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Abstract: With the development of biotechnology, luminescent nanoprobes for biological disease
detection are widely used. However, the further application in clinic is limited by the reduced penetra-
tion depth in the tissues and light scattering. In this work, we have synthesized NaYF4:Yb,Er,Ce@SiO2-
OAlg nanomaterials, which have both upconversion and near-infrared (NIR) luminescence. The
optimized probes were determined to achieve cell imaging by its upconversion (UCL) luminescence
and in vivo imaging through collection of NIR fluorescence signals simultaneously. The research is
conducive to developing accurate diagnostic techniques based on UCL and NIR fluorescence imaging
by a single nanoparticle.
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1. Introduction

Optical imaging is currently very attractive for in vivo imaging because of its high
spatial and temporal resolution [1–3]. Limited by emission wavelength and response ability,
the development of specific quantifiable fluorescent probes is still a critical challenge [4].
Although significant luminescence intensity can be observed at the cellular level, its devel-
opment is limited because the penetration depth will be reduced in vivo [5–7]. To overcome
the difficulties, it is necessary to adjust the position of the emission and absorption bands
of the material, and try to bring them within the transparent biological window [8]. The
second near-infrared (NIR-II) luminescence for bioimaging reveals higher resolution in
deeper tissue [9–13]. However, few probes are able to achieve dual fluorescence imaging at
both the cell level and the living organism level [14,15]. Combined with the advantages of
multi-peak emission and excellent stability, lanthanide-doped luminescent nanomaterials
provide new solutions. Er3+-based nanoparticles have been reported as prospective probes,
owing to their upconversion emissions at 540 nm and 660 nm and near-infrared emission
at 1530 nm.

Actually, the surface modification of the nanoprobes plays an important role to de-
termine the application. After surface modification, the hydrophilic nanoprobes can be
achieved from usual oleic capped samples [16]. Silanization is a popular technique for
surface modification of lanthanide-doped nanoparticles, since silica is highly biocompati-
ble and easily processed [17–20]. One of the most salient advantages is the multi-ligands
for the conversion of SiO2 (e.g., -COOH, -NH2, -SH, etc.), which allows for bioapplica-
tions [21–23]. Furthermore, the silica-coated functional nanoparticles can be protected
by the SiO2 shell against the influence of physiological conditions and surroundings [24].
Another route is the reverse microemulsion (water-in-oil) method to coat silica with hy-
drophobic capping ligands. This strategy can obtain silica layers with varying thicknesses.
It is easier to co-ordinate with other surface functional groups [25]. The obtained multi-
functional nanocomposites can be further used as drug delivery carriers and applied for
imaging [26–28].
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This project focuses on the construction of multi-scale fluorescent nanoprobes to
broaden biological applications (Figure 1). Herein, Er3+-based rare earth-doped nanomate-
rials in the hexagonal phase were synthesized by the hydrothermal method. Then, they
were coated with silicon and coupled with oxidized sodium alginate (OAlg) molecules
(Figure S1). After coating a layer of silica, the hydrophilicity and upconversion efficiency of
nanomaterials can be greatly improved. Here, we coated a layer of sodium alginate to im-
prove biocompatibility [29]. The upconversion and near-infrared luminescence intensity of
such nanoparticles were regulated by doping with Ce3+ in different proportions. The effects
of imaging in cellular UCL and living level NIR-II were collected and compared. Finally, the
obtained probes were injected into mice through the caudal vein for luminescent images.
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Figure 1. Scheme of the surface modification process of lanthanide luminescent nanoparticles by
assisting with SiO2 and OAlg molecules.

2. Materials and Methods
2.1. Materials and Characterization

Rare earth chloride and all the solvents were bought from Shanghai Yongsheng
Chemical Co. Ltd. (Shanghai, China), including YCl3 (>99.99%), YbCl3 (>99.99%), ErCl3
(>99.99%), CeCl3 (99.99%), oleic acid (OA, >90%), 1-octadecene (ODE, >90%), CH3OH,
EtOH, cyclohexane, CH2Cl2, and DMSO. NaOH, NH4F, sodium periodate (NaIO4), sodium
alginate, and fetal bovine serum (FBS) solutions were purchased from Adamasbeta Co.,
Shanghai, China. All the materials were used without further purification.

