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Abstract: Protein imprinted MIPs show notable potential for applications in many analytical areas
such as clinical analysis, medical diagnostics and environmental monitoring, but also in drug delivery
scenarios. In this study, we present various modifications of two different synthesis routes to create
imprinted core-shell particles serving as a synthetic recognition material for the protein hen egg
white (HEW) lysozyme. HEW lysozyme is used as food additive E 1105 for preservation due to its
antibacterial effects. For facilitating quality and regulatory control analysis in food matrices, it is
necessary to apply suitable isolation methods as potentially provided by molecularly imprinted mate-
rials. The highest binding capacity achieved herein was 58.82 mg/g with imprinting factors ranging
up to 2.74, rendering these materials exceptionally suitable for selectively isolating HEW lysozyme.

Keywords: molecularly imprinted polymers; MIP; protein imprinting; core-shell imprinting; core-
shell particles; lysozyme

1. Introduction

Molecular imprinted polymers (MIPs) are crosslinked polymers with specific binding
moieties for selectively binding target molecules. The interaction between the MIP and the
corresponding target molecule is mimicking nature via various complementary binding
processes (lock and key model), e.g., antigen-antibody, DNA-protein, ligand-receptor, and
peptide–protein interaction. Therefore, imprinted polymers are expected to show a high
affinity and selectivity towards the target molecule and should be able to discriminate and
isolate them from closely related structures. MIPs can be prepared for a wide variety of
targets, e.g., proteins, viruses, drugs or pesticides [1–4]. In contrast to natural receptors,
MIPs can withstand much harsher conditions, such as high temperature, pressure, pH and
organic solvents. Additionally, synthetic polymeric receptors are also less expensive to
synthesize and their preparation can be easily scaled up for commercial and industrial
applications [4]. The technology of molecular imprinting enables the creation of artificial
binding sites within a polymer matrix. These sites are tailored in situ via co-polymerization
of functional monomers and crosslinkers around the template [5,6]. Afterwards, the
template molecule is extracted from the obtained polymer, leaving complementary cav-
ities (regarding shape, size, and distribution of functional groups) within the polymeric
network [1–4]. For this reason, MIPs show notable potential for applications in many
analytical areas, such as clinical analysis, medical diagnostics, environmental monitoring,
but more recently also for assisting drug delivery [4,7]. For example, they can be employed
in high-performance liquid chromatography [8], solid phase extraction [9], sensors [10],
separation [11,12], and catalysis [13,14]. However, the rebinding process depends on the
diffusion of the template on the recognition sites. Therefore, small molecules are easier to
imprint than macromolecules or entire biological species (i.e., peptides, proteins, DNA,
viruses and bacteria), which can be limited by size, mass transfer, conformational instabil-
ity, etc. [15] Specifically, mass transfer to and through the crosslinked polymer matrix is
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limited due to the molecular weight, which limits template removal and fast rebinding,
which also results in a low binding capacity [15–17]. Because of this issue, MIPs prepared
using the common bulky polymerization technique are not useful for proteins and other
macromolecules [5]. Moreover, the protein molecules can be trapped deeply in the poly-
mer matrix, which is resulting in a deteriorated elution [18,19]. Surface imprinting via
nanoscale carrier materials is well suited for proteins as a template, considering the men-
tioned problems [15]. Moreover, the conditions here can be adapted more to the properties
of the proteins. In the present study, core-shell imprinting was selected, which is a special
application of the surface imprinting technique. Commonly used support materials for
surface imprinting technique are TiO2, [20] Fe2O3, [21] and carbonaceous materials [22].
However, SiO2 was the most frequently used solid support material reported by numerous
studies [5]. However, protein imprinting is still in the early stage, mainly because of the
poor stability of the template protein during the polymerization, their limited solubility
and stability (i.e., pH, temperature, etc.), as well as structural flexibility in solution [23].

Because biological macromolecules show a poor solubility and tend to change their
conformational structure with their loss of biological activity in organic solvents, the
imprinting is usually performed in aqueous environments. Due to the fact that many func-
tional monomers are better soluble in organic solvents, the number of suitable monomers
is limited [15].

