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Abstract: Liquid-phase exfoliation (LPE) is a widely used and promising method for the production
of 2D nanomaterials because it can be scaled up relatively easily. Nevertheless, the yields achieved
by this process are still low, ranging between 2% and 5%, which makes the large-scale production of
these materials difficult. In this report, we investigate the cause of these low yields by examining
the sonication-assisted LPE of graphene, boron nitride nanosheets (BNNSs), and molybdenum
disulfide nanosheets (MoS2 NS). Our results show that the low yields are caused by an equilibrium
that is formed between the exfoliated nanosheets and the flocculated ones during the sonication
process. This study provides an understanding of this behaviour, which prevents further exfoliation
of nanosheets. By avoiding this equilibrium, we were able to increase the total yields of graphene,
BNNSs, and MoS2 NS up to 14%, 44%, and 29%, respectively. Here, we demonstrate a modified LPE
process that leads to the high-yield production of 2D nanomaterials.

Keywords: 2D materials; liquid-phase exfoliation; high-yield production; graphene; boron nitride
nanosheets; molybdenum disulfide nanosheets

1. Introduction

Two-dimensional (2D) nanomaterials have gained worldwide attention in recent
years because of their outstanding properties due to their structure and dimensionality.
Graphene was the first 2D material that was successfully isolated and studied in 2004 by
Andre Geim and Konstantin Novoselov [1]. Graphene consists of sp2-hybridised carbon
atoms that are hexagonally arranged in a honeycomb lattice. This unique structure is
responsible for many of graphene’s excellent mechanical, electrical, thermal, and optical
properties [1–10]. Due to these properties, graphene can be used in a variety of applications,
ranging from nanoelectronics and energy storage to sensors and medicine [8,9,11–16]. Over
the last decade, there has been an increasing interest in other 2D materials as well, e.g.,
hexagonal boron nitride (h-BN) [17,18], transition metal dichalcogenides (TMDs such
as MoS2, TiS2, TaS2, WS2, etc.) [19,20], layered metal oxides [21–23], etc. Boron nitride
nanosheets (BNNSs) have a similar structure to that of graphene, but this material consists
of alternating boron and nitrogen atoms instead of carbon atoms. Similar to graphene,
BNNSs exhibit outstanding properties [24–30], which makes this material very interesting
and useful for a wide range of applications [31–36]. In contrast to graphene and BNNSs, a
TMD monolayer itself contains three layers of atoms (X-M-X), where the transition metal
M, for example, molybdenum, is “sandwiched” between two layers of the nonmetal atom
X, for example, sulfur in the case of MoS2 [20]. Similar to other 2D nanomaterials, TMDs
can also be used in a wide variety of applications [37–42] due to their properties [38,43–47].
In addition, 2D nanosheets have the potential to revolutionise technology. However, the
large-scale production of these materials still remains a major challenge. A very promising
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method is the liquid-phase exfoliation (LPE) because it allows the possibility of upscaling
and increasing the yields [22,48–51]. Many articles on understanding the mechanism
of LPE and advancing the yields of 2D materials have already been published [52–59],
The sonication-assisted LPE is a method in which layered materials are exfoliated by
concentrated energy that is released in the dispersion due to the cavitational implosion
of the ultrasound [60]. In the right solvent, by minimising the interfacial tension, the van
der Waals force between the layers can be overcome, and the exfoliated nanosheets are
dispersed stably in the solvent [51,61]. Liquid cascade centrifugation (LCC) [62,63] has
also been shown to be effective in the production of 2D materials with controlled size
and thickness but at the cost of low yield. LPE is a promising and powerful method for
large-scale production of 2D materials, the obtained yields (0.04% [64] and 3% [48] for
graphene, 2% [22] and 2.6% [65] for BNNSs, and 4.8% for MoS2 NS [66]) are still low and
so far, there has been no explanation as to why. Yuan et al. have reported a yield of 26% for
BNNSs by using sonication [67]; however, they start from a hydroxyl-functionalised boron
nitride. Hernandez et al. [49] have also reported an increased yield by bath sonication
recycling (12% for graphene); however, they use NMP as a solvent. The aim of our study
is to increase the yield by using green solvents [68], such as acetone for graphene and
2-propanol for BNNSs and MoS2 NS, as well as by starting from their non-modified bulk
counterpart, by first understanding the physical–chemical phenomenon that appears in the
dispersion during the sonication process. The behaviour of the nanosheets in the solvent
provides an insight into the cause of the current low yields. Experimental analyses were
performed to investigate and study the production of graphene, BNNSs, and MoS2 by
using the sonication-assisted LPE method.