All TEM images of the nanoparticles were carried out by a JEM-2100 transmission
electron microscope (JEOL, Tokyo, Japan). The upconversion emission spectra were deter-
mined on a Horiba FluoroMax-4 Spectrometer (Horiba, Kyoto, Japan). The NIR fluorescence
spectra were determined on a FLS920 Luminescence Spectrometer (Edinburgh, England).
The FTIR data were recorded by a Niclot-5700 Fourier Transform Infrared Spectrometer
(Thermo Fisher, Waltham, MA, USA). The XRD patterns of the nanoparticles were deter-
mined on a D4 Advance Diffractometer (λ = 1.5406 Å, Cu Kα radiation, Bruker, Billerica,
MA, USA).

2.2. Synthesis of NaYF4:Yb,Er,Ce Nanoparticles

All the nanoparticles were prepared by a solvothermal process reported elsewhere [5].
In total, 0.20 mmol YbCl3, 0.02 mmol ErCl3, x% mmol CeCl3 (x = 0, 1, 3, 5, 10),
(78 − x)% mmol YCl3, 6 mL OA, and 15 mL ODE were successively added into a 100 mL,
three-necked, round-bottomed flask. The whole solution was heated to 130 ◦C under vac-
uum until all the powder dissolved. The solution was cooled down to 60 ◦C and 2.5 mmol
NaOH and 1.0 mmol NH4F were added. Stirring continued until the NaOH and NH4F
dissolved. Then, the mixture was heated up to 300 ◦C and the temperature was maintained
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for one hour in the N2 atmosphere. Finally, the samples were precipitated by excessive
ethanol and centrifugation.

2.3. Surface Modification of NaYF4:Yb,Er,Ce Nanoparticles

The hydrophilic nanoparticles (NaYF4:Yb,Er,Ce@SiO2-OAlg) were prepared by coat-
ing with SiO2 and OAlg molecules successively. First, the OAlg molecules were prepared
by the oxidation of sodium periodate on sodium alginate [16]. Then, 4 mL ethanol and
0.32 mL TEOS were added into the NaYF4:Yb,Er,Ce solution when the pH was adjusted
at the 8–9 region. The whole solution was heated in the water bath for 0.5 h at 70 ◦C.
Then, 20 µL APTES solution was dropped and continued to be stirred for 5 h at 70 ◦C. The
NaYF4:Yb,Er,Ce@SiO2 was obtained by centrifuging for 10 min. Then, OAlg was added
and mixed with NaYF4:Yb,Er,Ce@SiO2 for another 12 h. Finally, the modified nanoparticles
were precipitated by centrifugation.

2.4. In Vitro Bioimaging of NaYF4:Yb,Er,Ce@SiO2-OAlg

The HeLa cells were provided by Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences. First, the cytotoxicity of NaYF4:Yb,Er,Ce@SiO2-OAlg was determined
through the Cell Counting Kit-8 (CCK-8) process [16]. The Hela cells were put into DMEM
supplemented with 10% FBS solution and under the condition of 5% CO2 and 37 ◦C.
The cells (10 µg/mL) were placed on a glass slide for 12 h and washed by PBS solution.
The cells were incubated with 15 µg/mL NaYF4:Yb,Er,Ce@SiO2-OAlg for another 3 h.
Finally, the UCL images of living Hela cells were obtained on laser scanning upconversion
luminescence microscopy (LSUCLM).

2.5. Analysis of Absorption and Scattering of NaYF4:Yb,Er,Ce@SiO2-OAlg

The in vitro experiments were carried out by a standard pattern card. An external
980 nm laser was used as the excitation light. The bottom was filled with the solution
of probes, and covered with the card. The optical signals were collected with no tis-
sue cover and covered with 2 mm pork tissue, respectively. A Si-based camera (Andor)
and 660 ± 10 nm bandpass filter collected the UCL luminescent images. An NIR camera
(Princeton) and 1535 ± 45 nm bandpass filter collected the NIR-II luminescent images. The
detection range was “0”, “1”, “2”, and so on groups in the resolution card. Then, in vivo
images were obtained in the NIR-II window. The animal experiment was performed in
accordance with the norm of the Institutional Animal Care and Use Committee and Animal
Ethics Committee of Zhejiang Sci-Tech University.

