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Abstract: Three amphiphilic peptides with varied molecular hydrophobicity, charge number and
charge location have been designed as regulators to modulate the crystal growth of zeolitic imidazo-
late framework-8 (ZIF-8). All three peptides can interact with ZIF-8 to inhibit {100} facet growth and
produce truncated cubic crystals. The peptide’s molecular hydrophobicity plays a dominant role in
defining the final morphology and size of the ZIF-8 crystals. The peptides with less charge and higher
hydrophobicity can promote nuclei formation and crystal growth to give smaller ZIF-8 crystals.
However, the charge located in the center of the molecular hydrophobic region has little effect on
the crystal nucleation and growth due to the shielding of its charge by molecular aggregation. The
study provides insights into the effect of molecular charge and hydrophobicity on ZIF-8 crystal
growth and is helpful for guiding the molecular design for regulating the synthesis of metal-organic
framework materials.

Keywords: amphiphilic peptide; zeolitic imidazolate framework; crystal growth

1. Introduction

Metal-organic frameworks (MOFs) are a novel class of crystallized porous materi-
als that are self-assembled by metal clusters as connecting points and organic ligands as
bridging molecules to form a two- or three-dimensional framework through coordination
bonds [1–7]. MOFs have attracted great interests in recent years by having remarkable
features such as adjustable structure, high porosity, large specific surface area, good mod-
ifiability and excellent stability and have been used widely in many areas, for example,
adsorption [8–13], catalysis [14–18], sensing [19–23], drug delivery [24–30] and gas storage
and separation [31–33], etc. Besides the intrinsic properties of MOFs, their morphology
and size also play crucial roles for their practical applications. Therefore, researchers have
put a lot of effort into developing strategies for controlling the morphology and size of
MOFs [34–43].

Zeolitic imidazolate framework-8 (ZIF-8) is one typical kind of MOF that is comprised
of zinc ions and 2-methylimidazole [34,44–46]. It is characterized by high porosity and a
large surface area and has great advantages in the encapsulation and delivery of functional
species [13,16,47–50]. Moreover, it has high biocompatibility, excellent stability under
physiological conditions and good responsiveness towards acidic conditions. These merits
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make ZIF-8 an ideal carrier for drug delivery and release in disease treatment [50–53]. To
optimize the performance of ZIF-8 nanoparticles in practical applications, various methods
have been applied to modulate their shape and size [35,38]. One common strategy is
to modulate the shape and structure of ZIF-8 by adjusting the solvent composition for
ZIF-8 synthesis. For example, Yang et al. and Hadi et al. produced ZIF-8 nanoparticles
with varied dimensions, structures and sizes by adjusting the methanol/water ratio of
the reaction solvent [54,55]. Another effective strategy for controlling the shape and size
of ZIF-8 is to regulate its crystallization and growth by the addition of surfactants in
the reaction solution. Pan et al. successfully synthesized ZIF-8 crystals with a distinct
structure and size by using various surfactants (e.g., CTAB, CTAC, STAC and TPABr) as
capping agents to modulate the facet growth of ZIF-8 [35]. Zhao et al. synthesized ZIF-8
nanocrystals with varied morphology and size by using the Brij reverse micelles as spatially
constrained nanoreactors [56]. However, though these methods can achieve successful
control over the shape and size of ZIF-8, the obtained ZIF-8 nanomaterials may not be
suitable for biomedical applications because some toxic species are introduced into the
materials during synthesis.

Recently, we report a green method for the synthesis of biocompatible ZIF-8 nanopar-
ticles by using amphiphilic peptides as capping agents [57]. The use of peptides as capping
agents can not only realize efficient control over the shape and size of ZIF-8 crystals
but can also introduce stimuli-sensitive groups to the ZIF-8 surface to enable specific
biofunctionalilties. Moreover, by having high biocompatibility and low toxicity [57–60],
peptide-incorporated ZIF-8 crystals will be more suitable for biomedical applications. In
the above work, we mainly demonstrated the effect of molecular hydrophobicity on the
regulation of the ZIF-8 crystal growth. Here, we further present the effects of molecular
hydrophobicity, charge number and charge location of the peptide molecule on ZIF-8
crystal growth, aiming to provide guiding principles for molecular design to modulate the
morphology and size of MOFs.

