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Abstract: To date, the mechanisms of Er3+ upconversion luminescence via 980 and 1530 nm excitation
have been extensively investigated; however, based on discussions, they either suffer from the lack
of convincing evidence or require elaborated and time-consuming numerical simulations. In this
work, the steady-state and time-resolved upconversion luminescence data of Er3+-doped NaYF4

were measured; we therefore investigated the upconversion mechanisms of Er3+ on the basis of the
spectroscopic observations and the simplified rate equation modeling. This work provides a relatively
simple strategy to reveal the UCL mechanisms of Er3+ upon excitation with various wavelengths,
which may also be used in other lanthanide ion-doped systems.
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1. Introduction

Rare earth ion (Re3+)-doped materials emitting upconversion luminescence (UCL)
have attracted increasing attention owing to their wide application potentials in super-
resolution nanoscopy [1], visible and ultraviolet lasers [2], 3-D volumetric display [3],
information security [4], photovoltaic devices [5], cancer therapy [6], anti-counterfeiting [7],
and biological fluorescence labeling [8]. Appropriate hosts and activators are of vital
importance for achieving desired UCL performances. Besides its good stability validating
its use in various conditions, hexagonal NaYF4 (β-NaYF4), with the maximum phonon
energy below 400 cm−1 [9] diminishing the phonon-assisted relaxation of excited electrons
and thereby increasing the light emission intensity, has become the most popular UCL host.

From another side, Er3+ is the most attractive activator for UCL, mainly due to the high
luminescent efficiency and the abundant light colors including the RGB components [10].
As shown in Figure 1, traditional Er3+ doped UCL materials, usually with the help from
Yb3+ as sensitizer, are mostly irradiated at ~980 nm [11]. Yb3+-sensitized Er3+ UCL ex-
hibits higher efficiency, owing to Yb3+ holding a large absorption cross-section at 980 nm
(~9×10−21 cm2 for Yb3+ and ~2 × 10−21 cm2 for Er3+) [12,13] and can efficiently transfer
the energy absorbed to Er3+, enabling Er3+ luminescence ranging from ultraviolet to visible
and to NIR. The mechanisms of Er3+ luminescence have been extensively investigated in
Er3+/Yb3+ co-doped materials, comprising mainly the absorption of Yb3+, energy transfer
(ET) processes (from Yb3+ to Er3+, among different Er3+ ions, or within the levels of the
same Er3+ ion), multiphonon-assisted decays, and finally the spontaneous radiative transi-
tions (Figure 1). However, the UCL mechanisms of Er3+ upon 980 nm excitation seem to be
sensitive to many factors, especially for the red emission. To date, the origins of red UCL
of Er3+ upon 980 nm excitation are generally attributed to the following three processes
as labeled in Figure 1: 1. the multiphonon-assisted decay from the upper state [14], 2. the
upward transition from 4I13/2 state [15], 3. the energy transfer (ET) within the levels of the
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same Er3+ [16]. How to distinguish the dominant mechanisms among the above possible
origins remains a formidable challenge. In particular, identifying the main ET process
responsible for red UCL among the possible ET processes is particularly difficult [17,18].
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Figure 1. Diagram of Yb3+ and Er3+ energy levels with the main possible pathways involved in the
Er3+ luminescence processes. ABS, absorption; ETYb-Er, ET from Yb3+ to Er3+; EM, energy migration
between neighboring Er3+; ETEr-Er, ET within the levels of the same Er3+ ion; MD, multiphonon-
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In recent years, efforts of changing the excitation wavelength for UCL materials have
been devoted, owing to the high risk for human eyes [19] and the overheating effect for
biological applications [20] of 980 nm excitation. Typically, using Nd3+ as sensitizer to re-
place Yb3+ can switch the excitation wavelength to 800 nm. Nd3+ sensitized UCL materials
boost great research interests due to their strong energy harvest and deep penetration in
biological tissues [21]. However, the Nd3+-sensitized materials usually require complex
structures to achieve high UCL efficiency [22,23].