The protein used as a template in our study was the Hen egg white (HEW) lysozyme.
HEW lysozyme consists of 129 amino acids, with a molar mass of 14.3 kDa. It is a single
peptide chain protein and contains 4 pairs of cysteines on the molecule forming 4 S-S bonds.
The lysozyme is elliptical and has a size of 4.5 nm × 3.0 nm × 3.0 nm. The isoelectric
point is at pI 11.35. Lysozyme exhibits a globular structure composed of four α-helices
and five β-sheets, with four disulfide bridges [24]. The enzyme is active over a wide pH
range (6.0 to 9.0). Maximum activity is observed at pH 6.2 [25–28]. The internal structure of
lysozyme is almost non-polar, and hydrophobic interactions play an important role in the
folded conformation of lysozyme [25,27]. Lysozymes preferentially hydrolyze the β-1,4-
glycosidic bond between N-acetyl-D-muramic acid and 2-acetylamino-2-deoxy-D-glucose
(=N-acetyl-D-glucosamine) in the sugar chains of the peptidoglucan scaffold of the bacterial
cell wall. As a result, these enzymes have antibacterial properties. Lysozyme is abundant
in a number of biological secretions, such as saliva, tears, sweat, human milk, earwax, and
nasal and intestinal mucosa, as well as in blood plasma. Large amounts of lysozyme are
found in hen egg white. In food industries, HEW lysozyme is approved within the EU as
a food additive (i.e., number E 1105). For example, it is used at concentrations of up to
50 g/hl in winemaking to control acid biodegradation (i.e., bacterial breakdown of malic
acid into lactic acid). Furthermore, it is used as a conservation agent for aged cheese and to
preserve beer that has not been pasteurized or sterile-filtered [25–27]. For these reasons, it
is necessary to be able to isolate and purify lysozyme. A common method for this so far is
pH precipitation (salting out) and via chromatography on a cation exchange column. The
salting-out process, based on the addition of a neutral salt, compresses the solvation layer
and increases protein–protein interactions. When the salt concentration of a solution is
enhanced, the charges on the surface of the protein interact with the salt, not with the water,
exposing hydrophobic regions on the protein surface and causing the protein to precipitate
out of solution [29]. The isoelectric point (pI) also plays an important role in this process.
If the pH conforms to the pI, the protein has no netto charge. The negative and positive
charges balance each other out, which reduces the repulsive electrostatic forces so that the
attractive forces prevail. The attractive forces lead to aggregation and precipitation [29].
Thus, the solubility is the lowest at or close to this point. Lysozyme has a minimum
solubility at around pH 10 [29]. This state of precipitation can be partially irreversible, so
that the protein denatures. Moreover, the high pH can also lead to denaturation. This point
is a disadvantage of this method [29]. Furthermore, the cation exchange chromatography
works with the pI of the proteins. It can separate molecules based on their netto surface
charge [30]. For this device, it is important that the target molecule, in this case lysozyme,
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has a positive surface charge. Thus, a pH of below 9 is required. This method involves
several steps: the buffer preparation, the column equilibration, the sample loading, the
column washing and the elution of the protein [30,31]. This involves a certain amount of
effort. Furthermore, the effectiveness of this method is also highly pH dependent, if the pH
is too close to the pI the amount of positive charges decreases. Moreover, to separate several
proteins from each other using this method a salt gradient is then used to separate the
protein of interest from other bound proteins, so they will be eluted in an order depending
on their net surface charge [30,31]. This requires knowledge about their pIs. These points
make this method more sophisticated in its usage. MIPs have the potential to represent an
alternative, inexpensive method for lysozyme purification.

2. Materials and Methods
2.1. Chemicals

Acrylamide (AAM; ≥99%; Product No. A3553), Ammonium persulfate (APS; 98%;
Product No. 215589), Hexadecyltrimethylammonium bromide (CTAB; ≥99%; Product
No. H6269), Lysozyme from chicken egg white (HEW Lyz; ≥90%; Product No. L6876),
Methacrylic acid (MAA; 99%; Product No. 155721), N,N′-Methylenbisacrylamide (MBA;
99%; Product No. 146072), N,N,N′,N′-Tetramethylethylendiamine (TEMED; 99%; Product
No. T22500), Sodium Citrate tribasic dihydrate (≥99%; Product No. 71405), Thermolysin
from Geobacillus stearothermophilus (Therm; Product No. T7902) and Trypsin from bovine
pancreas (Tryp; Product No. T8003) were purchased from Sigma Aldrich (Steinheim,
Germany). (3-Aminopropyl)-triethoxysilane, (APTES; 98%; Product No. A10668), (3-
Aminopropyl)-trimethoxysilane (APTMS; 97%; Product No. A11284) and Hydrochloric
acid solution (HCl; 1M; Product No. 35640) were acquired by purchase from Alfa Aesar
(Kandel, Germany). Ammonia solution (28–30%; Product No. 1.05423) and Ethanol
(99.5%; Product No. 8.5033) were obtained from VWR International. Citric acid trisodium
salt dihydrate (99%; Product No. A12274) was purchased from Acros organics (Geel,
Belgium). 2-(Dimethylamino)-ethyl methacrylate (DMAEMA; ≥99%; Product No. 8.40083),
Dimethylformamide (DMF; 99.9%; Product No. 1.02375), di-Sodium hydrogen phosphate
2-hydrate (≥99.5%; Product No. 1.06580), Glutaraldehyde (50% solution in water; Product
No. 8.14393), Potassium Chloride (≥99.5%; Product No. 1.04933), Potassium di-hydrogen
phosphate (≥99.0%; Product No. P0662), Sodium Chloride (≥99.5%; Product No. 1.06404)
and Tetraethyl orthosilicate (≥99%; Product No. 8.00658) were purchased from Merck
(Darmstadt, Germany).

