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Abstract: Surface modification has served as an efficient approach to dictate nanocluster structures
and properties. In this work, based on an Ag22 nanocluster template, the effects of surface modi-
fication on intracluster constructions and intercluster packing modes, as well as the properties of
nanoclusters or cluster-based crystallographic assemblies have been investigated. On the molecular
level, the Ag22 nanocluster with larger surface steric hindrance was inclined to absorb more small-
steric chlorine but less bulky thiol ligands on its surface. On the supramolecular level, the regulation
of intramolecular and intermolecular interactions in nanocluster crystallographic assemblies rendered
them CIEE (crystallization-induced emission enhancement)-active or -inactive nanomaterials. This
study has some innovation in the molecular and intramolecular tailoring of metal nanoclusters, which
is significant for the preparation of new cluster-based nanomaterials with customized structures and
enhanced performances.

Keywords: atomically precise nanoclusters; surface modification; intramolecular configuration;
intermolecular packing; optical properties

1. Introduction

Metal nanoclusters, bridging between small-sized molecular complexes and large-
sized plasmonic nanoparticles, have attracted considerable attention owing to their atomi-
cally precise structures and excellent electrical, optical, and catalytical properties directed
by the discrete electronic energy level as well as the structure-dependent quantum confine-
ment effect [1–16]. The monodispersed sizes, precise compositions, and accurate configura-
tions of metal nanoclusters make it possible to investigate the relationship between their
structures and properties. In addition, the attainable structure–property correlations further
enable the rational construction of new nanoclusters with customized performances [17–22].
In this context, the regulatable intramolecular structures and intermolecular packing modes
render metal nanoclusters or cluster-based nanocomposites prominent nanomaterials for
atomic engineering and further practical applications [23–29].

The past few decades have witnessed great research efforts of the control over intr-
acluster structures/compositions and intercluster aggregates [17–20,23–27]. Specifically,
the intramolecular control of nanoclusters touches upon the manipulation of their metal-
ligand compositions and bonding environment at the single molecular level, while the
intermolecular control of nanoclusters refers to the manipulation over their aggregating
patterns among several cluster molecules in amorphous or crystallographic forms [30]. Sev-
eral control methods, including (i) intracluster approaches (e.g., ligand exchange [31–34],
heteroatom alloying [35–39], and molecular charge regulation [40–42]) and (ii) intercluster
approaches (e.g., cluster-based metal-organic framework [43–46], aggregation-induced
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emission [47–49], and intercluster metallophilic reaction [50,51]), have been exploited to
control clusters or their assemblies and to dictate their properties. Of note, the intracluster
and intercluster controls are not a binary separation, but an interrelated and inseparable
whole to regulate the nanocluster system simultaneously. In this context, the intracluster
regulation of nanoclusters may alter their aggregating patterns at the supramolecular level,
and vice versa [52]. The profound cognition of the correlation between molecular and
supramolecular chemistry of nanoclusters offers great opportunities for the fabrication of
novel nanoclusters or cluster-based hybrids with customized properties.

Herein, a new Ag22 nanocluster, formulated as Ag22(S-Adm)10(DPPM)4Cl6 (abbreviated
as Ag22-L1, where S-Adm = 1-adamantanethiol and DPPM = bis(diphenylphosphino)methane),
was synthesized and structure-determined by X-ray single-crystal diffraction. The com-
bination of this Ag22 nanocluster and a previously reported Ag22(SPhMe2)12(DPPE)4Cl4
(abbreviated as Ag22-L2, where SPhMe2 = 2,5-dimethyl thiophenol and DPPE = 1,2-bis
(diphenylphosphino)ethane) constructed a platform to investigate the effects of surface
modification on intramolecular constructions and intermolecular packing modes, as well as
the properties of nanoclusters or cluster-based crystallographic assemblies. On the molecu-
lar level, because of the larger surface steric hindrance of Ag22-L1 relative to Ag22-L2, the
Ag22-L1 surface contained more small-steric chlorine but fewer bulky thiol ligands. On the
supramolecular level, Ag22-L2 displayed intramolecular and intermolecular interactions in
its crystallographic assembly, while these interactions were absent in the Ag22-L1 crystal.
Ag22-L2 was CIEE (crystallization-induced emission enhancement) active while Ag22-L1
was CIEE inactive. The optical absorptions and emissions of these two Ag22 nanoclusters
were also compared.