Alternatively, excitation at ~1.5 µm shows great potential for Er3+ singly doped
UCL materials with simple structures, mainly due to the following reasons: First, 1.5 µm
excitation shows less scattering loss than that of 980 nm excitation in biological tissues.
Second, the Er3+ 4I13/2 state has a large absorption cross section at 1.5 µm [24], enabling the
efficient energy harvest. Third, the lifetime of Er3+ 4I13/2 state exceeds 10 ms [25,26] and
the unique 4f electron configuration of Er3+ enables the successive excited-state absorption
(ESA) of 1.5 µm photons, validating further populations of Er3+ high energy states.

To date, Er3+ self-sensitized UCL in oxides [27], fluorides [28–33], and other com-
pounds [34–39] have exhibited high efficiency upon ~1.5 µm excitation. However, similar
to the situation in 980 nm excited Er3+ UCL materials, it is quite difficult to clarify the
luminescent mechanisms, especially for the red emission. For instance, the origins of Er3+

self-sensitized red UCL upon 1.5 µm excitation were generally attributed to the follow-
ing processes solely or synergistically: ESA from 4I11/2 [27,29,30,34,35,39], ET between
2H11/2 and 4I11/2 [31], ET between 4I11/2 and 4I13/2 [32,33], and nonradiative decay from
4S3/2 [36,37].

Clarifying the UCL mechanisms of Er3+ upon 0.98 and 1.5 µm excitation is crucial for
fully exploiting the potentials of Er3+-doped UCL materials. However, current literature
discussing the UCL mechanisms of Er3+ upon excitation with various wavelengths (typi-
cally 980 nm and 1.5 µm), generally either suffer from weak evidence [40,41], or require
elaborated and time-consuming numerical simulations [9,42]. In this paper, different con-
centrations of Er3+-doped β-NaYF4 are synthesized. The UCL mechanisms of the samples
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via 980 and 1530 nm excitation are discussed on the basis of the spectroscopic data, and the
discussion is further verified using simplified rate equation models.

2. Materials and Methods
2.1. Materials

Re(NO3)3·6H2O (Re = Y and Er, 99.99%), NaF (98%), and ethylenediamine tetraacetic
acid (EDTA, 99.5%) were purchased from Aladdin Co. Ltd., Shanghai, China. Ethanol
(99.7%) was provided by Macklin Co. Ltd., Shanghai, China. All chemicals were used as
received.

2.2. Synthesis

The hexagonal NaYF4 (β-NaYF4) doped with x mol% Er3+, x = 2, 5, 10, 20, 30, and 40,
were prepared by a modified hydrothermal method [43], and were thereafter denoted as
xEr samples. In a typical route, Re(NO3)3·6H2O (Er + Y = 4 mmol) with pre-determined
ratios were first dissolved into 20 mL of deionized water after stirring for 30 min. Then, an
aqueous solution of NaF (50 mmol, 10 mL) was added, and the mixture was kept stirring
for 30 min. Afterwards, 4 mmol of EDTA, together with 30 mL of deionized water, were
added and stirred for 1 h at room temperature. The resulting mixtures were transferred
into Teflon-lined autoclaves and heated up to 200 ◦C for 20 h. After cooling down to room
temperature, the reacting product was collected by centrifugation and washed with ethanol
and deionized water several times, and dried at 80 ◦C for 20 h in air. For future spectral
measurements, all the powder form samples were pressed into smooth plates, using an
identical pressing setting.

2.3. Characterization

The crystallite structures of the as-prepared samples were identified by X-ray diffrac-
tion (XRD, XRD-6100, Shimadzu, Kyoto, Japan) measurements. The morphologies of the
samples were recorded via a transmission electron microscope (TEM, Tecnai G2, FEI, Hills-
boro, OH, USA). Room temperature luminescence measurements were performed by irradi-
ating the samples via variable-power NIR diode lasers (LWIRL980-5W and LWIRL1530-1W,
Laserwave, Beijing, China), with an excitation beam spot of around 1 mm2. The steady-state
and time-resolved photoluminescence curves were measured by a customized ultraviolet
to mid-infrared steady-state and phosphorescence lifetime spectrometer (QM8000, Horiba,
Beijing, China) equipped with a tunable midband OPO laser as the pulse excitation source
(410–2400 nm, Vibrant 355II, OPOTEK, Carlsbad, CA, USA). To validate the spectral com-
parisons, samples in powder form were ground and then pressed into round disks with
two smooth surfaces. The usage of powders, pressing pressure, and diameter and thickness
of the disks was identical.