3. Results

The TEM images of NaYF4:20%Yb,2%Er,x%Ce (x = 0, 1, 3, 5, 10) nanoparticles are
shown in Figure 2. The results showed that Ce3+-ion-doped nanoparticles have relatively
good monodispersity. The concentration of Ce ranges from 0% to 10%, and the size of the
obtained nanoparticles ranges from 45–55 nm. With the increase in Ce concentration, the
particle size increases slightly, but has little change on shape, with an average diameter
of 45 nm. After being coated with silicon shell and modified by OAlg molecules, the
nanoparticles are spherical and the diameter is about doubled, which reaches almost 140 nm.
The thickness of the SiO2 layer is about 45 nm. The elements in the nuclear structure, most
of which are rare earth elements, have a large relative atomic mass. Therefore, the area of
the core shows a dark color, while the area of the shell shows a gray color because of the
small relative atomic mass.

Subsequently, the upconversion and NIR-II luminescence spectrum of nanoparticles
under 980 nm excitation were measured (Figure 3). There are two upconversion emission
peaks at 540 nm (4S3/2 → 4I15/2) and 660 nm (4F9/2 → 4I15/2), respectively (Figure S1).
The emission peak intensity at 540 nm is about eight times that at 660 nm. After doping
with Ce3+, it is accompanied by a sharp decrease in upconversion luminescence with
the increased amount of Ce3+ ions. In comparison, the intensity of near-infrared lumi-
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nescence at 1530 nm has enhanced 3.6 times with the increase in Ce3+ doping. When
the concentration of Ce3+ is 3%, the maximum NIR-II luminescence intensity is obtained.
This provides a significant reference for the regulation of fluorescence properties of such
lanthanide-doped nanoprobes.
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Figure 2. (a–e) TEM images of different NaYF4:20%Yb,2%Er,x%Ce (x = 0, 1, 3, 5, 10) nanoparticles.
(f) TEM image of the NaYF4:20%Yb,2%Er,3%Ce@SiO2-OAlg (Er,Ce@SiO2-OAlg) nanoparticles. The
scale bar is 100 nm.
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Figure 3. (a) Upconversion luminescence spectrum and (b) NIR-II luminescence spectrum of
NaYF4:20%Yb,2%Er,x%Ce (x = 0, 1, 3, 5, 10) nanoparticles (dispersed in cyclohexane).

The NaYF4:Yb,Er,Ce@SiO2-OAlg and OAlg have similar characteristic peaks, in which
the broadband peak centered at 3421 cm−1 is due to the stretching vibration of hydrogen
bond O-H, and the strong peak at 1612 cm−1 represents the asymmetric stretching of
carboxylic group (-COO-) vibration (Figure S2). The broad absorption band at 1103 cm−1

is due to the antisymmetric stretching irritation absorption of Si-O-Si. The asymmetric and
symmetric stretching vibrational absorption peaks of methylene (-CH2-) in the long alkyl
chain were found at 2925 cm−1and 2851 cm−1.

The structure of NaYF4:Yb,Er,Ce@SiO2-OAlg was also determined by XRD (Figure S3).
Compared with the standard hexagonal crystal card (JCPDS: 72-2404), the nanoparticles
with and without silicon coating are in good agreement. The elements in the nuclear
structure, most of which are rare earth elements, have a large relative atomic mass, while
shell area shows a gray color. The NaYF4:Yb,Er,Ce@SiO2-OAlg has a distinct undulating
bulge in the range of 20◦ to 30◦ that can be attributed to the surface silica coating.

The cell viability (Figure S4) of nanoparticles was obtained after the incubation with
different concentrations of NaYF4:Yb,Er,Ce@SiO2-OAlg for 24 h, separately. The survival
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rate of cells was over 80% in high-concentration (800 µg/mL) solution. After incubation
with NaYF4:Yb,Er,Ce@SiO2-OAlg (100 µg/mL) probes for 3 h, the upconversion fluorescent
images in living cells were collected under the excitation of a 980 nm laser. As shown
in Figure 4, the UCL signals were weaker in the red channel of 600–700 nm, while the
apparent signals of UCL are observed in the green channel of 500–560 nm. The intensity
contrast of green light and red light can be directly observed by the difference in the overlay
image. It showed that the NaYF4:Yb,Er,Ce@SiO2-OAlg can achieve precise fluorescent
imaging at the cellular level.