2.2. Synthesis of Core-Shell MIP Particles
2.2.1. Synthesis of the Silica Cores

Amino-functionalized silica (SiO2-NH2) cores were synthesized using Stöber synthesis.
For this purpose, 30 mL of ammonia solution (28–30%) were mixed with 150 mL ethanol
and stirred for 10 min. Simultaneously, a solution of 30 mL ethanol, 4 mL APTES and 2 mL
TEOS was prepared and stirred for 5 min. Then, the solutions were combined and stirred
for 30 min at 25 ◦C. This results in silica cores C1. For variation of the core properties,
25 mg Cetyltrimethylammoniumbromide (CTAB) were added to the mixture. However,
these modified silica particles denoted as cores C2 were only used in synthesis route I. To
finish the reaction, another 50 mL ethanol were added to the solution. The particles were
collected by centrifugation (4200 rpm) and washed with ethanol. Finally, the particles were
dried overnight in a vacuum oven at 40 ◦C and 600 mbar.

2.2.2. Synthesis Route I (Organic Shell, OC)

Functionalization of the core surface: To introduce polymerizable double bonds and
terminal carboxyl groups onto the core surface of the SiO2-NH2, maleic anhydride was
used. For this, the SiO2-NH2 cores (250 mg) were dispersed in 12 mL DMF by ultrasonic.
Subsequently, maleic anhydride (315 mg) and pyridine (210 µL) were added, and the
mixture was stirred for 3 h at 80 ◦C. The particles were collected by centrifugation, washed
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with ethanol and dried overnight (40 ◦C and 600 mbar). These particles are denoted as
SiO2-COOH.

Imprinting Step: The crosslinking degree of this route is 50% and the molar ratio
of AAM/MAA/DMAEMA is 1/0.12/0.12. The procedure of imprinting was carried out
as described below. The SiO2-COOH particles (120 mg) were dispersed in 35 mL PBS
(pH = 7.4) or citrate buffer (pH = 6.2). Then, MBA (80 mg), AAM (57.4 mg), MAA (8 mg),
DMAEMA (14.6 mg) and Lyz (32 mg) were added to the suspension. The mixture was
shaken for 1 h to obtain the pre-polymerization complex. As a next step, the mixture was
purged with argon for 20 min to remove oxygen from solution. By injecting 120 µL APS
solution (10 or 20%, (w/v)) and 60 µL of TEMED solution (5%, (v/v)), the polymerization
reaction was initiated. The mixture was stirred at 25 ◦C for 24 h. The obtained particles were
collected with centrifugation (2800 rpm) and washed two times with deionized water in
order to remove oligomers and unreacted monomers. The obtained particles were washed
repeatedly with 0.5 M NaCl solution for template extraction until no Lyz was detected in
the supernatant at 280 nm. After re-washing with deionized water to remove the remaining
NaCl, the particles were dried overnight (40 ◦C and 600 mbar). Control polymers (NIPs)
were prepared by the same synthesis protocol but in the absence of lysozyme. These
core-shell particles have an inorganic (silica) core and an organic shell.

2.2.3. Synthesis Route II (Inorganic Shell, IC)

Functionalization of the core surface: In this route, no linker was required for graft-
ing the polymer layer onto the core surface as the monomers and crosslinkers can be
attached directly to the surface. However, to immobilize and orient the lysozyme prior
to polymerization, the core particles were functionalized with glutaraldehyde. First, the
SiO2-NH2 particles (300 mg) were dispersed in 12 mL water using ultrasonic. Then, a
surplus of glutaraldehyde (165 µL, 7 µmol/mg particles) was added to the suspension and
the mixture was shaken for 30 min at 25 ◦C. Afterwards, the particles were washed with
deionized water and subsequently dried overnight (40 ◦C and 600 mbar).

Imprinting step: For the imprinting, the functionalized particles (250 mg) were sus-
pended in 20 mL PBS (pH = 7.4) or citrate buffer (pH = 6.2). To the particles, 20 mL of
lysozyme solution (2 mg/mL) were added. The particles were incubated with the lysozyme
solution by shaking for 1 h. After removing the lysozyme solution, another 20 mL PBS
or citrate buffer were added to the particles. Moreover, 4 µL APTES, 4 µL APTMS and
25 µL TEOS were added and the mixture was shaken for 24 h. Control polymers were
prepared in the same way, but without the incubation step. These core-shell particles have
an inorganic (silica) core and an inorganic (silica) shell.

Table 1 provides an overview to the different synthesis variations and their abbreviations.

Table 1. Abbreviations of the syntheses.