3. Results
3.1. Structure Characterization

Figure 2a shows the XRD patterns of the as-prepared samples and the standard diffrac-
tion data of β-NaYF4 (JCPDS No. 28-1192). Three typical concentrations, representing low
(2 mol%), moderate (10 mol%), and high (40 mol%) doping levels, were used for the XRD
tests. All the diffraction peaks of the sample are consistent with the standard data and no
obvious diffraction peaks of other impurities are observed, indicating the high purity of
the hexagonal crystallite structure of samples.
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Figure 2. Structural characterizations of typical samples. (a) XRD patterns with standard diffraction
data of β-NaYF4 as a reference; (b–d) TEM images of the samples. Scale bars are all 500 nm.

Figure 2b–d show the TEM images of 2Er, 10Er, and 40Er samples. It can be seen that
all samples are irregular blocks with sizes of typically 102 nm, and no substantial difference
appears in these samples. Although it is well known that the particle size and shape of
NaReF4 are sensitive to the type and concentration of the dopants, the morphologies of
all samples are highly similar in the current case, which might be attributed to the similar
ionic radii of Y3+ (0.90 Å) and Er3+ (0.89 Å). Due to the unchanged morphology, we can
exclude the effects of the morphology when comparing the intrinsic UCL properties among
different samples.

It is noteworthy that the as-prepared samples are not nanorods, which is the typical
morphology of the NaReF4 nanomaterials prepared through a hydrothermal route. The
formation of the irregular blocks rather than regular microrods might be due to the rela-
tively higher synthesis temperature as well as relatively longer synthesis time, which lead
the particles to dissolve and aggregate, similar to the morphology evolution of NaReF4
hydrothermally prepared elsewhere [44].

3.2. Luminescent Properties

The typical UCL spectra—using the 10Er sample as a representative as it is the most
efficient—upon 980 and 1530 nm excitations were shown in Figure 3, in which an identical
excitation power density of 100 W/cm2 was used for both excitation sources. Figure 3a
shows the emission spectra upon 980 nm excitation, the 300~900 nm spectra were recorded
by a PMT detector, while NIR spectrum ranging 800~1700 nm were recorded by an InGaAs
detector. Eight characteristic emission bands of Er3+ can be observed. Emission peaks
at 381, 408, 490, 520, 541, 654, 807, and 1532 nm can be attributed to the transitions of
4G11/2, 2H9/2, 4F7/2, 2H11/2, 4S3/2, 4F9/2, 4I9/2, and 4I13/2 state to the ground state 4I15/2,
respectively. The transition of 4I11/2→4I15/2 overlaps with the excitation laser line, and
thereby cannot be clearly seen. From another side, switching the excitation wavelength to
1530 nm induces 4I11/2→4I15/2 transition, centered at 980 nm. In addition, another emission
band previously absent, centered at 450 nm corresponding to 4F5/2→4I15/2 transition, also
appears upon 1530 nm excitation (Figure 3b).
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Figure 3. Photoluminescence spectra of 10Er sample upon (a) 980 and (b) 1530 nm excitation. The
spectra in the wavelength range of 300~500 nm were enlarged by a factor of 10, for the sake of clarity;
(c,d) are the histograms of the overall intensities of green and red UC emissions of different samples
upon 980 and 1530 nm excitation, respectively, normalized by the green intensity of the 10Er sample.