Nanomaterials 2021, 11, x FOR PEER REVIEW 5 of 9 
 

 

The structure of NaYF4:Yb,Er,Ce@SiO2-OAlg was also determined by XRD (Figure 

S3). Compared with the standard hexagonal crystal card (JCPDS: 72-2404), the nanoparti-

cles with and without silicon coating are in good agreement. The elements in the nuclear 

structure, most of which are rare earth elements, have a large relative atomic mass, while 

shell area shows a gray color. The NaYF4:Yb,Er,Ce@SiO2-OAlg has a distinct undulating 

bulge in the range of 20° to 30° that can be attributed to the surface silica coating. 

The cell viability (Figure S4) of nanoparticles was obtained after the incubation with 

different concentrations of NaYF4:Yb,Er,Ce@SiO2-OAlg for 24 h, separately. The survival 

rate of cells was over 80% in high-concentration (800 μg/mL) solution. After incubation 

with NaYF4:Yb,Er,Ce@SiO2-OAlg (100 μg/mL) probes for 3 h, the upconversion fluores-

cent images in living cells were collected under the excitation of a 980 nm laser. As shown 

in Figure 4, the UCL signals were weaker in the red channel of 600–700 nm, while the 

apparent signals of UCL are observed in the green channel of 500–560 nm. The intensity 

contrast of green light and red light can be directly observed by the difference in the over-

lay image. It showed that the NaYF4:Yb,Er,Ce@SiO2-OAlg can achieve precise fluorescent 

imaging at the cellular level. 

 

Figure 4. UCL images of living Hela cells after incubation with NaYF4:Yb,Er,Ce@SiO2-OAlg for three 

hours. The luminescent images were obtained at a green UCL channel at 500–560 nm (a) and a red 

channel at 600–700 nm (b) by a 980 nm laser. (c) The image of the bright field of cells. (d) Overlay of 

green UCL and red UCL images. The scale bar is 40 μm. 

Unlike fluorescence imaging at the microscopic level of cells, the difficulty of in vivo 

imaging is the limited penetration depth and spatial resolution of tissues. Here, the 

R3L3S1N resolution standard card (Figure S5) is used to visually reflect the smallest res-

olution distance under different conditions (Figure S6). The mask is used to form a pattern 

of nanoparticles on the surface; then, the 2 mm pork tissue was added on the top. It was 

determined by the fluorescence signal changes corresponding to each pixel on the line by 

drawing a vertical line at the three-line pair. Referring to the Rayleigh criterion, if the line 

width calculated by data is larger than the actual line width, the minimum distance is 

determined to be indistinguishable. Compared with the resolution measurement method 

of the V-shaped capillary tube reported previously [30], this method presents the 

Figure 4. UCL images of living Hela cells after incubation with NaYF4:Yb,Er,Ce@SiO2-OAlg for three
hours. The luminescent images were obtained at a green UCL channel at 500–560 nm (a) and a red
channel at 600–700 nm (b) by a 980 nm laser. (c) The image of the bright field of cells. (d) Overlay of
green UCL and red UCL images. The scale bar is 40 µm.

Unlike fluorescence imaging at the microscopic level of cells, the difficulty of in vivo
imaging is the limited penetration depth and spatial resolution of tissues. Here, the
R3L3S1N resolution standard card (Figure S5) is used to visually reflect the smallest
resolution distance under different conditions (Figure S6). The mask is used to form a
pattern of nanoparticles on the surface; then, the 2 mm pork tissue was added on the top. It
was determined by the fluorescence signal changes corresponding to each pixel on the line
by drawing a vertical line at the three-line pair. Referring to the Rayleigh criterion, if the
line width calculated by data is larger than the actual line width, the minimum distance is
determined to be indistinguishable. Compared with the resolution measurement method of
the V-shaped capillary tube reported previously [30], this method presents the resolution of
materials in different luminescent imaging in relatively uniform standards and an intuitive
data processing way. It provides a general method worthy of popularization to evaluate
the imaging resolution of fluorescent probes.