Abbreviation Synthesis
Route Core Type APS Solution

(w/v) pH Extraction

OC110% I 1 10% 7.4 0.5 M NaCl
OC120% I 1 20% 7.4 0.5 M NaCl

OC1Citrate I 1 20% 6.2 0.5 M NaCl
OC2PBS I 2 20% 7.4 0.5 M NaCl

OC2Citrate I 2 20% 6.2 0.5 M NaCl
ICPBS II 1 - 7.4 1 M HCl

ICCitrate II 1 - 6.2 1 M HCl

In total, 5 variants of synthesis route I (OC) were successfully synthesized. Of these,
3 had silica particles C1 as the core (OC1), while 2 variants owned silica particles C2 as the
core (OC2). Furthermore, 2 variants of synthesis route II were prepared (IC), both using
silica particles C1 as core.
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2.3. Protein Rebinding Experiments

For the investigation of the obtained rebinding properties (binding kinetics, binding
capacity and selectivity) of the core-shell particles, incubation rebinding experiments
were examined. For this purpose, 10 mg of dried particles were suspended in 750 µL of
0.5–1.0 mg/mL protein solutions prepared using PBS (pH = 7.4) or citrate buffer (pH = 6.2)
as a solvent. The standard incubation time was 30 min. Competitive binding studies
testing selectivity using trypsin and thermolysin were performed in the same way using a
protein solution with the concentration 1.0 mg/mL. All studies were performed at room
temperature. The amount of adsorbed protein by the nanoparticles after the rebinding
experiments was calculated using the following formula:

q =

(
ci − c f

)
· V

m

where q (mg/g) is the mass of protein adsorbed by unit mass of dry particles, ci (mg/mL)
and cf (mg/mL) are the protein concentrations of the initial and the final solutions. V (mL)
is the total volume of the mixture, while m is the mass of the applied particles.

2.4. Particle Characterization

Scanning electron microscopy (SEM) images were taken on a Quanta 3D FEG (FEI
Company USA, Hillsboro, OR, USA) operated at 3.00 kV. The Brunauer–Emmett–Teller
(BET) measurements were performed on a Quatrasorb SI/Quarasorb evo (Quantachrome/3P-
Instruments, Odelzhausen, Germany). The Dynamic Light Scattering (DLS) experiments
were carried out on a Zetasizer Nano ZS (Malvern Instruments, Malvern, UK). The laser
has a wavelength of 633 nm and the measurements were taken at an angle of 173◦. All
UV-Vis measurements were taken on a Specord S600 (Analytik Jena, Jena, Germany) at
280 nm.

3. Results
3.1. DLS Studies

Table 2 summarizes the results of the DLS experiments.

Table 2. DLS Results.

Abbreviation Z-Average d [nm] PdI

C1 330.60 0.03
C2 416.50 0.01

MIP(OC110%) 970.60 0.14
NIP(OC110%) 609.37 0.04
MIP(OC120%) 1203.33 0.29
NIP(OC120%) 824.03 0.22

MIP(OC1Citrate) 539.33 0.11
NIP(OC1Citrate) 401.87 0.65
MIP(OC2PBS) 873.37 0.34
NIP(OC2PBS) 825.97 0.42

MIP(OC2Citrate) 481.20 0.13
NIP(OC2Citrate) 432.50 0.06

MIP(ICPBS) 1005.00 0.67
NIP(ICPBS) 497.37 0.14

MIP(ICCitrate) 707.30 0.87
NIP(ICCitrate) 341.40 0.28

Table 2 shows that cores C1 have a smaller diameter compared to cores C2, i.e., the
addition of CTAB leads to an increase in diameter. Both core particle types have a very small
PdI and are nearly monodisperse. The DLS measurements confirm that a polymer layer has
formed around the core particles as the diameter has increased in all cases. Furthermore,
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the particle diameters of the MIPs are always larger than those of the corresponding NIPs;
thus, the polymer layer formed is thicker. It can also be seen that doubling the starter
concentration leads to the formation of a thicker polymer layer (see OC110% and OC120%).
Comparing the OC120% and OC1Citrate synthesis variants, it can be stated that the diameters
are significantly smaller for OC1Citrate as for OC120%. Larger diameters were also obtained
for the OC2 and IC variants in PBS rather than in citrate buffer. Thus, pH has an influence
on the thickness of the polymer layer. Particles C1 also result in MIP/NIP pairs whose
diameters sometimes diverge by a factor of 2. The MIP/NIP pairs of particles C2, on the
other hand, have similar diameters.

3.2. BET Studies

Table 3 shows the results of the BET measurements.

Table 3. BET results.

Abbreviation Surface Area
(Adsorption) (m2/g)

Pore Diameter
(Adsorption) (nm)

Pore Volume
(Adsorption) (cc/g)

C1 12.16 12.88 0.06
C2 11.48 3.87 0.04

MIP(OC110%) 13.87 4.66 0.05
NIP(OC110%) 50.07 3.00 0.10
MIP(OC120%) 34.48 3.54 0.08
NIP(OC120%) 21.86 3.74 0.07

MIP(OC1Citrate) 18.14 3.01 0.04
NIP(OC1Citrate) 12.95 3.49 0.04
MIP(OC2PBS) 22.76 3.32 0.07
NIP(OC2PBS) 24.84 4.17 0.07