Notably, the UCL intensity of the 10Er sample is stronger when using 1530 nm excitation
compared to that of 980 nm excitation. Actually, 1530 nm excitation generally yields more
intense UCL in samples doped with different Er3+ concentrations. Figure 3c,d show the
integral intensities of green and red UCL of xEr samples upon different excitations. Except
the 5Er sample, which is somehow weak, all others exhibit higher UCL intensity when
using 1530 nm excitation. The general improvements in UCL intensity by using 1530 nm
excitation can mainly stem from the stronger energy harvest of Er3+ at this wavelength [24],
as well as the longer lifetime of 4I13/2 state [45,46]. The brightest UCL were obtained in
the 10Er sample for both 980 and 1530 nm excitation, and the enhanced factors of green
and red emission via 1530 nm excitation reach to around 4 and 5, respectively, compared to
that of 980 nm excitation. The first increase and then decrease in the overall UCL intensity
with the doping concentration might be related to the competition between energy harvest
(positively correlates to the concentration) and concentration quenching effect (negatively
correlates to the concentration). Another feature is that the red to green intensity ratios both
increase with increasing Er3+ concentration for two excitations, suggesting concentration-
dependent populations for the red state 4F9/2. The concentration-dependent population
of the red state is stronger when using 1530 nm excitation, as evidenced by the larger red
to green ratio obtained in the same sample upon different excitations. It is noteworthy
that red light generally achieves deeper penetration than green light in biological tissues.
Thus, the strong red UCL of the 10Er sample upon 1530 nm excitation may be of use in the
in vivo applications.

To investigate the population and decay processes of Er3+ UCL, we record the time-
resolved UCL of the 10Er sample upon pulse excitations, which are further modeled using
a reported method [47]. For the population processes after pulse 980 nm excitation, green
UCL rapidly reaches its maximum (25 µs rise-time as shown in Figure 4a), while red UCL
increases gradually (367 µs rise-time as shown in Figure 4b), leading to an obvious delayed
onset time of the red decay. The rapid and relatively slow populations indicate that the
ESA and ETU are responsible for the populations of green and red UCL, respectively. Once
switching the pulse excitation wavelength to 1530 nm, the Er3+ green population is slightly
prolonged, with a rise-time of ~40 µs (Figure 4c). This prolonged process indicates that the
ETU start to play roles in the green population when using 1530 nm excitation. In addition,
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a large rise-time as high as ~1128 µs appears for the red UCL (Figure 4d), which clearly
manifests the different origins of red UCL upon 980 and 1530 nm excitation.

Figure 4. Time-resolved UCL of (a) green and (b) red emission upon 980 nm excitation and (c) green
and (d) red emission upon 1530 nm excitation of the 10Er sample. The fitting curves, as well as the
rise- and decay-times, are presented.

As for the decay processes, Er3+ green and red UCL both remain substantially un-
changed when using different excitation wavelengths, due to the decay pathways being
less dependent on the excitation wavelengths. Notably, the red emissions decay is evidently
slower than the green emissions, for both 980 and 1530 nm excitation. This can be mainly
attributed to the combination of radiative and nonradiative decay behaviors. From one
hand, the radiative transition rates of Er3+ green (103 s−1 for 4S3/2/2H11/2) and red (102 s−1

for 4F9/2) emissions vary considerably [48], which partially contributes to the difference of
green and red UCL decay-times. From another hand, nonradiative decay from upper state
(4F7/2) to green states (4S3/2/2H11/2) is extremely fast, while the nonradiative decay that
feeds the red state (4S3/2→4F9/2) is relatively slow, also leading to the prolonged decay-
time of red UCL. It was noted that the nonradiative decay rates are similar for Er3+ green
and red states as they have similar energy gaps of ~3000 cm−1 to their lower neighboring
states, and thus are unlikely to be responsible for the varied decay-times.

On the basis of the above discussions, we propose the following mechanisms respon-
sible for Er3+ UCL: the population of green emission state upon 980 nm excitation can stem
from the ESA, due to the green UCL immediately increasing to its maximum after pulse
excitation. The ETU becomes the dominant populating process for Er3+ green UCL when
using 1530 nm excitation, as evidenced by the prolonged population (Figure 4c). It has
been reported that ESA tends to dominate the UCL process in low doping samples, while
ETU is mainly responsible for the UCL processes in high doping samples [49], due to the
stronger ET in high doping situations. In the current case, the stronger absorption of Er3+ at
1530 nm compared to that at 980 nm [24] results in stronger population in the intermediate
state, and thus the stronger ET.

