηzi
n
=

ρ2 +
(
z− zi

n
)2, η = (ρ, z) , ki = k

√
εi, zi

n are positions of multipole sources on the axis
of rotation, i = c, e, s. Note that the functions Yi

m(η, zi
n) exp(mϕ) satisfy the Helmholtz

Equation (2).
For P-polarization, the longitudinal field is constructed through scalar potentials of

the following form [36]

Ψs±
mn(M) = h(2,1)

m+1(k
s
LRηzs

n)Pm+1
m+1 (cos θzs

n) cos(m + 1)ϕ,Ψs±
n (M) = h(2,1)

0 (ks
LRηzs

n),

which satisfy the Helmholtz Equation (3). Then the DSM approximate solution accepts the
form

ETN
i =

M

∑
m=0

Nm
i

∑
n=1

{
pi

mn
j

kεi
∇×∇×A(1)i

mn + qi
mn

1
εi
∇×A(2)i

mn

}
+

N0
i

∑
n=1

ri
n

1
kεi
∇×∇×A(3)i

n ,

ELN
τ =

M

∑
m=0

Nm
τ

∑
n=1

pτ
mn∇Ψτ

mn+
N0

τ

∑
n=1

rτ
n∇Ψτ

n, τ = i, s±,HN
i =

j
k
∇× EN

i , i = e, c, s± . (8)

Note that inside the shell, the electromagnetic field is constructed as the sum of “out-
ward” and “inward” waves ETN

s = ETN
s+ + ETN

s− + ELN
s+ + ELN

s− ,∇ · ETN
s± = 0,∇× ELN

s± = 0.
In the case of S-polarization, the longitudinal field is presented using the following

potentials
Ψs±

mn(M) = h(2,1)
m+1(kLRηzs

n)Pm+1
m+1 (cos θzs

n) sin(m + 1)ϕ.



Nanomaterials 2021, 11, 3297 6 of 11

In this case the fields are written as

ETN
i =

M
∑

m=0

Nm
i

∑
n=1

{
pi

mn
j

kεi
∇×∇×A(2)i

mn + qi
mn

1
εi
∇×A(1)i

mn

}
+

N0
i

∑
n=1

ri
n

1
εi
∇×A(3)i

n ,

ELN
τ =

M
∑

m=0

Nm
τ

∑
n=1

pτ
mn∇Ψτ

mn, τ = c, s±,HN
i = j

k∇× EN
i , i = e, c, s± .

(9)

The approximate solutions (8) and (9) satisfy all the conditions of the boundary value
problem, except for the transmission conditions for the fields at the interfaces ∂Di,s. The
unknown amplitudes of the multipoles

{
pi

mn, qi
mn, ri

n; pτ
mn, rτ

n
}

are determined from these
transmission conditions (4). For this purpose, we expand the incident plane wave ψ0(x, z)
into a Fourier series with respect to the azimuth angle ϕ. In view of the representations
(8) and (9), we deduce that the scattering problem on the axial symmetric interfaces ∂Di,s
decouples over the azimuth modes m, and a separate solution for each mode can be
obtained. To satisfy the transmission conditions, we use the generalized point matching
technique for the Fourier harmonics of the fields [41] on the surface profiles. Essentially,
we are led to an overdetermined system of equations for an amplitude vector of each
harmonic and this vector is computed as pseudosolution of the system for all incidences
and polarizations at once. More details can be found in [42].

3. Computer Simulating Results

Once the amplitudes of the discrete sources are determined, it is easy to compute the
P/S-polarized scattered fields using representations (8) and (9). In this section we present
some numerical results for magnetic gold covered core-shell particles. We will be interested
in the analysis of the absorption cross-section, which is responsible for the concentration of
electromagnetic energy inside the particle:

σabs(θ0, λ) = −Re
∫

∂Ds

(
EN

e + E0

)
×
(

HN
e + H0

)∗
dσ. (10)

Consider the core-shell FenOm@Au particle placed in an ambient medium with a
refractive index ne =

√
εe. The gold frequency dependent refractive index ns =

√
εs

is taken from [43] and the magnetite FenOm ones from [44]. The corresponding GNOR
parameters for gold are used in accordance with [38]:

}ωp = 9.02 eV,}γ = 0.071 eV, vF = 1.39 · 1012 µm/s, D = 8.62 · 108 µm2/s.

We start our research with spherical core-shell particles and estimate the spatial
dispersion effect on the position and amplitude of LSPR.

Figure 2a shows the absorption cross-section σ versus the exciting wavelength λ for
spherical core-shell Fe3O4@Au particle deposited in water (ne = 1.33) with core diameter
D = 16 nm and different shell thicknesses d. These results are obtained for the local response
(LR). One can see that a reduce in the shell thickness leads to a shift of the maximum value
to the near infrared region and its decrease. The red curve refers to the case with a larger
core diameter D = 18 nm. Figure 2b demonstrates the effect of the non-local response
(NL) for the same particle as in Figure 2a. The graphs show that accounting for spatial
dispersion in the gold shell reduces the maximum values by about 15% accompanied by a
blue shift of 10 nm. By a blue shift, we mean the shift of the absorption cross-section curves
towards the blue end of the spectrum or high frequencies (short wavelengths). A red shift
means a shift of the curves towards longer wavelengths.
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An important issue when it comes to using core-shell particles is the requirement for
the maximum of the absorption cross section to fit the transparency window of human
tissues, which is in the optical range of 700–950 nm [45,46].

