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Abstract: Graphene-based film attracts tremendous interest in many potential applications due to its
excellent thermal, electrical, and mechanical properties. This review focused on a critical analysis
of fabrication, processing methodology, the interfacial modification approach, and the applications
of this novel and new class material. Strong attention was paid to the preparation strategy and
interfacial modification approach to improve its mechanical and thermal properties. The overview
also discussed the challenges and opportunities regarding its industrial production and the current
status of the commercialization. This review showed that blade coating technology is an effective
method for industrial mass-produced graphene film with controllable thickness. The synergistic
effect of different interface interactions can effectively improve the mechanical properties of graphene-
based film. At present, the application of graphene-based film on mobile phones has become an
interesting example of the use of graphene. Looking for more application cases is of great significance
for the development of graphene-based technology.

Keywords: graphene-based film; interface modification approach; preparation strategy; thermal and
mechanical property

1. Introduction

Since the successful separation of a few sheets of graphene from graphite using scotch
tape in 2004, graphene has gradually entered the life of human beings [1]. Despite of the fact
that more than a decade has passed, it is still a hot research topic owing to its extraordinary
thermal, electrical, mechanical, and optical properties [2–5]. Graphene has the potential
to be used in many fields such as electronics [6], optoelectronics [7], and electrochemical
batteries and composites among many other applications [8]. Graphene-based film has
attracted significant attention in practical applications. It has been identified and used for
volume application in electronics/battery heat spreading in mobile phones. Thus, a huge
interest has emerged in developing this technology on a commercial basis.

However, despite the remarkable performance of single-layer graphene, it is difficult
to extend this performance to a multilayer film structure. One of the key weaknesses of
the graphene film is the interfacial strength between the graphene layers, causing easy
delamination.

Graphene oxide, well known as a precursor for preparing graphene, has abundant
oxygen-containing functional groups [9]. Specifically, it has hydroxyl and carbonyl groups
on the basal plane and carboxyl groups on the sheet edge [10]. These functional groups can
be used as active sites for GO chemical modification and functionalization [11]. Various
materials were introduced to GO by covalent or non-covalent bonding to improve its
performance. Therefore, many methods were proposed to prepare functionalized graphene-
based film [12–14].
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In this review, we presented and discussed the recent advances in fabrication, process-
ing methodology, the interfacial modification approach, and state of the art applications of
graphene-based film. The key focus was on methods of fabrication of the graphene-based
film, the interfacial modification concept and strategies to improve its mechanical proper-
ties, as well as application challenge and status of graphene-based film’s applications in
energy storage and environmental and smart-device applications.

2. Preparation Techniques of Graphene-Based Film

The main methods to prepare graphene-based film include vacuum filtration,
evaporation-induced self-assembly, rod coating, spin coating, and electro-induced prepara-
tion.

2.1. Vacuum Filtration

Since Dikin et al. [15] used membrane filters to prepare an ultra-strong graphene oxide
paper for the first time in 2007, and vacuum filtration has widely been used in academic
research. Many researchers prepared cellulose nanofiber/graphene-based composite film
via vacuum filtration in recent years [16–20]. In the electrical shielding application, where
electrical insulating materials are required, the excellent electrical conductivity of graphene
has become an inevitable obstacle to its application [21]. Therefore, it is important to
prepare graphene-based film with insulating properties. Guo et al. [22] fabricated a f-
Al2O3@RGO/nanofibrillated cellulose (f-Al2O3@RGO/NFC) composite film via a vacuum
filtration process. The preparation process is shown in Figure 1a. The introduction of
Al2O3 can not only make the composite film have electrical insulation properties but also
increases the thermal transfer path of the composite film. Figure 1b shows the macroscopic
photograph and cross-sectional SEM views of the composite film, revealing that the com-
posite film has an ordered and compact structure. The thermal conductivity of cellulose
nanofiber/graphene-based composite film is generally low; it is difficult to meet the heat
dissipation requirement of modern electronics devices. To achieve high thermal conductiv-
ity, carbonization through a high-temperature annealing approach was reported [23]. It
was reported that the carbonized polydopamine nanoparticle reinforced graphene films
exhibited high thermal conductivity of 1584 W m−1 K−1 through the carbonized process,
as shown in Figure 1c [24].