From another side, the red population originates from the ET process for both 980 and
1530 nm excitation, which is consistent with the evidently prolonged population of red
UCL (Figure 4b). For 980 nm excitation, we assume that the dominant ET process for the
red UCL is between 4F7/2 and 4I11/2 states, while ET between 4I11/2 and 4I13/2 is mainly
responsible for the 1530 nm excited red UCL. These assumptions can well explain why the
population of red UCL can be further prolonged by 1530 nm excitation, since the lifetime
of 4I13/2 state is much larger than that of the 4F7/2 state.
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To further clarify the UCL mechanisms of Er3+ upon 1530 nm excitation, the variations
of different peak intensities with the pumping power, i.e., the power dependences, are
measured. The power dependences at 452 and 490 nm are absent in the low pumping region,
due to the extremely weak light signals. As shown in Figure 5, all the ln-ln UCL power
dependences can be well fitted linearly, but separated into two regions with increasing
pumping power. The slopes of the linear fitting lines in the low pumping power region are
obviously larger than that in the high pumping power region. The slopes derived from
the power dependences under the weak pumping, capable of representing the photon
numbers involved in an UCL process, are widely investigated [50–52]. In stark contrast,
high pumping slopes are rarely paid attention, although they deliver important information
as well.
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4I9/2 levels at 382, 408, 452, 490, 541, 654, and 807 nm, respectively, in the 10Er sample versus the
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dependencies.

3.3. Modeling the Upconversion Luminescence Processes

We further set up simplified rate equations to calculate the theoretical slopes of the power
dependences of Er3+ UCL, using a five- (Figure 6a) and eight-energy-level (Figure 6b,c)
model for 980 and 1530 nm excitation, respectively. The details of the establishment of the
rate equations, as well as the extraction of the slopes, refer to the reports elsewhere [49].

Figure 6. Simplified energy levels of Er3+ with the dominant upconversion pathways upon (a) 980 nm
excitation, (b) weak 1530 nm excitation, and (c) strong 1530 nm excitation.
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3.3.1. Excitation at 980 nm

As mentioned above, we assume the ESA and ETU processes dominate Er3+ green and
red UCL mechanisms upon 980 nm excitation, respectively (Figure 6a). The corresponding
rate equations can be given as follows:

1 : ρσ0N0 − ρσ1N1 −WN1N3 − A1N1 + β2 A2N2 = 0
2 : 2WN1N3 + β3 A3N3 − A2N2 = 0
3 : ρσ1N1 − ρσ3N3 −WN1N3 + β4 A4N4 − A3N3 = 0
4 : ρσ3N3 − A4N4 = 0

(1)

where Ni, σi, ρ, W, Ai, and βi stands for the population density of level i (i = 0, 1, 2, 3, and
4); absorption cross section for level i; pumping rate (proportional to incident laser power);
ET rate between energy levels 1 and 3; transition rate of level i, including the radiative
transition to the ground state and the multiphonon-assisted decay to its lower level; and
fraction of the multiphonon-assisted decay rate, respectively.

For the 980 nm weak pumping situation, the downward decay AiNi dominates the
depopulation of every state, then we obtain:

1 : ρσ0N0 − A1N1 = 0
2 : β3 A3N3 − A2N2 = 0
3 : ρσ1N1 − A3N3 = 0
4 : ρσ3N3 − A4N4 = 0

⇒

N1 ∝ P1

N2 ∝ P2

N3 ∝ P2

N4 ∝ P3

(2)

For 980 nm strong pumping, as the ESA and ET processes increase more evidently
with the incident laser power than the multiphonon-assisted decay process, we assume
that the upward ESA (ρσ1N1) dominates the depopulation of energy level 1, and the ET
process dominates the depopulation of energy level 3 (WN1N3 >> β3A3N3). In addition,
the fraction β4 is set to be 1, due to the closely distributed states of Er3+ in the higher energy
region. We therefore obtain:

1 : ρσ0N0 − ρσ1N1 = 0
2 : 2WN1N3 − A2N2 = 0
3 : ρσ1N1 −WN1N3 − A3N3 = 0
4 : ρσ3N3 − A4N4 = 0

⇒

N1 ∝ P0

N2 ∝ P1

N3 ∝ P1

N4 ∝ P2

(3)

From above, it can be concluded that the slope values n stand for the photon numbers
involved in the corresponding UCL processes in the weak pumping situation, and strong
pumping results in slope values decreasing to n − 1.