In Figure 3a we plot the absorption cross-sections of two particles with different
magnetic core materials Fe3O4 (α) and Fe2O3 (γ) [15], core diameter D = 16 nm, and gold
shell thickness d = 2 nm for local and non-local cases. The γ-core exhibits a larger maximum
value of the absorption cross-section and red shift beyond 800 nm. At the same time, spatial
dispersion reduces the maximum by about 25%, and the blue shift exceeds 15 nm.
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diameter D = 16 nm, gold shell thickness d = 2 nm: (a) local response (LR) and non-local response (NL) results; (b) influence
of the shifted by ∆ nm core for the local response. The results are averaged by the angles of incidence and polarizations.

Figure 3b is related to the examination of the influence of asymmetry in the core-shell
structure when the core center is shifted with respect to the center of the shell. We consider
two core materials α-γ and the case of a local response. The shift ∆ is equal to 0.7 nm. In
this case the shell thickness varies from 1.3 nm on one side of the particle to 2.7 nm on the
other. The figure shows the results averaged by the angles of incidence and polarizations.
It is worth to mention that the averaging procedure is computationally inexpensive since
it is performed in one run of the DSM code. This is due to the fact that DSM is a direct
method and enables to compute both polarizations and all incidences simultaneously. As
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expected, the thinner part of the shell shifts the maximum towards longer wavelengths,
while decreasing its value.

The influence of the spatial dispersion on the averaged results for the asymmetric
core-shell particle is shown in Figure 4a. Two different core materials α-γ are considered.
As before, the nonlocal response leads to a decrease in the maxima up to 25%, and the blue
shift exceeds 12 nm.
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Figure 4b shows the local response results for an ideal core-shell particle and the
averaged non-local response results associated with an asymmetric particle. It is interesting
to note that the asymmetry red shift is compensated by a blue shift associated with the
spatial dispersion.

In Figure 5a we demonstrate the influence of the spatial dispersion on the absorption
cross-section curves computed for the symmetric Fe3O4 core-shell particle with the same
gold shell thickness d = 2 nm and different core diameters. One can see that for all particle
core diameters, nonlocal response curves maxima are about 25% less and shifted to the left
by 12 nm with respect to the local response plots.
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responses (NL) are presented; (b) particle with core diameter D = 16 nm is deposited in different ambient media: water
ne = 1.33, breast ne = 1.405, stomach ne = 1.446.
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The results related to particles of different core diameters can be observed in Figure 5a.
As expected, an increase in the core diameter with a simultaneous increase in the amount
of gilding leads to an increase in the absorbed electro-magnetic energy with a simultaneous
shift to longer wavelengths region.

Figure 5b presents the local and nonlocal response results for the symmetric Fe3O4
particle with core diameter D = 16 nm and gold shell thickness d = 2 nm deposited in
different ambient media: water, human tissue: healthy breast, and stomach [46]. Obviously,
denser media give a larger absorption cross-section accompanied by a slight red shift. As
before, the spatial dispersion leads to a decrease in the absorption amplitude and a shift to
shorter wavelengths.

All computer simulations were performed on Intel core i7-8550U, 1.8 GHz, RAM 8 Gb
computer. As an example, one run of the DSM code for asymmetric core-shell particle
D = 16 nm, d = 2 nm in the wavelength range from 650 to 850 nm with 5 nm increment and
with the accuracy control enabled took 143 s.

4. Discussion

Layered nanostructures appear to be a more convenient tool for manipulating the
amplitude and position of plasmon resonance (PR) in the frequency domain than homoge-
neous ones. In the case of magnetooptics, by changing the diameter of the core and the
thickness of the gold shell, it is possible to shift the PR into the transparency window of
human tissues, thereby enhancing the therapeutic effect and reducing the risk of damage
to healthy tissues. Numerical experiments have shown that by reducing the thickness of
the gold shell to 2 nm, it is possible to shift the maximum of the electromagnetic energy
absorption to a range beyond 700 nm. However, with such a thickness of the gold shell,
it is necessary to take into account the quantum effect of spatial dispersion that occurs
in plasmonic metals. Within the framework of the GNOR theory, the DSM was adjusted
for studying magnetoplasmonic nanostructures of the magnetit @ Au type. The DSM
computer model makes it possible to investigate the optical characteristics of core-shell
structures, including asymmetric ones, accounting for the spatial dispersion in plasmonic
materials. It is important to emphasize that when studying the influence of asymmetry, the
absorption cross section was averaged over both polarizations and directions of external
excitation. This seems to be necessary, since it is not known in advance how the particle is
positioned relative to the direction of the incident light. After computer simulations, the
following main results were obtained:

1. The gold shell thinning leads to a shift of the PR to the infrared region, while simulta-
neously reducing its amplitude.

2. Spatial dispersion reduces the PR with a simultaneous blue shift of its maximum.
3. The use of core materials Fe3O4 and Fe2O3 provides an additional opportunity to shift

the PR towards the human tissue transparency window, increasing the amplitude of
the energy absorption.

4. The asymmetry of the core-shell particles leads to a decrease in the intensity of the
absorbed energy with a shift towards longer wavelengths.

5. It is interesting to note that the spatial dispersion and asymmetry of the particle lead
to mutual compensation for the shift in the PR position, causing only a significant
decrease in the PR amplitude.

6. An increase in the core diameter causes an increase in energy absorption accompanied
by a shift in the PR to the longer wavelengths.

7. The deposition of a particle in denser media leads to a larger absorption cross-section
accompanied by a slight red shift.

As a result of the computational experiment, a significant influence of spatial disper-
sion on the position of the maximum and the amplitude of the absorbed electromagnetic
energy was found. It was shown that the magnitude of the decrease can reach 25%, and
the shift may exceed 15 nm.
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