Nanomaterials 2021, 11, x FOR PEER REVIEW 2 of 20 
 

 

improve its performance. Therefore, many methods were proposed to prepare function-
alized graphene-based film [12–14]. 

In this review, we presented and discussed the recent advances in fabrication, pro-
cessing methodology, the interfacial modification approach, and state of the art applica-
tions of graphene-based film. The key focus was on methods of fabrication of the gra-
phene-based film, the interfacial modification concept and strategies to improve its me-
chanical properties, as well as application challenge and status of graphene-based film’s 
applications in energy storage and environmental and smart-device applications.  

2. Preparation Techniques of Graphene-Based Film 
The main methods to prepare graphene-based film include vacuum filtration, evap-

oration-induced self-assembly, rod coating, spin coating, and electro-induced prepara-
tion.  

2.1. Vacuum Filtration 
Since Dikin et al. [15] used membrane filters to prepare an ultra-strong graphene ox-

ide paper for the first time in 2007, and vacuum filtration has widely been used in aca-
demic research. Many researchers prepared cellulose nanofiber/graphene-based compo-
site film via vacuum filtration in recent years [16–20]. In the electrical shielding applica-
tion, where electrical insulating materials are required, the excellent electrical conductiv-
ity of graphene has become an inevitable obstacle to its application [21]. Therefore, it is 
important to prepare graphene-based film with insulating properties. Guo et al. [22] fab-
ricated a f-Al2O3@RGO/nanofibrillated cellulose (f-Al2O3@RGO/NFC) composite film via 
a vacuum filtration process. The preparation process is shown in Figure 1a. The introduc-
tion of Al2O3 can not only make the composite film have electrical insulation properties 
but also increases the thermal transfer path of the composite film. Figure 1b shows the 
macroscopic photograph and cross-sectional SEM views of the composite film, revealing 
that the composite film has an ordered and compact structure. The thermal conductivity 
of cellulose nanofiber/graphene-based composite film is generally low; it is difficult to 
meet the heat dissipation requirement of modern electronics devices. To achieve high 
thermal conductivity, carbonization through a high-temperature annealing approach was 
reported [23]. It was reported that the carbonized polydopamine nanoparticle reinforced 
graphene films exhibited high thermal conductivity of 1584 W m−1 K−1 through the carbon-
ized process, as shown in Figure 1c [24]. 

 

Figure 1. (a) Schematic illustration of the fabrication process of a f-Al2O3@RGO/NFC composite film by vacuum filtration.
Reprinted with permission from ref. [22] Copyright 2019, Elsevier. (b) Macroscopic photograph and cross-sectional SEM
views of composite film. (c) Schematic illustration of GF. Reprinted with permission from ref. [24] Copyright 2019, Elsevier.
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Vacuum filtration, by which different thickness films can be obtained through different
concentration optimizations, is easy to operate. However, it still has many limitations.
In the filtration process, the filtration efficiency gradually decreases with the increase of
the thickness of the film. In addition, the size of the film is usually limited by the size
of the filter. This method seems only to be suitable for the laboratory scale, but not for
industrial-scale production.

2.2. Evaporation-Induced Self-Assembly

This technology was used to prepare flexible free-standing macroscopic graphene-
based films [25–29]. The general process is to pour the slurry into a polytetrafluoroethylene
mold or other substrate and then evaporate the solvent at room temperature or a certain
temperature. After that, the film is peeled off from the substrate. Capillary-forced-assisted
self-assembly is a method for the preparation of reduced graphene oxide film with an
unidirectional arrangement [30,31]. The film is initiated at the contact line of the air-liquid-
solid interface. Compared with traditional vacuum filtration, scalable large-area highly
ordered films are produced by this technique. Wang et al. [32] fabricated graphene films
(GFs) with different thicknesses via an evaporation self-assembly process on the aluminum
substrate by adjusting the concentration and volume of GO suspension. They found
that GFs displayed a favorable thermal conductivity of 3200 W m−1 K−1 with a smallest
thickness of 0.8 µm and which outperformed the Polylitic Graphite Sheets (PGS) by 60%.
Besides, GFs show high mechanical tensile strength and excellent flexibility (Figure 2).
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AFM image of GO flakes with a thickness of less than 1 nm. (d) SEM image of cross-section of the fabricated GFs. (e) Optical
image of the fabricated large-area GFs. Reprinted with permission from ref. [32] Copyright 2018, Wiley.