2. Materials and Methods

The bulk materials used for the production of 2D nanosheets are as follows: graphite
was purchased from Alfa Aesar GmbH & Co KG (Karlsruhe, Germany); hexagonal boron
nitride (h-BN), purchased from ESK Ceramics (3M Deutschland GmbH, Neuss, Germany);
molybdenum disulfide (MoS2), purchased from Sigma-Aldrich Chemie GmbH (Steinheim,
Germany). The 3D bulk materials are in the µm range. The exfoliation solvents were 2-
propanol (purity (GC) ≥ 99.9%) was purchased from Carl Roth GmbH + Co. KG (Karlsruhe,
Germany); acetone (purity (GC) ≥ 99.8%), purchased from Carl Roth GmbH + Co. KG
(Karlsruhe, Germany); N-methyl-2-pyrrolidone (purity (GC) ≥ 99.5%), purchased from
Merck KGaA (Darmstadt, Germany). All solvents were used without further purification.
Poly(ethylene oxide) with an M.W of 100,000 was purchased from Sigma-Aldrich Chemie
GmbH (Steinheim, Germany).

2.1. Probe-Type Sonication

For this procedure, 1 g of the starting bulk material was dispersed in 100 mL 2-
propanol and sonicated for a total of 21 h for boron nitride and 26 h molybdenum disulfide,
and 1 g of the starting bulk material graphite was dispersed in 100 mL acetone and sonicated
for a total of 17 h. The sonication was performed at an amplitude of 30% and with an
On/Off pulse of 0.5/0.5 s. The probe-type sonicator that was used was Sonics & Materials,
400 Watt-Model with a variable power of max. 400 W and a frequency of 20 kHz. The
probe was a standard horn 1

2 ” (13 mm) with a threaded end and replaceable tip 1
2 ” (13 mm)

and made of titanium alloy (Ti-6Al-4V). The sample was cooled with an ice bath during the
sonication process. The experiments were performed in triplicates. Therefore, three small
samples were taken every hour, in order to determine the yield and follow the production
of the nanosheets, which are separated from their non-exfoliated bulk materials by a 10 min
centrifugation at 4500 rpm. The centrifuge that was used was the Heraeus Labofuge 400R
with a swinging bucket rotor (max. radius 17.4 cm) from Kendro Laboratory Products
GmbH (Osterode, Germany).
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2.2. Diluting and Stirring

During this stage, 1 g of the starting bulk material was dispersed in 100 mL 2-propanol
and sonicated for a total of 21 h for boron nitride and 26 h for molybdenum disulfide, and
1 g of the starting bulk material graphite was dispersed in 100 mL acetone and sonicated
for a total of 17 h. The same sonication parameters as above were used. The sample was
then diluted with the following dilution ratios: 1:1; 1:10 and 1:100. In the case of graphene,
a solvent exchange from acetone to N-methyl-2-pyrrolidone (NMP) was performed. The
diluted samples were stirred for one hour and the exfoliated nanosheets were separated by
a 10 min centrifugation at 4500 rpm. For comparison, all three materials were also stirred
without previous sonication. Parameters such as initial concentration (10 mg/mL) and
solvent (2-propanol for boron nitride and molybdenum disulfide and NMP for graphite)
were the same as above.

2.3. Recycling

Briefly, 100 mg bulk material (boron nitride and molybdenum disulfide) was dispersed
in 10 mL 2-propanol, and 100 mg graphite was dispersed in 10 mL acetone. The materials
were sonicated for one hour using the same sonication parameters as above, and the
exfoliated nanosheets were separated from the bulk material by a 10 min centrifugation at
4500 rpm. The non-exfoliated material was redispersed in fresh solvent (2-propanol for
boron nitride and molybdenum disulfide and acetone for graphite) and further sonicated
for another hour. This process was repeated for a total of 12 h.

2.4. Enhanced Liquid-Phase Exfoliation

During one cycle, 100 mg bulk material (boron nitride and molybdenum disulfide)
was dispersed in 10 mL 2-propanol, and 100 mg graphite was dispersed in 10 mL acetone.
The materials were sonicated for one hour using the same sonication parameters as above.
They were then diluted with a 1:10 ratio and stirred for one hour. The exfoliated nanosheets
were separated from the bulk material by a 10 min centrifugation at 4500 rpm. The non-
exfoliated material was redispersed in fresh solvent (2-propanol for boron nitride and
molybdenum disulfide and acetone for graphite) and recycled. This process was repeated
for a total of 5 cycles.