MIP(OC2Citrate) 41.81 5.77 0.09
NIP(OC2Citrate) 92.85 3.66 0.15

MIP(ICPBS) 28.73 3.51 0.06
NIP(ICPBS) 11.96 3.66 0.04

MIP(ICCitrate) 17.57 8.04 0.11
NIP(ICCitrate) 17.42 4.11 0.09

From Table 3 it is evident that the surface properties of the bare silica particles are influenced
by their composition. The deviating pore diameters are particularly noticeable here. However,
depending on the pore diameter, not the entire surface is available for adsorption of lysozyme.
As mentioned, the dimensions of lysozyme are 4.5 nm× 3.0 nm× 3.0 nm. Taking this fact into
account, lysozyme can diffuse more easily into the pores of particles C1 than into the pores
of cores C2. For all MIPs and NIPs which have silica particles C1 as their core, it can be
established that the pore diameters were significantly decreased (factor 3–4). On the basis
of this fact, it can be assumed that polymer has built up in the pores resulting in a reduced
pore diameter. For both cores C1 and C2, the surface areas increased after the imprinting
step (with exception of NIP(ICPBS), revealing a slight decrease). Since there is a change in
surface properties for all variations, it can be assumed that a polymer layer has formed at
the particles.

3.3. SEM Studies

Figure 1 provides a comparison between the core particles C1 and C2.
Particles C1 are spherical, with a narrow size distribution. Their average size is

330.60 nm (see Table 2). The particles are non-agglomerated and have no visible pores.
Based on the BET measurements (see Table 3), it is evident that these particles have
small pores with an average diameter of 12.88 nm. Particles C2 appear slightly more
inhomogeneous in shape, but otherwise there are no visible differences to particles C1.
Their average size is 416.50 nm (see Table 2) and they have also a narrow size distribution.
These particles also have no evident pores with the determined pore diameter averaging
3.87 nm (compare Table 3).
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Figure 2. SEM images of MIP (a) and NIP (b); variant OC1Citrate.

Compared to the initial particles C1 (see Figure 1), the surface of MIP and NIP appears
significantly modified. The surface of the core-shell polymers is corrugated and it is evident
that a polymer coating has been formed both at the surface and between particles. In
addition, MIP and NIP have a larger diameter than the initial particles C1. The modification
of the surface was verified via DLS and BET measurements (compare Tables 2 and 3). The
MIPs are slightly more agglomerated than the NIPs.

3.4. Synthesis Route I (OC)

A schematic representation of synthesis route I is depicted in Figure 3.

3.4.1. Polymers OC110%

To gain an insight into binding kinetics, rebinding studies were carried out at incuba-
tion times of 30 min, 60 min and 240 min. Thereby, 1.0 mg/mL was chosen as initial the
lysozyme concentration. The study was performed in PBS. Table 4 shows the results.
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Table 4. Results of time dependent rebinding study of polymers OC110% in PBS.

Incubation Time (min) QMIP (mg/g) QNIP (mg/g) IF (a.u.)

30 43.59 33.83 1.29
60 23.38 20.35 1.14

240 2.9 19.53 0.15

Table 4 shows that only the incubation times of 30 min and 60 min result in an
imprinting factor higher than 1. It is also noticeable that QMIP and imprinting factor
continue to decrease with increasing incubation time and the best values are obtained after
only 30 min. Thus, if the incubation period is too long, the number of non-specific bindings
increases and outweighs the specific ones, resulting in a lower imprinting factor. Therefore,
30 min was chosen as the standard incubation time.

To analyze the influence of the lysozyme concentration on the binding properties, a
concentration-dependent study was performed in PBS.

Table 5 summarizes the results of this study.

Table 5. Results of concentration dependent rebinding study of polymers OC110% in PBS.

Lysozyme
Concentration (mg/mL) QMIP (mg/g) QNIP (mg/g) IF (a.u.)

0.5 2.36 1.45 1.63
0.75 3.14 1.14 2.74
1.0 43.59 33.83 1.29

QMIP rise with increasing lysozyme concentration with a rapid gain between 0.75 mg/mL
and 1.0 mg/mL. All imprinting factors are larger than 1, the highest imprinting factor is
obtained at the initial concentration of 0.75 mg/mL. Nonspecific binding is assumed to be
the reason for the decrease to higher concentrations.

3.4.2. Polymers OC120%

As the next step, the concentration of the initiator (APS solution) was doubled, result-
ing in variant OC120%. With these polymers, concentration-dependent rebinding studies
were performed in PBS and citrate buffer to check the influence of both lysozyme concen-
tration and pH during the rebinding process.
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Table 6 summarizes the results for the concentration-dependent rebinding studies.

Table 6. Results of concentration dependent rebinding study of polymers OC120%.