The evaporation-induced self-assembly technique has great potential for the industrial-
scale production of graphene-based film. This technique is easy to operate without any
special equipment. Different-sized films can be obtained by adjusting the size of the
substrate. The top surfaces of the film prepared by this method exhibited less roughness
than the film fabricated by vacuum filtration [31]. However, it is noteworthy that bubbles
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may be generated in the evaporation process, which could damage the structure of the
film.

2.3. Blade Coating

Blade coating is widely used in the laboratory and industrial production [33–37]. In a
typical laboratory process, the slurry is transferred to the substrate by moving the blade
on the substrate. In industry, however, the slurry is transferred to the fabric through a
blade by moving the fabric substrate, and then a freestanding film roll is obtained through
multi-stage heat treatment. The thickness of the film can be adjusted by controlling the
scraping blade interval. For example, Chen et al. [38] reported a quasi-industrial production
of ultra-thick and dense laminated-structures graphene films (GFs) with large sizes and
different thicknesses, which were prepared by the blade coating process (Figure 3a,b). In
practical industrial applications, two pieces of 220 µm GF and PGF were processed in a
standard template of mobile phone and placed on a constant heat source, revealing the GF
has faster thermal transfer performance, as shown in Figure 3c. Compared with PGF, the
surface of GF still had the original structure after the bending test, which does not hinder
the heat diffusion (Figure 3d).
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Figure 3. (a) The Schematic of the fabrication process of the GO film. (b) Optical image of the GFs with different thicknesses
and cross-sectional SEM image of pressed GFs-2850. (c) Infrared thermal images of 220 µm GF and PGF in a standard
template. (d) SEM image of the surface morphology change of GF and PGF after the bending test, respectively, and infrared
thermal images of GF and PGF before and after the bending test. Reprinted with permission from ref. [38] Copyright 2020,
Elsevier.

Generally, blade coating is widely used in the current industrial production of graphene
film and it has many advantages. For example, this technology can save time, while vac-
uum filtration is time-consuming. Secondly, it can realize industrial mass production.
Additionally, it can precisely control the thickness and size of the film. However, this
technology has very strict requirements for the concentration and viscosity of the slurry.
If the viscosity of the slurry is too large or too small, the blade coating will be uneven,
resulting in an uneven thickness and density of the graphene films.
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2.4. Spin Coating

The spin coating method is also a common method for preparing graphene-based
film [39–45]. In a typical process, dropping a certain solution on the substrate, continuous
thin film is formed under the action of centrifugal force. Spin coating is one of the popular
methods of the Layer-by-Layer assembly strategy, which can form a highly ordered mul-
tilayer internal structure in a short deposition time [46]. Due to the weak van der Waals
interaction among GO nanosheets, the stacked GO layers can be easily separated during
the thermal reduction process and numerous voids can be doped, resulting in a significant
reduction of cross-plane thermal conductivity of the films [47,48]. However, spin-assist
LBL (SA-LBL) utilizes alternating electrostatic deposition between complementary charged
materials to construct strong internal bonding multilayers. For example, Hong et al. [49]
fabricated an rGO/alumina film via the SA-LBL process, resulting in enhanced in-plane
and out-plane thermal conductivity of the composite film. Besides, the SA-LBL process
can produce a hydrogen bonding interaction. For example, Song et al. [50] used SA-LBL
process to prepare a silicone rubber/graphene film, as shown in Figure 4. Hydrogen
interaction and van der Waals forces synergistically increase the bridging between SR and
GO to improve the thermal conductivity of the composite film.
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Spin coating is a simple, cheap, and versatile technique for preparing ordered multi-
layered film. However, it is worth noting that the efficiency of spin coating is lower than
that of the blade coating. It can only achieve a very thin film at a time. To achieve the
same thickness of the film, the spin coating needs to be repeated several times, which is
unsuitable for efficient industrial production.
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2.5. Electro-Induced Preparation