2.5. Ultraviolet–Visible Spectroscopy (UV–Vis) Measurements

The yield was determined using UV–Vis spectroscopy and the Lambert–Beer law.
The photometer that was used was the Aligent Cary 60 Spectrophotometer (Aligent Tech-
nologies Österreich GmbH, Vienna, Austria) with the following electrical specifications:
standard 3.2 A/12 V plug pack as the main supply; spectrophotometer: 90–265 V AC and a
frequency of 47–63 Hz. The absorption coefficients are 2474 L g−1m−1 at λ = 660 nm for
graphene, 2354 L g−1m−1 at λ = 300 nm for h-BN and 3302 L g−1m−1 at λ = 672 nm for
MoS2 [51].

2.6. Dynamic Light Scattering (DLS) Measurements

The instrument comprised a goniometer, a diode laser working at λ = 532 nm (Coherent
Verdi V5) with single fiber detection optics (OZ from GMP, Zürich, Switzerland), an
ALV/SO-SIPD/DUAL photomultiplier with pseudo-cross-correlation mode, and an ALV
7004 digital multi-tau real-time correlator (ALV, Langen, Germany). The AVL software
package was used to record and store the correlation functions. These were averaged
with 10 measurements of 30 s at a scattering angle of 90◦ and a temperature of 25 ◦C. The
hydrodynamic radius was calculated by the optimised regulation technique software [69].

2.7. Small Angle X-ray Scattering (SAXS) Measurements

The SAXS instrument consisted of a SAXSpoint 2.0 (Anton-Paar GmbH, Graz, Austria)
that contained a Primux 100 micro microfocus X-ray source operating at λ = 0.154 nm
(Cu Kα). The samples were filled into a 1 mm diameter capillary and measured 10 times,
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for 180 s. Two-dimensional scattering patterns that were recorded by a 2D EIGER series
hybrid photon counting (HPC) detector (Dectris Ltd., Baden-Daettwil, Switzerland), were
averaged and edited by correcting the cosmic X-ray impacts. All measurements were
performed at 20 ◦C. Water was used as a secondary standard in order to achieve the absolute
scale calibration [70]. All SAXS data have been evaluated by a generalised indirect Fourier-
transform (GIFT) method [71–73] to determine the pair distance distribution function of
the thickness pt(r) [74].

2.8. Atomic Force Microscopy (AFM) Measurements

The instrument used was the atomic force microscope ToscaTM 400 (Anton-Paar
GmbH, Graz, Austria) with a power supply of 100 to 240 V ± 10%, frequency of 50 to
60 Hz, power consumption of 200 W, and fuse T 3.6 AH. The tapping mode was used for
imaging the sample surface at 10 µm resolution. The cantilever had a force constant of
42 N and a resonance frequency of 285 kHz.

3. Results

Despite the liquid-phase exfoliation being a promising method for the large-scale
production of 2D materials, yields achieved by continuous sonication in previous studies
are low. Understanding what occurs during the sonication process would be the first step
towards increasing the yields.

3.1. Probe-Type Sonication

Graphene, BNNSs, and MoS2 NS were exfoliated by probe-type sonication from their
bulk counterparts graphite, h-BN, and MoS2. The obtained yields are shown in Figure 1.

Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 16 
 

 

for 180 s. Two-dimensional scattering patterns that were recorded by a 2D EIGER series 
hybrid photon counting (HPC) detector (Dectris Ltd., Baden-Daettwil, Switzerland), were 
averaged and edited by correcting the cosmic X-ray impacts. All measurements were per-
formed at 20 °C. Water was used as a secondary standard in order to achieve the absolute 
scale calibration [70]. All SAXS data have been evaluated by a generalised indirect Fou-
rier-transform (GIFT) method [71–73] to determine the pair distance distribution function 
of the thickness pt(r) [74]. 

2.8. Atomic Force Microscopy (AFM) Measurements 
The instrument used was the atomic force microscope ToscaTM 400 (Anton-Paar 

GmbH, Graz, Austria) with a power supply of 100 to 240 V ± 10%, frequency of 50 to 60 
Hz, power consumption of 200 W, and fuse T 3.6 AH. The tapping mode was used for 
imaging the sample surface at 10 μm resolution. The cantilever had a force constant of 42 
N and a resonance frequency of 285 kHz. 