2. Materials and Methods

Chemicals. All reagents were purchased from Adamas Reagent (Shanghai, China) and
used without further purification: silver nitrate (AgNO3, 99%, metal basis), 1-adamantanethiol
(HS-Adm, 97%), 2,5-dimethyl thiophenol (HS-PhMe2, 97%), bis(diphenylphosphino)methane
(Ph2P-CH2-PPh2, DPPM, 98%), 1,2-bis(diphenylphosphino)ethane (Ph2P-C2H5-PPh2, DPPE,
98%), sodium cyanoborohydride (NaBCNH3, 99.9%), methylene chloride (CH2Cl2, HPLC
grade), methanol (CH3OH, HPLC grade), ethyl ether ((C2H5)2O, HPLC grade), and n-
hexane (Hex, HPLC grade).

Synthesis of Ag22(S-Adm)10(DPPM)4Cl6 (Ag22-L1). Specifically, 60 mg of AgNO3
(0.36 mmol) and 40 µL of H2PtCl6 (0.2 g/mL; 0.015 mmol) were dissolved in 20 mL of
CH3OH and 1 mL of CH3CN. Then, 40 mg of DPPM (0.1 mmol) and 30 mg of HS-Adm
(0.18 mmol) were added. After stirring for 30 min, 100 mg of NaBCNH3 (1.59 mmol;
dissolved in 2 mL of MeOH) was added. The reaction was allowed to proceed for 5 h.
After that, the mixture in the organic phase was rotavaporated under vacuum and washed
several times by MeOH and Hex. Then, 10 mL of CH2Cl2 was used to extract the obtained
Ag22-L1 nanocluster. The yield is 30% based on the Ag element (calculated from AgNO3).
Of note, although Pt did not exist in the final Ag22-L1, the absence of Pt sources resulted
in the failure of the nanocluster synthesis (Figure S1). Such a phenomenon has also been
observed in previous works [53].

Synthesis of Ag22(S-PhMe2)12(DPPE)4Cl4 (Ag22-L2). The preparation of Ag22
(S-PhMe2)12(DPPE)4Cl4 was based on the reported method of the Pradeep group [54].

Crystallization of Ag22-L1. In order to accelerate the crystallization process and
improve the crystal quality, the counterions (i.e., Cl−) in the Ag22-L1 nanocluster were
replaced by SbF6

− [55]. The reaction equation was [Ag22(S-PhMe2)12(DPPE)4Cl4]Cl2 +
2 SbF6

− → [Ag22(S-PhMe2)12(DPPE)4Cl4](SbF6)2 + 2Cl−. Nanoclusters were crystallized
in a CH2Cl2/ether system with a vapor diffusion method (Table S1).
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3. Results

The Ag22-L1 nanocluster was synthesized by directly reducing the Ag-SR-DPPM com-
plexes by NaBCNH3 (Scheme S1; see more details in Materials and Methods). The electrospray
ionization mass spectrometry (ESI-MS) measurement was performed to verify the molecular
composition and to determine the valence state of the Ag22-L1 nanocluster. As shown in
Figure S2, the mass result of the nanocluster exhibited an intense peak at 2897.54 Da. The
excellent match of the experimental and simulated isotope patterns illustrated that the
measured formula was [Ag22(S-Adm)10(DPPM)4Cl6]2+. The “+2” valence state of the nan-
ocluster matched well with the existence of (SbF6)− counterions in the crystal lattice, i.e.,
the molar ratio between the cluster and the counterion was 1:2, as depicted in Figure S3.
According to the valence states of Ag22-L1, its nominal electron counts was determined
as 4e [56], i.e., 22(Ag) − 10(SR) − 6(Cl) − 2(charge) = 4e, the same as that of Ag2-L2 [54].
Moreover, the chlorine ligands in Ag22-L1 were proposed to originate from the H2PtCl6
or from the CH2Cl2 solvent, which has also been discovered in previously determined
nanoclusters [57–60].

Structurally, the Ag22-L1 nanocluster contained an Ag10 kernel which comprised
two distorted trigonal bipyramidal Ag5 units via an edge–edge vertical assembling mode
(Figure 1A,B). Then, two Ag2(S-Adm)3(DPPM)1Cl1 surface units capped the Ag10 kernel from
the same side via Ag-S or Ag-Cl interactions, giving rise to an Ag14(S-Adm)6(DPPM)2Cl2
structure (Figure 1C,D). The other unprotected side of the Ag10 kernel was further stabilized
by two Ag2(S-Adm)2(DPPM)1Cl2 surface units, making up a Ag18(S-Adm)10(DPPM)4Cl6
structure (Figure 1E,F). Finally, four Ag atoms acting as bridges linked these surface
units via S-Ag-S interactions, yielding the final Ag22(S-Adm)10(DPPM)4Cl6 framework
(Figure 1G,H). Because of the asymmetry of surface units in Ag22-L1, especially the asym-
metrical arrangement of peripheral thiol and chlorine ligands, no symmetrical element was
observed in the Ag22-L1 nanocluster framework (Figure 1I and Figure S4).
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Figure 1. Structural anatomy of the Ag22-L1 nanocluster. (A,B) The Ag10 kernel, constituted by as-
sembling two Ag5 units. (C) Two Ag2(S-Adm)3(DPPM)1Cl1 surface units. (D) The Ag14(S-
Adm)6(DPPM)2Cl2 structure. (E) Two Ag2(S-Adm)2(DPPM)1Cl2 surface units. (F) The Ag18(S-
Adm)10(DPPM)4Cl6 structure. (G) Four Ag bridges. (H,I) Overall structure of the Ag22(S-
Adm)10(DPPM)4Cl6 nanocluster. Color codes: blue/light blue/orange sphere, Ag; red sphere, S; ma-
genta sphere, P; green sphere, Cl; grey sphere, C; white sphere, H. 