Lysozyme
Concentration (mg/mL) QMIP (mg/g) QNIP (mg/g) IF (a.u.) pH

0.5 14.81 8.16 1.82 7.4
0.75 21.77 17.42 1.25 7.4
1.0 35.73 31.95 1.12 7.4
0.5 18.80 12.13 1.55 6.2

0.75 25.05 15.99 1.57 6.2
1.0 46.28 37.07 1.25 6.2

Comparing the results in PBS with those from variant OC110%, QMIP increased signif-
icantly for the lysozyme concentrations 0.5 mg/mL and 0.75 mg/mL, while it decreased
slightly for 1.0 mg/mL (compare with Table 5). For 0.5 mg/mL, the imprinting factor increased
in this synthesis variant, while the opposite can be observed for the higher concentrations.

Both for PBS and citrate buffer, QMIP increases with the increasing lysozyme concen-
tration, while the imprinting factors follow the opposite trend. Therefore, it is evident
that the specific binding sites are already largely occupied at lower concentrations, and
non-specific bonds are formed at higher concentrations. However, their influence is in
general less pronounced in citrate buffer than in PBS. It may be observed that the specific
binding capacities QMIP are higher in citrate buffer than in PBS; these observations could be
due to the fact that this pH corresponds to the point of maximum activity of the lysozyme.

Thus, in direct comparison, pH = 6.2 proves to be more advantageous, at least for this
synthesis variant.

A graphical comparison of the imprinting factors in both buffers is shown in Figure 4.
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In order to verify the selectivity of the polymers, a comparative study was carried out
in citrate buffer. The results are shown further down.

3.4.3. Polymers OC1Citrate

To determine whether the pH during the synthesis has an influence on the binding
quality of the polymers, citrate buffer was investigated as solvent instead of PBS resulting
in synthesis variation OC1Citrate. All other synthesis parameters correspond to synthesis
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variant OC120%. The results of the concentration dependent study in citrate buffer are
shown in Table 7.

Table 7. Results of concentration dependent rebinding study of polymers OC1Citrate in citrate buffer.

Lysozyme
Concentration (mg/mL) QMIP (mg/g) QNIP (mg/g) IF (a.u.)

0.5 24.36 21.73 1.12
0.75 42.93 22.09 1.94
1.0 55.32 23.35 2.37

The results conclude that QMIP correlate with the initial concentration, i.e., the higher
the initial lysozyme concentration, the higher the QMIP. The same trend can be observed for
the imprinting factors. Since neither QMIP nor imprinting factors passed through a maxi-
mum, the particles are still specific even at higher lysozyme concentrations. Furthermore, it
can be deduced that many specific binding sites were formed that were not yet completely
occupied even at 1.0 mg/mL. Compared with the same study of the analog synthesis
variant OC120% (see Table 6), this variant provides better binding properties. Thus, higher
QMIP was achieved at all concentrations. A graphical comparison of the imprinting factors
of polymers OC120% and OC1Citrate in citrate buffer can be seen in Figure 5.
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With the exception of 0.5 mg/mL, the imprinting factors rise using polymers OC1Citrate.
This optimization can be attributed to the fact that the pH during synthesis corresponds to
the optimum of lysozyme activity. This synthesis variant provides a promising approach
with respect to the objective of this work. Moreover, good binding characteristics are
observed here even at high lysozyme concentrations.

Likewise, a competitive study was performed in citrate buffer, and the results are
presented in a latter chapter.

3.4.4. Polymers OC2PBS and OC2Citrate

To gain an insight into the influence of the silica core on the binding properties, the
silica core was modified by adding 25 mg CTAB during the Stöber synthesis. This results in
the OC2 variants. All other synthesis parameters were retained. Both buffers were tested
during the synthesis.
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Polymers OC2PBS

The results for the concentration dependent studies both in PBS and citrate buffer are
shown in Table 8.

Table 8. Results of concentration dependent rebinding study of polymers OC2PBS.

Lysozyme Concentration
(mg/mL) QMIP (mg/g) QNIP (mg/g) IF (a.u.) pH

0.5 31.17 25.13 1.24 7.4
0.75 41.87 22.62 1.85 7.4
1.0 38.05 22.49 1.69 7.4
0.5 28.61 20.24 1.41 6.2

0.75 32.92 28.05 1.17 6.2
1.0 52.46 21.40 2.45 6.2

In PBS, both IF and QMIP follow the same trend: a maximum can be observed at
the concentration 0.75 mg/mL. If this study is now compared with the analogous study
with the polymers OC120% (identical synthesis, different silica core), better results are
obtained (compare Table 6). QMIP of the OC2PBS polymers are higher in all concentrations.
Similarly, this variant has better imprinting factors at high lysozyme concentrations. At low
concentrations, on the other hand, the OC120% variant is preferable, since the imprinting
factor here is significantly higher and thus the proportion of non-specific binding is smaller.
In citrate buffer, on the other hand, the imprinting factor is highest for the initial lysozyme
concentration of 1.0 mg/mL. The imprinting factors do not behave proportionally to the
initial concentrations, a minimum can be seen at 0.75 mL/mL. QMIP grows with increasing
concentration, and the highest value was received for 1.0 mg/mL.