The slope values derived (nIdeal) and the slope values measured (nReal) are summarized
in Table 1. All the nIdeal are close to nReal, with only slight deviations. The slight deviations
of nIdeal to the integers may stem from the competition between upward and downward
transition which depopulates the intermediate state, as the integers were derived on the
basis of assumption under the extreme situations. Only one large deviation upon high
power 980 nm excitation appears at 490 nm (nReal = 1.7 and nIdeal = 1). This exception can
stem from the thermal coupling effects, which leads to the higher level exhibiting a larger
slope value [43]. The evolution of slope values of 4F7/2, 2H11/2, and 4S3/2 state (1.68→1.56
(data not shown)→1.10) also supports this conclusion. These three states, with energy gaps
below 2000 cm−1 validating the effective thermal couples among them, show increased
slopes with increasing their energy.
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Table 1. Summarized power dependences data of the 10Er sample, where i stands for the photon
number required for populating the UCL energy level; λ is the emission peak; and Pl and Ph represent
low pumping and high pumping, respectively.

i

Ex = 980 nm Ex = 1530 nm

Transition λ
(nm)

nReal
Pl→Ph

nIdeal
Pl→Ph

Transition λ
(nm)

nReal
Pl→Ph

nIdeal
Pl→Ph

2

4I9/2→4I15/2 807 1.6→1.2

2→1 4I9/2→4I15/2 807 1.8→1.1 2→1
4F9/2→4I15/2654 1.4→1.3
4S3/2→4I15/2 541 1.4→1.1
4F7/2→4I15/2490 NA→1.7

3

4F5/2→4I15/2452 NA→1.4
3→2

4F9/2→4I15/2
4S3/2→4I15/2

654
541

2.1→1.2
2.5→1.3

2→1.5
3→1.5

2H9/2→4I15/2408 2.3→1.5
4G11/2→4I15/2382 2.4→1.7

4

4F7/2→4I15/2490 NA→1.9
4→24F5/2→4I15/2452 NA→1.7

2H9/2→4I15/2408 3.7→1.7

5 4G11/2→4I15/2382 5.0→2.0 5→2.5

3.3.2. Excitation at 1530 nm—Weak Pumping

To investigate the Er3+ UCL mechanisms upon weak 1530 nm excitation, a more
complicated model with eight energy levels is adopted as shown in Figure 6b. Similar to
the situation of 980 nm excitation, we assume the ESA and ETU processes dominate the
green and red UCL mechanisms, respectively. However, the ETU responsible for the red
UCL of Er3+ upon 1530 nm excitation switches to ET between energy levels 1 and 2. Two
possible ETU processes between levels 1 and 2, as labeled in Figure 5b, can be expressed
by an identical term of W2N1N2, where W2 is the ET rate. The previously established ET
process between energy levels 2 and 5 is absent in this model, mainly due to the fact that
the energy level 1 should be populated more strongly as compared to that of level 5, when
Er3+ is excited at 1530 nm. The corresponding rate equations can be given as follows:

1 : ρσ0N0 − ρσ1N1 −W2N1N2 + β2 A2N2 − A1N1 = 0
2 : β3 A3N3 −W2N1N2 − A2N2 = 0
3 : ρσ1N1 − ρσ3N3 + β4 A4N4 − A3N3 = 0
4 : W2N1N2 + β5 A5N5 − A4N4 = 0
5 : ρσ3N3 − ρσ5N5 + β6 A6N6 − A5N5 = 0
6 : ρσ5N5 − ρσ6N6 + β7 A7N7 − A6N6 = 0
7 : ρσ6N6 − A7N7 = 0

(4)