2. Materials and Methods
2.1. Materials

All peptides with >96% purity were synthesized by Shanghai Top-Peptide Biotech-
nology Co. Ltd. 2-methylimidazole was from J&K Scientific Ltd. (Beijing, China).
Zn(CH3COO)2·2H2O was obtained from Sinopharm Chemical Reagent Co., Ltd. (Bei-
jing, China). The water with a resistivity of 18.2 MΩ·cm was treated by an ultrapure water
processing system (Milli-Q Biocel) and was used in all of the experiments.

2.2. ZIF-8 Synthesis

In a typical synthesis process, 0.1068 g Zn(CH3COO)2·2H2O was dissolved in 40 mL
water, and then 4.0 g 2-methylimidazole was added to the solution under constant stirring
by RHDS25 equipment (IKA®, Kunshan, China) at room temperature. The mixed solution
was incubated at room temperature for about 24 h. The mixed solution turned milky during
incubation, indicating the formation of ZIF-8 crystals. After incubation, the ZIF-8 crystals
were collected by centrifugation at 10,000 rpm for 10 min and the sediments were washed
with pure water three times, which were then freeze-dried to obtain the final products.

2.3. Peptide-Mediated ZIF-8 Synthesis

First, the stock solutions of the two reactive species were prepared separately by
dissolving either 0.2136 g of Zn(CH3COO)2 or 8.0 g of 2-methylimidazole in 40 mL of
Milli-Q water. Then, a defined amount of peptide powder (76.4 mg for RK, 80.7 mg
for K-RK and 93.4 mg for RKRK) was added to the Zn(CH3COO)2 solution of 30 mL
while stirring to prepare the peptide solution of 2.0 mM. Next, 30 mL of the above 2-
methylimidazole solution was added to the as-prepared Zn(CH3COO)2/peptide mixed
solution under constant stirring (RHDS25, IKA®) at 25 ◦C. After incubation for about 24 h,
the mixed solution turned milky. The ZIF-8 crystals were then collected by centrifugation
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at 10,000 rpm for 10 min and the sediments were washed with water three times. The
products were then freeze-dried to obtain the ZIF-8 powder.

2.4. Characterization

Transmission electron microscopy (TEM) images of the ZIF-8 nanoparticles were taken
with JEOL JEM-1400 equipment (Tokyo, Japan) operating at 120 kV. Scanning electron
microscopy (SEM) measurements were performed on a FEI QUANTA FEG250 instrument
(Hillsboro, OR, USA) operated at an accelerating voltage of 5.0 kV. Powder X-ray diffraction
(XRD) data in the range of 2θ = 5–76◦ were collected on an X’Pert PRO MPD diffractometer
(Almelo, Holland) with Cu Kα (λ = 0.154 nm) source at a scan rate of 5◦/min. Fourier-
transform infrared spectroscopy (FT-IR) samples were prepared by KBr pellet method and
the transmission spectra were obtained at room temperature with a Nicolet iS5 (Thermo
Fisher Scientific, Bremen, Germany) instrument in the range of 4000–400 cm−1. Nitrogen
physisorption isotherms were measured with an automatic Tristar II 3020 volumetric
adsorption apparatus (Micromeritics Instruments, Norcross, GA, USA). Dynamic light
scattering (DLS) and zeta potential (ζ) measurements were performed with a Nano-ZS
instrument (ZEN3600, Malvern Instruments, Worcestershire, UK). The solution absorption
at 400 nm was obtained with a UV-2450 spectrophotometer (Pharma Spec, Shimadzu,
Kyoto, Japan) for turbidity evaluation. X-ray photoelectron spectroscopy (XPS) analysis
was performed with an Escalab 250Xi electron spectrometer (Thermo Scientific, Waltham,
MA, USA) with a mono Al Ka X-ray source.