Compared with the standard resolution distance of the card (R3L3S1N), we took the
distance between the two-line pairs that could be recognized as the minimum resolution
distance achieved by fluorescence imaging. By collecting the fluorescence imaging data
of the upconversion window and the near-infrared window, respectively, the minimum
resolution distance can be obtained (Figure 5). When tissues are not covered, the minimum
resolution distance of the 660 nm band reaches 0.63 mm, and the minimum resolution
distance of the 1530 nm band reaches 0.22 mm. Covering 2 mm biological tissue, the
minimum resolution distance of the 660 nm band is 1.26 mm, and the minimum resolution
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distance of 1530 nm band is 0.28 mm. When the tissue is covered, both of the minimum
resolutions are increased; the scattering phenomenon is more severe at 660 nm. The NIR-II
imaging is more precise whether there is biological tissue coverage, which is more suitable
for animal imaging in vivo. Obviously, the influence of physical background fluorescence
is less in the range of NIR-II. Therefore, we chose to collect fluorescent signals at the NIR-II
window for in vivo imaging for its much higher resolution (Figure 6). The mice (weight:
19.5 g) were injected with the material (5 mg/mL × 0.1 mL) and placed into the anesthesia
chamber of the imaging instrument for the imaging experiment. The concentration has
weak toxicity for mice from the cell viability experiment. After injecting into mice via the
tail vein for 5 min, the unmistakable NIR-II signals were observed in the liver of mice,
indicating good imaging ability of such nanoprobes. Figure 6a–c was obtained before
sacrifice and Figure 6d–f was obtained after sacrifice.
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Figure 5. The fluorescence images of nanoparticles were covered with different pork tissues in
different fluorescent windows. UCL band (660 ± 10 nm): (a,c); NIR-II window (1535 ± 45 nm): (b,d).
(a,b) are covered with no tissue. (c,d) are covered with 2 mm tissue. Different groups of line pairs
correspond to minimum resolutions according to the comparison with the R3L3S1N card. A plot
with pixel intensity is shown in the images, along with the corresponding yellow line.
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Figure 6. Near-infrared images of mice after injection with NaYF4:Yb,Er,Ce@SiO2-OAlg. (a,d) The
image of the bright field of mice. (b,e) The luminescent signals were obtained at the 1490–1580 nm
region under excitation by a 980 nm laser. (c,f) Overlay of the NIR-II and the bright field images.

4. Conclusions

The core-shell structure of NaYF4:Yb,Er,Ce@SiO2-OAlg was designed and synthesized
to improve water solubility and biocompatibility. By gradually increasing the doping
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amount of Ce3+, the luminescence intensity of UCL is suppressed, and the luminescence
intensity of NIR-II is grown under the excitation of 980 nm. Subsequently, it can be
imaged at the cell level and living level simultaneously, indicating the high resolution, low
biological toxicity, bright luminescence, and good imaging effect. This work can be applied
to multiscale luminescence imaging in biological research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11102676/s1, Figure S1: The energy transform of the NaYF4:Yb,Er,Ce-OA and the struc-
ture of OAlg molecule. Figure S2: FTIR measurement of Oleic Acid capped NaYF4:20%Yb,2%Er,3%Ce
nanoparticles (NaYF4:Yb,Er,Ce-OA), NaYF4:Yb,Er,Ce@SiO2 nanoparticles, NaYF4:Yb,Er,Ce@SiO2-
OAlg nanoparticles and the OAlg molecule. Figure S3: XRD measurement of NaYF4:
Yb,Er,Ce nanoparticles andNaYF4:Yb,Er,Ce@SiO2-OAlg nanoparticles. Figure S4: The cell toxic-
ity of NaYF4:Yb,Er,Ce@SiO2-OAlg nanoparticles. Figure S5: The photo of R3L3S1N card from
Thorlabs Co., Newton, NJ, USA. Figure S6: 1951 USAF Resolution Target Data from Thorlabs Co.,
Newton, NJ, USA.
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