For the 1530 nm weak pumping situation, the downward decay AiNi dominates the
depopulation mechanisms of every energy level, except level 2. The dominant depopulation
mechanism of level 2 is assumed to be ETU between levels 1 and 2, W2N1N2. On one hand,
strong decay from higher level 3, after ESA, can effectively populate level 2; on the other
hand, the larger energy gap of level 2 to its lower level suppresses the downward decay.
As shown in Figure 7, the rapid and slow decay of Er3+ 4I9/2 (level 3) and 4I11/2 (level 2),
respectively, evidence the above-mentioned strong decay from level 3 and weak decay
from level 2. Therefore, strong populations of levels 1 and 2 enable their efficient ET even
in the weak pumping situation. Further, the corresponding rate equations can be derived
as follows:
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1 : ρσ0N0 − A1N1 = 0
2 : β3 A3N3 −W2N1N2 = 0
3 : ρσ1N1 − A3N3 = 0
4 : W2N1N2 − A4N4 = 0
5 : ρσ3N3 − A5N5 = 0
6 : ρσ5N5 − A6N6 = 0
7 : ρσ6N6 − A7N7 = 0

⇒

N1 ∝ P1

N2 ∝ P1

N3 ∝ P2

N4 ∝ P2

N5 ∝ P3

N6 ∝ P4

N7 ∝ P5

(5)
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In the weak pumping region, as shown in Table 1, the nIdeal match well with the nReal.
The slight deviations can also stem from the competition between upward and downward
transitions. However, using this model cannot derive convincing results for the strong
pumping situation (data not shown), indicating the different mechanisms of Er3+ UCL
when the sample is strongly pumped at 1530 nm.

3.3.3. Excitation at 1530 nm—Strong Pumping

For Er3+ upon strong 1530 nm excitation, a similar model as used in the weak excitation
situation is set up. As shown in Figure 6c, the only difference between this model and
the previous one is that the ETU rather than the ESA dominates the UCL mechanisms, as
assumed before. The corresponding rate equations can be given as follows:

1 : ρσ0N0 − 2W1N1N1 − ∑
i=2,3,5,6

Wi N1Ni + β2 A2N2 − A1N1 = 0

2 : β3 A3N3 −W2N1N2 − A2N2 = 0
3 : W1N1N1 −W3N1N3 + β4 A4N4 − A3N3 = 0
4 : W2N1N2 + β5 A5N5 − A4N4 = 0
5 : W3N1N3 −W5N1N5 + β6 A6N6 − A5N5 = 0
6 : W5N1N5 −W6N1N6 + β7 A7N7 − A6N6 = 0
7 : W6N1N6 − A7N7 = 0

(6)

For strong pumping, one can further obtain:

1 : ρσ0N0 − 2W1N1N1 = 0
2 : β3 A3N3 −W2N1N2 = 0
3 : W1N1N1 − A3N3 = 0
4 : W2N1N2 − A4N4 = 0
5 : W3N1N3 − A5N5 = 0
6 : W5N1N5 − A6N6 = 0
7 : W6N1N6 − A7N7 = 0

⇒

N1 ∝ P1/2

N2 ∝ P1/2

N3 ∝ P1

N4 ∝ P1

N5 ∝ P3/2

N6 ∝ P2

N7 ∝ P5/2

(7)
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As shown in Table 1, all the derived slope values nIdeal are in good agreement with
their corresponding practical values nReal, verifying the reliability of the modeling.

4. Conclusions

Er3+-doped NaYF4 were synthesized by a hydrothermal method. It is found that the
10Er sample yields the most efficient UCL upon both 980 and 1530 nm excitation, and
1530 nm excitation induces a more than four-fold stronger UCL as compared to that upon
980 nm excitation, mainly due to the much stronger energy harvest of Er3+ at ~1.5 µm,
as well as the longer lifetime of Er3+ 4I13/2 state. For 980 nm excitation (weak or strong),
the main mechanisms responsible for green and red UCL are ESA and ETU in higher
energy regions (4F7/2/2H11/2/4S3/2 + 4I11/2→4F9/2 + 4F9/2), respectively. As for 1530 nm
excitation, the green UCL are mainly induced by ESA and ETU upon weak and strong
pumping, respectively, while ETU is the dominant origin of the red UCL upon both weak
and strong pumping. Notably, it is proposed that the ETU between lower energy levels,
4I11/2 + 4I13/2→4F9/2 + 4I15/2, is dominant when using 1530 nm excitation.
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