Figure 1. Structural anatomy of the Ag22-L1 nanocluster. (A,B) The Ag10 kernel, constituted by assem-
bling two Ag5 units. (C) Two Ag2(S-Adm)3(DPPM)1Cl1 surface units. (D) The Ag14(S-Adm)6(DPPM)2Cl2
structure. (E) Two Ag2(S-Adm)2(DPPM)1Cl2 surface units. (F) The Ag18(S-Adm)10(DPPM)4Cl6 structure.
(G) Four Ag bridges. (H,I) Overall structure of the Ag22(S-Adm)10(DPPM)4Cl6 nanocluster. Color codes:
blue/light blue/orange sphere, Ag; red sphere, S; magenta sphere, P; green sphere, Cl; grey sphere, C;
white sphere, H.
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The overall constructions of Ag22-L1 and Ag22-L2 nanoclusters were almost the same.
However, because of the different steric hindrances of ligands in these two nanoclusters
(i.e., S-Adm and DPPM in Ag22-L1; S-PhMe2 and DPPE in Ag22-L2), these two nanoclusters
displayed some structural differences:

(i) For the kernel structure: the average Ag-Ag bond length in bipyramidal Ag5 of
Ag22-L1 was 2.824 Å, much shorter than that in Ag22-L2 (i.e., 2.933 Å). In addition, the
average Ag-Ag bond lengths between these two Ag5 bipyramids were 2.870 and 2.937 Å in
Ag22-L1 and Ag22-L2, respectively. In this context, due to the larger surface steric hindrance
of Ag22-L1 relative to Ag22-L2, the Ag10 kernel of the former nanocluster was compressed.

(ii) For the surface environment: the biggest structural difference between the two Ag22
nanoclusters lay in their surface ligand environments in terms of the proportion of the
chlorine in peripheral ligands. Specifically, the Ag22-L1 nanocluster contained 10 thiol
and 6 chlorine ligands, while Ag22-L2 included 12 thiol and 4 chlorine ligands (Figure 2). As
shown in Figure 2A,B, a thiol ligand at the specific location on the
Ag22-L2 surface was substituted by a chlorine ligand in Ag22-L1. Another thiol ligand at
the symmetrical position was also replaced by chlorine. Such a substitution from bulky thiol
to small-steric chlorine was reasonable by considering that the more compact surface environment
on Ag22-L1, resulting from the bulkier DPPM and S-Adm ligands relative to DPPE and S-PhMe2,
was unable to host as many bulky thiol ligands as Ag22-L2 (Figure 2C,D). Moreover, several
intramolecular noncovalent C-H···π and π···π interactions were observed in the Ag22-L2
structure, which was advantageous to the compact packing of its surface ligands [54].
By comparison, none of such noncovalent interactions was observed in Ag22-L1, which
might be another reason that more small-steric chlorine but fewer bulky thiol ligands were
arranged on the Ag22-L1 nanocluster surface.
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Figure 2. Structure comparison between Ag22-L1 and Ag22-L2 nanoclusters. (A) Cluster frame-
work of the Ag22-L1 nanocluster with Cl ligands at specified locations. (B) Cluster framework of
the Ag22-L2 nanocluster with SR ligands at specified locations. (C) Spacefill packing of the Ag22-L1
nanocluster with a S-Adm ligand at the specified surface vacancy. (D) Spacefill packing of the
Ag22-L2 nanocluster with two S-PhMe2 ligands at the specified surface vacancy. Color codes: light
blue sphere, Ag; red sphere, S; magenta sphere, P; green sphere, Cl; grey sphere, C; pink/white
sphere, H.
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The Ag22-L1 cluster entities were crystallized in a triclinic crystal system with a P-1
space group, whereas the Ag22-L2 cluster entities were crystallized in a tetragonal crystal
system with an I41/a space group. Both nanoclusters followed a lamellar eutectic packing
pattern between R-nanocluster and S-nanocluster enantiomers in the crystal lattice; however,
due to their distinct crystal systems, the interlayer distances were different: 26.561 Å of
Ag22-L1, and 28.957 Å of Ag22-L2 (Figure 3 and Figure S5). Of note, there are equal R-
nanocluster and S-nanocluster enantiomers in the crystal lattice, and the crystalline material
of the nanocluster was racemic. Furthermore, owing to the existence of several benzene-
rings in the Ag22-L2 nanoclusters, strong intracluster and intercluster interactions occurred,
including C-H···π interaction and π-π stacking [54]. In vivid contrast, these interactions
were absent within the Ag22-L1 nanocluster or among Ag22-L1 cluster entities (Figure S6).
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(B) Structure of the S-nanocluster enantiomer. (C–E) Packing of the Ag22-L1 molecules in the crystal lattice: view from
the x axis (C), y axis (D), and z axis (E). The inter-layer distance along with the z axis is 25.561 Å. Color codes: blue/light
blue sphere, Ag in R-nanocluster enantiomer; blue/orange sphere, Ag in S-nanocluster enantiomer; red sphere, S; magenta
sphere, P; green sphere, Cl; grey sphere, C; white sphere, H.