3. Results
3.1. Peptide Molecular Design

Figure 1 shows the molecular structures and molecular weights of the three peptides
that are used as capping agents for ZIF-8 synthesis. The peptides have a purity of >96%
and the impurities may come from peptide fragments that have not reacted completely and
hence trifluoroacetate left during peptide synthesis. They are all amphiphilic molecules
with the same hydrophobic residues but different hydrophilic charged residues. According
to the number and location of the charged residues in the molecules, the three peptides are
termed RK, K-RK and RKRK, respectively. RK and RKRK are surfactant-like with two
segments. Their hydrophobic segment is the same as Nap-FFGPLGLA- [61–63], while they
have a different number of positive residues (-RK- or -RKRK-) to form the hydrophilic seg-
ments. In contrast, by having one lysine residue located in the middle of the hydrophobic
region, K-RK shows four distinct segments in its molecular structure. Such a molecular
design produces three peptide molecules with varied molecular hydrophobicity, charge
and charge distribution, which are used as regulators for ZIF-8 synthesis.

Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 1. Molecular structures of the peptides used as capping agents for ZIF-8 synthesis. 

3.2. Peptide-Mediated ZIF-8 Synthesis 
Figure 2 presents the SEM and TEM images of the ZIF-8 crystals prepared in the ab-

sence or presence of different peptides at 1.0 mM. The ZIF-8 crystals prepared in water 
with the absence of any peptide displayed a typical rhombic dodecahedra shape (Figure 
2a,e) with the average size > 1.0 μm, being consistent with the results reported previously 
[35,57]. In contrast, the morphology and size of the ZIF-8 crystal were greatly modified 
with the addition of peptides in the synthesis solution as regulators. The three peptides 
all produced ZIF-8 crystals with basic truncated cubic profiles. However, the ZIF-8 pro-
duced by RKRK were the most cubic, while the ZIF-8 produced by RK and K-RK showed 
a great level of shape deformation, as can be clearly observed from the inset high-resolu-
tion images of Figure 2b,c,f,g. Their mean sizes (obtained from the TEM images) were ca. 
137 nm, 28 nm and 32 nm in the cases of RKRK, RK and K-RK, respectively (Figure 3a). 
DLS measurements were also performed to characterize the size of the ZIF-8 crystals ob-
tained in the presence of different peptides. In the case of RKRK, the DLS profile showed 
a single peak with a size distribution similar to that derived from TEM (Figure 3b). How-
ever, in the cases of RK and K-RK, the DLS results gave two size distribution bands, one 
at the smaller size region and the other at the larger size region. The smaller size distribu-
tion was ascribed to the dispersed ZIF-8 particles but was larger than those obtained from 
TEM. The reason may be that the ZIF-8 particles had a hydration layer in water, which 
increased the hydrodiameters measured by DLS, whereas, the larger size distribution can 
be interpreted by the aggregation of the ZIF-8 particles, as can be confirmed by the SEM 
and TEM images of Figure 2b,c,f. The above results show clearly that the morphology and 
size of the ZIF-8 crystals were significantly modified by the addition of peptides in the 
synthesis solutions. 

Figure 1. Molecular structures of the peptides used as capping agents for ZIF-8 synthesis.