3. Results 
Despite the liquid-phase exfoliation being a promising method for the large-scale 

production of 2D materials, yields achieved by continuous sonication in previous studies 
are low. Understanding what occurs during the sonication process would be the first step 
towards increasing the yields. 

3.1. Probe-Type Sonication 
Graphene, BNNSs, and MoS2 NS were exfoliated by probe-type sonication from their 

bulk counterparts graphite, h-BN, and MoS2. The obtained yields are shown in Figure 1. 

 
Figure 1. (a) Production of graphene in acetone, (b) BNNSs in 2-propanol and (c) MoS2 NS in 2-
propanol by sonication-assisted liquid-phase exfoliation. The maximum yield obtained for gra-
phene was 0.5%, and it was reached after 12 h of sonication. The BNNSs reached a maximum yield 

Figure 1. (a) Production of graphene in acetone, (b) BNNSs in 2-propanol and (c) MoS2 NS in 2-
propanol by sonication-assisted liquid-phase exfoliation. The maximum yield obtained for graphene
was 0.5%, and it was reached after 12 h of sonication. The BNNSs reached a maximum yield of 0.9%
after 17 h of sonication, and the maximum yield for MoS2 NS was 2.3% after 16 h of sonication.
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The yield of the exfoliated 2D materials was initially increased with sonication time.
However, longer sonication times led to a flattening of the curve. The maximum yield
obtained for graphene was 0.5%, and it was reached after 12 h of sonication, as shown in
Figure 1a. The BNNSs reached a yield of 0.9% after 17 h of sonication, as shown in Figure 1b,
and the maximum yield of MoS2 NS was 2.3%, and it was reached after 16 h of sonication,
as shown in Figure 1c. The sonication time needed to achieve maximum yields varied
depending on the material and the exfoliation solvent. The different molecular structures
led to different amounts of energy that were necessary in order to exfoliate the nanosheets
from their bulk material. The chosen solvent also had an effect on the exfoliation and
stabilisation of the nanosheets. 2-Propanol is a promising solvent [22] and has shown a
high exfoliation efficiency for boron nitride and molybdenum disulfide. In the case of
graphene, N-methyl-2-pyrrolidone (NMP) would have been a good solvent, but it could
not be used for the probe-type sonication because of its sonochemical degradation [75].
Therefore, acetone was chosen as an exfoliation solvent, because the ratio of surface tension
components (polar component/dispersive component) of acetone is closest to that of
NMP as demonstrated by Shen et al. [51]. Regardless of different sonication times needed
to achieve the maximum yield, one common behaviour observed for all three materials
was that there was no significant increase in the yield after a certain concentration of the
nanosheets in the sample was reached. Furthermore, in the case of MoS2 NS, the yield was
decreased. This behaviour was also found in other studies [76–79]. Thus far, no explanation
why this occurs has been reported. This raises the question of whether the exfoliation of
nanosheets from their bulk counterpart stops despite further sonication, or whether they
are continuously being exfoliated from the bulk material but reaggregate.

3.2. Diluting and Stirring

To determine if the reaggregation is reversible, after removing the exfoliated nanosheets,
the samples were diluted and stirred after the sonication process, and the yield was de-
termined via UV–Vis spectroscopy. Three different dilution ratios were used, and they
were as follows: 1:1; 1:10, and 1:100. The samples were stirred for one hour, and the yields
were determined and compared with the ones when the material was stirred without a
pre-sonication process. The results are demonstrated in Figure 2.
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Figure 2. Production of graphene in NMP, BNNSs in 2-propanol, and MoS2 NS in 2-propanol by
reducing the concentration of the exfoliated nanosheets in dispersion and stirring for one hour. The
maximum yields achieved were 0.15% for graphene, 0.74% for BNNSs, and 2.67% for MoS2 NS. These
results were higher, compared with those without a previous sonication.