The highest QMIP and imprinting factor for the OC2PBS variant were both obtained in
citrate buffer for a lysozyme concentration of 1.0 mg/mL. Figure 6 compares the concentra-
tion dependent IFs during both pH values.
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Comparing both buffers for variant OC2PBS, it can be stated that citrate buffer is better
qualified for higher lysozyme concentrations. PBS tends to be better suited for lower
lysozyme concentrations, since higher QMIP were obtained here.

Comparing this study in citrate buffer with the analogous study with the particles OC120%
(see Table 6) can be established that QMIP increases for all concentrations. The opposite trend
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can be observed for the IFs (for the concentrations 0.5 mg/mL and 0.75 mg/mL). For the
concentration 1.0 mg/mL, on the other hand, the imprinting factor is almost doubled.

The results for the competitive study in citrate buffer can be found subsequent.

Polymers OC2Citrate

The results for the concentration dependent studies in PBS and citrate buffer are
shown in Table 9.

Table 9. Results of concentration dependent rebinding study of polymers OC2Citrate.

Lysozyme Concentration
(mg/mL) QMIP (mg/g) QNIP (mg/g) IF (a.u.) pH

0.5 26.80 23.30 1.15 7.4
0.75 58.82 24.80 2.37 7.4
1.0 57.35 26.02 2.20 7.4
0.5 28.61 20.24 1.44 6.2

0.75 26.85 13.47 1.99 6.2
1.0 46.17 37.06 1.25 6.2

For these polymers in PBS, both the highest imprinting factor and QMIP were obtained
for the initial lysozyme concentration 0.75 mg/mL. However, the decrease in both quantities
to the concentration 1.0 mg/mL is relatively minor. In contrast, significantly poorer binding
properties were obtained for 0.5 mg/mL. These two aspects make this variant in PBS more
applicable for higher lysozyme concentrations. Moreover, in citrate buffer, the highest
imprinting factor was obtained at 0.75 mg/mL, while the highest QMIP is obtained for
1.0 mg/mL. The imprinting factors decreases sharply between 0.75 mg/mL and 1.0 mg/mL
indicating an increase in non-specific binding to high concentrations.

Figure 7 compares the imprinting factors of particles OC2Citrate in both buffers.
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However, higher imprinting factors were obtained for 0.75 mg/mL and 1.0 mg/mL in
PBS rather than in citrate buffer. For 0.5 mg/mL, on the other hand, an increase in both
QMIP and imprinting factor is observed in citrate buffer.

When the results in citrate buffer are compared with the analogous study with particles
OC1Citrate (see Table 7), it is shown that the imprinting factors for the two smaller concen-
trations have increased, while the imprinting factor for 1.0 mg/mL has nearly halved. For
the two higher concentrations, QMIP decreased compared to the OC1Citrate variant.
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Table 10 compiles the results of the completed studies.

Table 10. Results of the comparative studies of polymers OC120%, OC1Citrate, OC2PBS and OC2Citrate

in citrate buffer.

Protein QMIP (mg/g) QNIP (mg/g) Polymers pH

Lysozyme 46.28 37.07 OC120% 6.2
Trypsin 38.65 32.99 OC120% 6.2

Thermolysin 31.92 20.79 OC120% 6.2
Lysozyme 55.32 23.35 OC1Citrate 6.2

Trypsin 59.19 48.06 OC1Citrate 6.2
Thermolysin 37.94 30.26 OC1Citrate 6.2

Lysozyme 52.46 21.40 OC2PBS 6.2
Trypsin 52.95 37.89 OC2PBS 6.2

Thermolysin 41.10 23.53 OC2PBS 6.2
Lysozyme 46.17 37.06 OC2Citrate 6.2

Trypsin 25.87 11.08 OC2Citrate 6.2
Thermolysin 37.07 35.08 OC2Citrate 6.2

It is noticeable that the target protein lysozyme binds better to the OC120% MIP than
the reference proteins. Thus, it can be concluded that the polymer particles show a degree
of selectivity in citrate buffer.

For the OC1Citrate variant, the MIP binds the lysozyme better than thermolysin, and
so there is a selectivity towards thermolysin. However, trypsin is bound slightly better
by particles OC1Citrate than by lysozyme. It is noteworthy that the ratio of the binding
capacities between MIP and NIP is more pronounced for lysozyme than for both reference
proteins. For the OC2PBS version it applies that trypsin is best bound by MIP, but the
difference with lysozyme is negligible. Thermolysin is less bound by the MIPs. For
OCCitrate, QMIP is significantly larger for lysozyme than for trypsin and thermolysin. The
particles are thus selective.

3.5. Synthesis Route II (IC)

A schematic representation of synthesis route II is depicted in Figure 8.
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This synthesis was also performed in PBS and citrate buffer.

3.5.1. Polymers ICPBS

The results for the concentration dependent study in PBS are shown in Table 11.
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Table 11. Results of concentration dependent rebinding study of polymers ICPBS.