Nanomaterials 2021, 11, 2665 4 of 11

3.2. Peptide-Mediated ZIF-8 Synthesis

Figure 2 presents the SEM and TEM images of the ZIF-8 crystals prepared in the ab-
sence or presence of different peptides at 1.0 mM. The ZIF-8 crystals prepared in water with
the absence of any peptide displayed a typical rhombic dodecahedra shape (Figure 2a,e)
with the average size > 1.0 µm, being consistent with the results reported previously [35,57].
In contrast, the morphology and size of the ZIF-8 crystal were greatly modified with the
addition of peptides in the synthesis solution as regulators. The three peptides all produced
ZIF-8 crystals with basic truncated cubic profiles. However, the ZIF-8 produced by RKRK
were the most cubic, while the ZIF-8 produced by RK and K-RK showed a great level
of shape deformation, as can be clearly observed from the inset high-resolution images
of Figure 2b,c,f,g. Their mean sizes (obtained from the TEM images) were ca. 137 nm,
28 nm and 32 nm in the cases of RKRK, RK and K-RK, respectively (Figure 3a). DLS
measurements were also performed to characterize the size of the ZIF-8 crystals obtained
in the presence of different peptides. In the case of RKRK, the DLS profile showed a single
peak with a size distribution similar to that derived from TEM (Figure 3b). However, in
the cases of RK and K-RK, the DLS results gave two size distribution bands, one at the
smaller size region and the other at the larger size region. The smaller size distribution was
ascribed to the dispersed ZIF-8 particles but was larger than those obtained from TEM. The
reason may be that the ZIF-8 particles had a hydration layer in water, which increased the
hydrodiameters measured by DLS, whereas, the larger size distribution can be interpreted
by the aggregation of the ZIF-8 particles, as can be confirmed by the SEM and TEM images
of Figure 2b,c,f. The above results show clearly that the morphology and size of the ZIF-8
crystals were significantly modified by the addition of peptides in the synthesis solutions.
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Figure 4a shows the FTIR spectra of the ZIF-8 crystals prepared in the presence of
RKRK, K-RK and RK, respectively. The spectrum of ZIF-8 prepared in pure water is
also given for comparison. Compared to the sample prepared in water, the spectra of
the ZIF-8 prepared with peptides show an additional strong peak at ~1660 cm−1, which
is the peptidic amide I band [57]. The results indicate that the peptide molecules were
incorporated into the ZIF-8 crystals. Moreover, two bands at 690 and 420 cm−1 were
observed for all samples, which may be ascribed to stretching vibrations of Zn-O and Zn-N
bonds, respectively. Such results indicate that the peptide molecules were adsorbed on the
surface of ZIF-8 crystals [57]. Moreover, the zeta potential results (Figure 4b) show that,
compared to ZIF-8 prepared in pure water, the samples prepared in the presence of peptides
gave larger positive values, also indicating the adsorption of positively charged peptide
molecules on the surface of ZIF-8 crystals. Furthermore, the C 1s XPS spectra of ZIF-8 and
ZIF-8/RK are shown in Figure 4c,d. For ZIF-8 prepared in water, the fitted data of C 1s
gave contents of C-C (284.5 eV) 39.6%, C-N (285.4 eV) 55.1% and C=O (287.5 eV) 5.3%,
respectively. Whilst for ZIF-8 prepared in the presence of peptide RK, the C-C and C=O
components increased greatly to 65.3% and 9.6%, respectively, and the C-N component
decreased to 25.1%. The results also confirm the adsorption of peptide molecules on ZIF-8,
which changes the carbon composition of the ZIF-8/peptide complexes [57].

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 4. FTIR spectra (a) and zeta potential values (b) of the ZIF-8 crystals prepared in pure water 
or in the presence of RKRK, K-RK and RK, respectively. C 1s XPS spectra of the ZIF-8 prepared in 
pure water (c) and in the presence of peptide RK (d). 