Stirring the sample without a pre-sonication process showed negligible exfoliation
of nanosheets, as shown in Figure 2, where the yields for graphene, BNNSs, and MoS2
NS were 0.03%, 0.018%, and 0.006%, respectively. However, stirring the sample after it
was sonicated for a few hours led to an increase in yield. In the case of graphene, this was
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very low, almost non-significant, with values such as 0.05%, 0.03%, and 0.15%. The reason
for this might be the overall lower efficiency of acetone in comparison with NMP as an
exfoliation solvent for this material, as the maximum yield of graphene obtained after 12 h
of sonication was only 0.5%. Although for the stirring process, a solvent exchange from
acetone to NMP was performed, this did not seem to have an effect on yield. The results
were more promising for boron nitride nanosheets and molybdenum disulfide nanosheets,
with yields up to 0.74% and 2.67%, respectively.

3.3. Recycling

Recycling the bulk material led to an increase in yield, as illustrated in Figure 3.
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NS; (b) comparison of the yields achieved by recycling to those achieved by 12 h of sonication. A total yield of 12.5% was
achieved for graphene by recycling, whereas without recycling the yield was 0.45% after 12 h of sonication. In the case of
BNNSs, the values were 25.5% for recycling and 0.69% after 12 h of sonication, and in the case of MoS2 NS, the yield was as
high as 31.9% after recycling and only 1.8% when the sample was sonicated for 12 h straight.

The exfoliated nanosheets were removed from the sample after one hour of sonication,
and the bulk material was redispersed in the same solvent (acetone for graphite and 2-
propanol for the boron nitride and molybdenum disulfide) and sonicated for another hour.
This process was repeated for a total of 12 h. A linear increase in yield was observed
for all three materials. In the case of graphene, a total yield of 12.5% was achieved after
12 h of recycled sonication, whereas for BNNSs, the yield was 25.5%, and for MoS2 NS,
31.9%. These results are significantly higher, compared with those found in literature
(0.04% [64] and 3% [48] for graphene; 2% [22] and 2.6% [65] for BNNSs; 4.8% [66] for MoS2
NS), obtained by single-step procedures. Due to its linear character, the yield can be further
increased by continuous recycling.

3.4. Induced Flocculation

To demonstrate that the flocculation is reversible, the depletion interaction concept
was investigated [80–82]. Adding a polymer to the dispersion provoked an attraction
between the particles, leading to induced flocculation [83]. Poly(ethylene oxide) was added
to a dispersion of Graphene, BNNSs, and MoS2 NS, and after a certain amount of time,
flakes were observed in solution, as shown in Figure 4. The flocculated nanosheets were
then successfully redispersed in a solvent by shaking the sample.
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would be a better condition, here, a ratio of 1:10 was chosen in order to reduce the amount 
of solvent used, as more than one cycle was performed. After five cycles, a remarkable 
increase in yield was observed (Figure 5). Its linear character, determined by the linear 
relationship formulas y = 2.88x − 0.63 (R2 = 0.9999) for graphene; y = 9.63x − 3.21 (R2 = 0.9941) 
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Figure 4. Induced flocculation of (a) graphene, (b) BNNSs and (c) MoS2 NS by adding poly(ethylene
oxide); (d–f) this flocculation can be reversed by shaking the sample.

3.5. Enhanced Liquid-Phase Exfoliation

By combining diluting and stirring with recycling, we were able to enhance the liquid-
phase exfoliation method and increase the yield to 14% for graphene, 44% for BNNSs, and
29% for MoS2 NS after only five cycles, as illustrated in Figure 5.
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During one cycle, the starting bulk material was sonicated for one hour, and after the
sample was diluted and stirred for another hour, the exfoliated nanosheets were removed
and the bulk material recycled. Although according to Figure 2, a dilution ratio of 1:100
would be a better condition, here, a ratio of 1:10 was chosen in order to reduce the amount of
solvent used, as more than one cycle was performed. After five cycles, a remarkable increase
in yield was observed (Figure 5). Its linear character, determined by the linear relationship
formulas y = 2.88x − 0.63 (R2 = 0.9999) for graphene; y = 9.63x − 3.21 (R2 = 0.9941) for
BNNSs; y = 5.99x − 0.97 (R2 = 0.996) for MoS2 NS, indicates the continuation of the
production of 2D materials can lead to even higher yields.
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3.6. Characterisation

The yield was determined using UV–Vis spectroscopy and the Lambert–Beer law
(A = ε l c, where A is the absorbance, ε is the absorption coefficient, l is the optical path
length in cm and c is the concentration). The UV–Vis spectra of graphene, BNNSs, and
MoS2 NS produced by five cycles of enhanced LPE are illustrated in Figure 6.
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The concentration of the nanosheets in the sample was calculated by the absorbance
value at the specific wavelengths (λ = 660 nm for graphene, λ = 300 nm for BNNSs and
λ = 672 nm for MoS2 NS), divided by the corresponding absorption coefficients, which
are 2474 L g−1m−1 at λ = 660 nm for graphene; L g−1m−1 at λ = 300 nm for h-BN;
3302 L g−1m−1 at λ = 672 nm for MoS2 [51].