Lysozyme Concentration
(mg/mL) QMIP (mg/g) QNIP (mg/g) IF (a.u.) pH

0.5 25.65 18.08 1.42 7.4
0.75 32.47 17.68 1.84 7.4
1.0 36.77 19.49 1.89 7.4
0.5 31.57 21.30 1.48 6.2

0.75 33.73 29.87 1.13 6.2
1.0 41.07 36.70 1.12 6.2

In PBS, both QMIP and imprinting factors increase with increasing lysozyme concen-
tration, no maximum was reached for both parameters in the investigated concentration
range. Thus, the non-specific binding does not have a considerable influence here.

As in PBS, QMIP rises in citrate buffer with increasing lysozyme concentration, but
reaches higher values. However, since the imprinting factors decrease with increasing
lysozyme concentration, this gain can be attributed to non-specific binding.

Figure 9 represents the IF for the different concentrations for both pH values.
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The highest imprinting factor for these particles is obtained in PBS at lysozyme
concentration 1.0 mg/mL. For smaller lysozyme concentrations, it is thus advantageous to
use the polymers in citrate buffer, since the imprinting factor and QMIP are higher here. For
higher concentrations (0.75 mg/mL and 1.0 mg/mL), PBS is better suited.

3.5.2. Polymers ICCitrate

Table 12 shows the results of the concentration-dependent study in PBS.
In PBS, QMIP grows with increasing lysozyme concentration. However, the highest

imprinting factor is obtained for the lysozyme concentration 0.75 mg/mL, so the proportion
of non-specific binding increases at higher concentrations. Comparing this study with
the analog synthesis (particles ICPBS in PBS, see Table 13) it can be noted that QMIP has
increased for all concentrations. The opposite can be observed for the IF. This leads to the
conclusion that the growth of QMIP is due to a high proportion of non-specific binding.
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Table 12. Results of concentration dependent rebinding study of polymers ICCitrate in PBS.

Lysozyme Concentration
(mg/mL) QMIP (mg/g) QNIP (mg/g) IF (a.u.) pH

0.5 27.53 23.64 1.16 7.4
0.75 41.12 22.59 1.82 7.4
1.0 47.40 34.91 1.36 7.4
0.5 23.40 19.16 1.22 6.2

0.75 33.72 30.55 1.10 6.2
1.0 46.64 39.50 1.18 6.2

Table 13. Results of the comparative study of polymers ICCitrate in PBS.

Protein QMIP (mg/g) QNIP (mg/g) pH

Lysozyme 47.40 34.91 7.4
Trypsin 45.51 44.03 7.4

Thermolysin 39.14 32.16 7.4

Moreover, in citrate buffer, QMIP increases with growing lysozyme concentration;
however, the highest imprinting factor is obtained for 0.5 mg/mL. A plot comparison of
the obtained imprinting factors is shown in Figure 10.
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The highest imprinting factor for these polymers is obtained in PBS at 0.75 mg/mL.
At higher lysozyme concentrations higher QMIP and imprinting factors were received in
PBS. Thus, PBS is more suitable for higher lysozyme concentrations.

QMIP of lysozyme is higher than for the reference proteins. However, the difference to
trypsin is minimal. Thus, a degree of selectivity can be assumed. What is noticeable here is
that the ratio of QMIP and QNIP for lysozyme is better than it is for the reference proteins.

In conclusion, QMIP has increased with increasing lysozyme concentration for both
variants in both buffers.

Both ICPBS and ICCitrate exhibit higher IF in PBS than in citrate buffer at higher
lysozyme concentrations (0.75 mg/mL and 1.0 mg/mL).

4. Conclusions

The present study provides an insight into the development of molecularly imprinted
polymers for HEW lysozyme. Using the core-shell approach, specific synthetic receptors
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for the model protein were successfully generated. By adjusting the conditions, satisfactory
imprinting efficiency with respect to both imprinting factors and binding capacities was
achieved. Thus, this method represents a promising alternative to current methods for the
isolation of lysozyme. Furthermore, the imprinted particles showed fast rebinding kinetics.
As for selectivity, the highest imprinting factor of the core-shell polymers I was 2.74, and for
core-shell polymers II 1.89. Thus, a higher sensitivity to lysozyme was achieved using route
I. Furthermore, route I achieved better selectivity towards trypsin and thermolysin than
route II. The highest QMIP obtained for route I was 55.32 mg/g (C1 core) and 58.82 mg/g
(C2 core), respectively. The highest QMIP received for route II was 47.40 mg/g.

Thus, the purpose of this study (i.e., high QMIP and high IF for lysozyme) was max-
imized via route I vs. route II. Nevertheless, the obtained results for route II were also
satisfactory providing slightly less, but still high binding capacities and distinct selec-
tivity. Last, but not least, the latter synthesis route is experimentally easier and less
time-consuming, which may be decisive parameters for a scaled-up synthesis required by
industrial application scenarios. We compared the results with the work of Zhang and
others, where an imprinting factor of 2.53 was achieved. As for route II, this polymer is a
silica-based polymer.
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