Figure 5a shows the XRD patterns of the ZIF-8 crystals produced in different cases. 
As can be observed, the XRD spectra of ZIF-8 crystals prepared in the presence of peptides 
are nearly identical to that of ZIF-8 prepared in pure water. The fact that the peptides did 
not affect the crystallinity of ZIF-8 crystals indicates that the peptides probably bind on 
the ZIF-8 surface rather than incorporating them into the internal crystal framework. N2 
adsorption isotherms were further used to obtain information on the surface area and 
mesoporous volume of the ZIF-8 crystals (Figure 5b). Similar to our recent findings, the 
ZIF-8 crystals prepared in the presence of each peptide all show a type І sorption profile 
[57], that is, the crystals have microporous structures. The specific surface area (SBET) and 
mesoporous volume (Vmicro) of the ZIF-8 crystals prepared in the presence of each peptide 
are 1407 m2∙g−1 and 0.50 cm−3∙g−1 for RK, 1416 m2∙g−1 and 0.52 cm−3∙g−1 for K-RK and 1452 
m2∙g−1 and 0.57 cm−3∙g−1 for RKRK, respectively. 

 

Figure 4. FTIR spectra (a) and zeta potential values (b) of the ZIF-8 crystals prepared in pure water
or in the presence of RKRK, K-RK and RK, respectively. C 1s XPS spectra of the ZIF-8 prepared in
pure water (c) and in the presence of peptide RK (d).

Figure 5a shows the XRD patterns of the ZIF-8 crystals produced in different cases. As
can be observed, the XRD spectra of ZIF-8 crystals prepared in the presence of peptides
are nearly identical to that of ZIF-8 prepared in pure water. The fact that the peptides
did not affect the crystallinity of ZIF-8 crystals indicates that the peptides probably bind
on the ZIF-8 surface rather than incorporating them into the internal crystal framework.
N2 adsorption isotherms were further used to obtain information on the surface area
and mesoporous volume of the ZIF-8 crystals (Figure 5b). Similar to our recent findings,
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the ZIF-8 crystals prepared in the presence of each peptide all show a type I sorption
profile [57], that is, the crystals have microporous structures. The specific surface area
(SBET) and mesoporous volume (Vmicro) of the ZIF-8 crystals prepared in the presence of
each peptide are 1407 m2·g−1 and 0.50 cm−3·g−1 for RK, 1416 m2·g−1 and 0.52 cm−3·g−1

for K-RK and 1452 m2·g−1 and 0.57 cm−3·g−1 for RKRK, respectively.
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The dynamic process of ZIF-8 growth in the presence or absence of different peptides
was then followed by both turbidity and TEM measurements. Figure 6 shows the evolution
of the solution turbidity at 400 nm as a function of reaction time. All curves show an initial
sharp increase in turbidity that indicates fast nuclei formation and crystal growth, which
is followed by a plateau region that indicates the equilibrium of crystal growth. The time
points for reaching crystal growth equilibrium are ~15, 22 and 40 min in the cases of RK,
K-RK and RKRK, respectively, clearly showing that the nucleation and crystal growth
speed can be ordered as RK > K-RK > RKRK. However, the equilibrium turbidity value
gave a reverse order, that is, RK < K-RK < RKRK, indicating differences in particle size
and/or particle number in each case. On the other hand, for the turbidity vs. time profile
of ZIF-8 growth in pure water, the equilibrium time was about 120 min, which is much
larger than those of peptide-mediated ZIF-8 growth. And, the equilibrium turbidity was
around 3, which is also larger than those produced in the presence of peptides. The results
demonstrate that the peptides can promote the nucleation and growth of ZIF-8 crystals
while inhibiting their size growth. The reason may be that the peptide self-assembled
structures probably acted as nucleation sites and capping agents to mediate ZIF-8 nuclei
formation and growth, which resulted in many more ZIF-8 crystals with smaller sizes.
Figure 7 shows the morphology evolution of the ZIF-8 crystals at varied reaction times
in different cases. At 5 min, many tiny particles with irregular shapes can be observed in
each case, which should be the nuclei formed in the early stage. Then, the particle size
increased gradually with the elapse of time until the final equilibrium size was reached,
clearly showing the crystal growth stage. Once again, we can see clearly the differences
in morphology and size of the ZIF-8 crystals in each case, which were consistent with the
results shown in Figures 2 and 3, confirming the reproducibility of the peptide-regulated
ZIF-8 synthesis. The larger particle size in the case of RKRK corresponds well to its largest
turbidity value (Figure 6). However, the particles give a similar size in the cases of RK
and K-RK while their turbidity value shows a significant difference. These results may be
interpreted by the difference in particle number and/or particle aggregation propensity in
the two cases. We should also note that in some images, especially those obtained at the
early stage of nucleation and crystal growth, the ZIF-8 particles were usually attached to
some network structures, which should be the peptide aggregates. This result indicates
that the peptides can bind on the ZIF-8 surface to affect its nucleation and growth.
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3.3. Discussion on the Effect of Molecular Hydrophobicity, Charge Number and Charge Location