The average hydrodynamic radius of the exfoliated nanosheets was characterised
by dynamic light scattering (DLS), whereas their maximum thickness was determined by
small-angle X-ray scattering (SAXS). DLS and SAXS could only be performed on those
exfoliated nanosheets that were produced by long probe-type sonication and recycling.
Due to the low yield of those produced by stirring after sonication, the scattering intensity
of the nanosheets was too weak, and therefore, it could not be measured. Moreover, SAXS
was used to determine the maximum thickness of the nanosheets. The low scattering
intensity of thin flakes and monolayers was superposed by the much higher scattering
intensity of the thicker ones.

As illustrated in Figure 7a, the average hydrodynamic radius of graphene exfoliated
by probe-type sonication was around 65 nm, whereas the graphene that was exfoliated
by recycling, where graphite was sonicated for only one hour, showed a hydrodynamic
radius of around 100 nm. Monolayer and few-layer graphene could not be determined
by SAXS due to their low scattering intensity. However, the maximum thickness of the
graphite nanosheets exfoliated by continuous probe-type sonication was between 15 nm
and 40 nm. Similarly, graphite nanosheets that were exfoliated by recycling showed
maximum thickness between 20 nm and 40 nm (Figure 7b). A more significant difference
in hydrodynamic radius was observed in the case of BNNSs, as illustrated in Figure 8a.

The average hydrodynamic radius of BNNSs exfoliated by only one hour of sonication
in the case of recycling was approximately 110 nm, whereas the long sonication process
led to a larger hydrodynamic radius, which was around 350 nm. However, comparable to
graphene, the maximum thickness does not change significantly. The BNNSs that were
exfoliated after one hour of sonication in the case of recycling showed a maximum thickness
of up to 15–30 nm, whereas those exfoliated by long probe-type sonication had a maximum
thickness of up to 20–30 nm (Figure 8b).
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Figure 7. (a) DLS: hydrodynamic radius of the exfoliated graphene by probe-type sonication and by recycling. Graphene
that was exfoliated by long probe-type sonication has an average hydrodynamic radius of around 65 nm, whereas graphene
that was sonicated for one hour in the case of recycling has an average hydrodynamic radius of around 100 nm; (b) SAXS:
pair–distance distribution function of thickness (pt(r), where r (nm) stands for thickness of the nanosheets) of the exfoliated
graphene by probe-type sonication and by recycling. Graphite nanosheets exfoliated by long probe-type sonication had a
maximum thickness of around 15 nm and could increase to 40 nm, whereas graphite nanosheets that were sonicated for one
hour in the case of recycling had a maximum thickness of 20 nm and could increase to 40 nm.
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Figure 8. (a) DLS: hydrodynamic radius of the exfoliated BNNSs by probe-type sonication and by recycling. BNNSs
exfoliated by long probe-type sonication had an average hydrodynamic radius of around 350 nm, whereas BNNSs sonicated
for one hour in the case of recycling had an average hydrodynamic radius of around 110 nm; (b) SAXS: pair–distance
distribution function of thickness (pt(r), where r (nm) stands for thickness of the nanosheets) of the exfoliated BNNSs by
probe-type sonication and by recycling. BNNSs exfoliated by long probe-type sonication had a maximum thickness of
around 20 nm and could increase to 30 nm, whereas BNNSs sonicated for one hour in the case of recycling had a maximum
thickness of 15 nm and could rise to 30 nm.

Similar to graphene, MoS2 NSs that were produced by long probe-type sonication had
an average hydrodynamic radius of around 60 nm, whereas those produced by one hour of
sonication in the case of recycling had an average hydrodynamic radius of about 110 nm,
as demonstrated in Figure 9a. However, SAXS showed that the nanosheets produced by
long sonication were thinner than those exfoliated by one hour of sonication (Figure 9b).
The nanosheets produced by long probe-type sonication had maximum thicknesses of
up to 10 nm to 30 nm, while those that were produced by one hour of sonication in
the case of recycling had maximum thicknesses of up to 15–40 nm. In the case of MoS2
NS, longer sonication led to a smaller hydrodynamic radius and thinner nanosheets.
Nevertheless, the effect of the sonication time on the size of the exfoliated 2D materials
needs further investigation.