The Ag22-L1 nanocluster (dissolved in CH2Cl2) exhibited three intense absorptions
centered at 368, 494, and 635 nm (Figure 4A). By comparison, the UV-vis spectrum of Ag22-
L2 displayed several peaks at 445, 512, and 670 nm (Figure 4A). The blue shifts in the optical
absorptions of Ag22-L1 relative to Ag22-L2 resulted from the different electronic structures
of the two Ag22 nanoclusters. The CH2Cl2 solution of Ag22-L1 emitted at 650 nm, while
the emission of Ag22-L2 was located around 670 nm (Figure 4B). The 20 nm blue-shift and
1.2-fold enhancement of the emission of Ag22-L1 relative to that of Ag22-L2 resulted from
their different electronic structures. Indeed, these two nanoclusters displayed different
optical absorptions, demonstrating their distinguishable electronic excitations and HOMO-
LUMO energy gaps (HOMO: the highest occupied molecular orbital; LUMO: the lowest
unoccupied molecular orbital). In addition, the different electronic excitations endowed
these two nanoclusters with distinct emissions.
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Figure 4. Comparison of optical properties between two Ag22 nanoclusters. (A) Comparison of optical absorptions
between Ag22-L1 (black line) and Ag22-L2 (red line). (B) Comparison of emissions between Ag22-L1 (black line) and
Ag22-L2 (red line). (C) Emission spectra of Ag22-L1 in the solution (black line), amorphous (red line), and crystalline
(blue line) states.

The Ag22-L2 nanocluster was CIEE active owing to the presence of extensive intramolec-
ular and intermolecular interactions in its crystal lattice [54]. In this context, the emission
intensity of Ag22-L2 in the crystalline state was remarkably higher than that of the nanocluster
in the solution or the amorphous state. By comparison, the Ag22-L1 was CIEE inactive since
no significant enhancement in emission intensity was observed (Figure 4C). Actually, the
Ag22-L1 in the amorphous or crystalline state was almost non-emissive. Such a striking
contrast was reasonable considering that the intramolecular and intermolecular interactions
were absent in the crystal lattice of Ag22-L1, as mentioned above. The investigation of the
Ag22 nanocluster system promoted the understanding of the crystalline packing mode and
the CIEE of cluster-based nanomaterials.

4. Conclusions

In summary, a new Ag22 nanocluster, formulated as Ag22(S-Adm)10(DPPM)4Cl6, has
been synthesized and structurally determined, which constituted an Ag22 cluster sys-
tem together with the previously reported Ag22(S-PhMe2)12(DPPE)4Cl4. Based on this
Ag22 cluster system, the effects of surface modification on intracluster constructions and
intercluster packing modes, as well as the properties of nanoclusters or cluster-based crys-
tallographic assemblies were investigated. The Ag22 nanocluster with larger surface steric
hindrance was inclined to load more small-steric chlorine but fewer bulky thiol ligands
on its surface. Moreover, the Ag22 nanocluster, which embodied several intramolecular
and intermolecular interactions in cluster crystallographic assemblies, was CIEE active; by
comparison, the Ag22 nanocluster without such interactions was CIEE inactive. This work
provides new insight into the surface modification of metal nanoclusters and its effects on
intramolecular configuration, intermolecular packing, and optical properties.
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