The above results clearly demonstrate that the peptide molecules can work as regu-
lators to modulate the morphology and size of the ZIF-8 crystals, which depends greatly
on the peptide molecular structure [57]. In the present case, the peptide molecules were
rationally designed to have different hydrophobicity, charge number and charge location.
First, all three molecules can produce ZIF-8 crystals with truncated cubic profiles. This can
be interpreted by Wulff’s rule, that is, the final crystal shape depends on the slow-growing
face. Here, the peptides can bind on the ZIF-8 surface to inhibit the {100} facet growth so as
to result in final cubic crystals with six {100} faces. Second, because the three molecules
have the same hydrophobic residues but different charged residues, the overall molecular
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hydrophobicity is inversely correlated with the charge numbers and can be ordered as
RK > K-RK > RKRK. This order is the same with the order of the nucleation and growth
speed of the ZIF-8 particles and the reverse order of the particle sizes in each case. These
results indicate that molecular hydrophobicity plays crucial roles in regulating the nucle-
ation and growth of ZIF-8 crystals. The peptide with higher hydrophobicity (e.g., RK) will
promote nuclei formation at the early stage. With more nuclei being formed, more species
(2-methylimidazole and Zn2+) for ZIF-8 synthesis will be consumed and fewer are left for
the following crystal growth stage. Therefore, a faster nucleation and crystal growth speed
but a smaller crystal size will be the case [64–66]. This interprets well the effect of molecular
hydrophobicity and charge number on ZIF-8 synthesis. Furthermore, for RK and K-RK,
their molecular hydrophobicity differs greatly whilst the final ZIF-8 crystals show little
difference in size. The results indicate that a positive lysine residue in the middle of the
hydrophobic region does not affect greatly the interactions of the peptide molecule with
ZIF-8. The reason may be that the middle positive charge is buried inside during peptide
aggregation and self-assembly and therefore its function is blocked. One may also conclude
that the charge location rather than charge number plays more important roles in affecting
the ZIF-8 crystal growth.

4. Conclusions

In conclusion, the effects of molecular hydrophobicity, charge number and charge
location on the morphology and size of the ZIF-8 crystals have been investigated by
rationally designing three amphiphilic peptides as regulators for ZIF-8 synthesis. The
peptide molecular hydrophobicity plays a dominant role in defining the final morphology
of the ZIF-8 crystals. All three peptides of RK, K-RK and RKRK can bind on the ZIF-8
surface to inhibit the {100} facet growth and result in the production of truncated cubic
crystals. The peptides with fewer charges and higher hydrophobicity promote nuclei
formation and crystal growth to give smaller ZIF-8 crystals. The charge located in the
hydrophobic region of the peptide molecule has little effect on the crystal nucleation and
growth because its effect will be shielded due to molecular aggregation. The study provides
insights into the effect of molecular charge and hydrophobicity on ZIF-8 crystal growth,
which is helpful for guiding the molecular design for regulating ZIF-8 synthesis.
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