The quality of the nanosheets was determined via AFM, as demonstrated in Figure 10.



Nanomaterials 2021, 11, 3253 10 of 15Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 9. (a) DLS: hydrodynamic radius of the exfoliated MoS2 NS by probe-type sonication and by recycling. MoS2 NS 
that was exfoliated by long probe-type sonication had an average hydrodynamic radius of around 60 nm, whereas MoS2 
NS that was sonicated for one hour in the case of recycling had an average hydrodynamic radius of around 110 nm; (b) 
SAXS: pair–distance distribution function of thickness (pt(r), where r (nm) stands for thickness of the nanosheets) of the 
exfoliated MoS2 NS by probe-type sonication and by recycling. MoS2 NS exfoliated by long probe-type sonication had a 
maximum thickness of around 10 nm and could increase to 30 nm, whereas MoS2 NS that was sonicated for one hour in 
the case of recycling had a maximum thickness of 15 nm and could increase to 40 nm. 

The quality of the nanosheets was determined via AFM, as demonstrated in Figure 
10. 

 
Figure 10. AFM images of the exfoliated (a) graphene, (b) BNNSs, and (c) MoS2 NS. Scale bar (white): 
250 nm. 

The AFM images illustrated a typical 2D shape of the exfoliated nanosheets with dif-
ferent sizes and thicknesses, as it is challenging to produce monodisperse samples by LPE. 
Monolayer and few-layer graphene with a thickness of under 6 nm, as well as graphite 
nanosheets with a thickness of up to 25 nm, are visible in Figure 10a. The BNNSs in Figure 
10b also showed different thicknesses, ranging from 4 nm to 15 nm, whereas Figure 10c 
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exfoliation, and why the overall yields are low. As shown in Figure 1, the yields increased 
with sonication time; however, when a certain concentration of the nanosheets in the sam-
ple was achieved, the curve flattened, reaching a plateau. We speculate that during soni-
cation, exfoliation and reaggregation were in equilibrium. With the increase in the con-
centration of nanosheets, the distance between them became smaller. The closer they 
were, the stronger the attractive van der Waals forces, and this led to their flocculation. 
The cohesion in those aggregates was weaker than in the pristine materials. Although a 
little-to-no increase in yield was observed after several hours of sonication, as shown in 
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Figure 9. (a) DLS: hydrodynamic radius of the exfoliated MoS2 NS by probe-type sonication and by recycling. MoS2 NS
that was exfoliated by long probe-type sonication had an average hydrodynamic radius of around 60 nm, whereas MoS2 NS
that was sonicated for one hour in the case of recycling had an average hydrodynamic radius of around 110 nm; (b) SAXS:
pair–distance distribution function of thickness (pt(r), where r (nm) stands for thickness of the nanosheets) of the exfoliated
MoS2 NS by probe-type sonication and by recycling. MoS2 NS exfoliated by long probe-type sonication had a maximum
thickness of around 10 nm and could increase to 30 nm, whereas MoS2 NS that was sonicated for one hour in the case of
recycling had a maximum thickness of 15 nm and could increase to 40 nm.
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Figure 10. AFM images of the exfoliated (a) graphene, (b) BNNSs, and (c) MoS2 NS. Scale bar (white):
250 nm.

The AFM images illustrated a typical 2D shape of the exfoliated nanosheets with
different sizes and thicknesses, as it is challenging to produce monodisperse samples
by LPE. Monolayer and few-layer graphene with a thickness of under 6 nm, as well as
graphite nanosheets with a thickness of up to 25 nm, are visible in Figure 10a. The BNNSs
in Figure 10b also showed different thicknesses, ranging from 4 nm to 15 nm, whereas
Figure 10c illustrates MoS2 NS that were similar in their thickness, around 8–9 nm.

4. Discussion

To overcome the challenge of producing 2D materials at a large scale, it is of high
significance to first understand what occurs during the sonication-assisted liquid-phase
exfoliation, and why the overall yields are low. As shown in Figure 1, the yields increased
with sonication time; however, when a certain concentration of the nanosheets in the
sample was achieved, the curve flattened, reaching a plateau. We speculate that during
sonication, exfoliation and reaggregation were in equilibrium. With the increase in the
concentration of nanosheets, the distance between them became smaller. The closer they
were, the stronger the attractive van der Waals forces, and this led to their flocculation. The
cohesion in those aggregates was weaker than in the pristine materials. Although a little-
to-no increase in yield was observed after several hours of sonication, as shown in Figure 1,
the exfoliation of nanosheets from their bulk material continued. While these nanosheets
were being produced, those that were already exfoliated flocculated back together due
to the decrease in the distance between them. This led to a concentration of 2D materials
in the sample that stayed almost constant despite continuous sonication. After several
hours, equilibrium was reached. This equilibrium between the exfoliated nanosheets and
the flocculated ones, prevented the further increase in yield, as demonstrated in Figure 1
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by the flattening of the curve. Nevertheless, due to weaker cohesion in the flocculated
nanosheets, they could be redispersed by diluting and stirring the sample. The reversibility
was demonstrated by the induced flocculation shown in Section 3.4. Furthermore, the
presence of nanosheets when the sample was stirred after the sonication process (Figure 2)
also showed that this flocculation could be reversed. Understanding the equilibrium state
that occurred during the sonication-assisted LPE provided us an insight into the cause of
low yields, despite long hours of sonication. Another fact that supports the formation of
this apparent equilibrium is that the yield could be increased by recycling. Continuous
sonication did not increase yield; however, when the exfoliated nanosheets were removed,
and the bulk material was recycled, the equilibrium could be avoided, and more nanosheets
could be exfoliated. A comparison of the yields achieved by recycling with those achieved
by a long 12 h sonication is illustrated in Figure 3b. The yields that were obtained by
recycling procedure and those obtained by continuous sonication were approximately
28 times higher in the case of graphene, 37 times higher in the case of BNNSs, and 18 times
higher in the case of MoS2 NS. This significant increase in yield supports the formation
of an apparent equilibrium during sonication that prevented the continual production of
nanosheets. Therefore, it was necessary to remove the already exfoliated nanosheets and
recycle the bulk material to further exfoliate and consequently increase the total yield. On
the basis of these results, we developed a method by combining the recycling method with
diluting and stirring, as illustrated in Figure 11.
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Figure 11. Improved LPE method in order to increase the yield. When the equilibrium in the sample was reached, and
flocculated nanosheets were created, the sample was diluted and stirred in order to redisperse the flocculated nanosheets.
The exfoliated 2D material was then removed, the bulk material was recycled, and the process was repeated.

By diluting and stirring the sample after sonication, the flocculated nanosheets were
redispersed. This led to a higher amount of exfoliated nanomaterial in the sample. The
nanosheets were then removed by centrifugation, and the bulk material was recycled. This
multi-step procedure significantly increased the yield. Following this scheme, we were able
to achieve yields of graphene, BNNSs, and MoS2 NS to 14%, 44%, and 29%, respectively,
after only five cycles (Figure 5). This five-cycle LPE mechanism, shown in Figure 11,
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supports the fact that the formation of the apparent equilibrium during sonication prevents
the further production of nanosheets. It can be circumvented by diluting and stirring, as
well as recycling the non-exfoliated material. In a subsequent step, the nanosheets can be
separated by high-speed centrifugation, and the solvent can be reused in this procedure.
Due to the fact that yields can be increased by avoiding the equilibrium, this method can
be extended to the production of different 2D materials, as well as the use of other solvents.
The results in Figure 5 demonstrate that the proposed procedure leads to the continual
production of nanosheets. Therefore, the LPE method demonstrated in Figure 11 can be
repeated continuously leading to even higher yields.

5. Conclusions

Understanding what occurs during the sonication-assisted LPE is an important step
towards the large-scale production of 2D materials. Although this method is very promis-
ing, the obtained yields that were previously reported were still low. We were able to
investigate and show the reasons behind these low yields. In this report, we showed that
during sonication, exfoliated nanosheets and the flocculated ones are in equilibrium. When
a certain concentration of 2D materials in the sample is achieved, the distance between
them becomes smaller, leading to their flocculation. However, the experiments showed
that this is reversible. By combining diluting and stirring (to reverse the flocculation) with
recycling (to increase the yield), we developed an LPE procedure (Figure 11) circumventing
the equilibrium in order to increase yield. After only five cycles, we were able to achieve
yields of 14% for graphene, 44% for BNNSs, and 29% for MoS2 NS. Due to similarities in
structure, our findings can be extended to other 2D materials as well.
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