In recent years, electro-deposition has also been used for preparing graphene-based
film [51–58]. In the electro-deposition process, the electric field between the two electrodes
induces the migration of charged particles and subsequent deposition in a stable suspen-
sion [59]. Different foils were fabricated by adjusting electro-deposition parameters such as
current density, electro-deposition time, electrolyte concentration, and so on [60].

Because of the existence of oxygen-containing functional groups on GO, GO has a
negative charge and good hydrophilicity in water, so GO is generally used as the precursor
during the electrodeposition process [51]. The results show that the presence of Cu atoms
is beneficial to the reduction of GO [61,62]. Electrolysis of a Cu ion on the Cu anode can
remove part of the oxygen-containing functional groups on GO, and the Cu-O-C bonding
can be formed between the residual oxygen on RGO and Cu, resulting in the enhancement
of the interfacial bonding strength of the Cu-RGO composites. For example, Li et al. [61]
prepared the Cu-RGO film by DC voltage at 30 V with different electro-deposition times
in GO suspension, as shown in Figure 5. The results indicated that Cu-RGO film exhibits
excellent heat-transfer properties and flexibility. Meanwhile, the thermal conductivity of
Cu-RGO film increased with the increase of deposition time, which was attributed to the
formation of thermal conduction paths in the Cu-RGO film.
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Electro-induced deposition is a universal technology that can be applied in any stable
suspension. This technology has many advantages, such as good sample uniformity,
thickness control, a simple operation process, ease of use, and high cost-effectiveness. The
process of preparing graphene-based film by electro-deposition technology also has some
drawbacks. It puts forward a higher requirement for the precursor solution. Otherwise,
the phenomenon of agglomeration or reduction of deposition efficiency will occur during
this process.
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3. Interfacial Modification of Graphene-Based Film to Improve Its Mechanical
Property

It turns out that functionalization is key to make a strong graphene film, especially
when several layers are stacked together. The methods mainly include π-π interaction, hy-
drogen bonding interaction, ionic bonding interaction, covalent interaction, and synergistic
interaction.

3.1. π-π Interactions

Compared with other interactions, the π-π interaction will not be weakened by the
reduction of active sites on RGO. On the contrary, the restoration of the sp2-conjugated
network and the large graphite domains on graphene can help to form a stronger π-π
interaction, significantly improving the interface strength of the graphene film [63]. At
the same time, π-π bonding retains the π-conjugated structure of graphene to facilitate
charge transfer, improving the conductivity of graphene [64]. Molecules with rich π orbital
functional groups such as phenyl and pyrene groups can be used as crosslinking agents to
bind the adjacent graphene sheets [65,66]. For example, Ni et al. [67] synthesized AP-DSS
molecules with pyrene groups at both ends. AP-DSS was used as a cross-link to improve
interface interaction of adjacent rGO nanosheets through π-π interaction, as shown in
Figure 6a. During the loading, AP-DSS molecules stretched along with the slip between
the graphene nanosheets, and a significant amount of energy was absorbed. With further
loading, the π-π cross-link structure between the pyrene group and graphene sheets was
destroyed, and a large amount of energy was further absorbed. Finally, the graphene
nanosheets were pulled out, resulting in edge-curing of graphene nanosheets (Figure 6b,c).
The maximum tensile strength of rGO-AP-DSS composites film can reach 538.8 ± 31.6 MPa,
which is about 4.1 times higher than that of pure rGO film, as shown as Figure 6d. Mean-
while, the electrical conductivity of the composite film was also significantly improved.
However, compared with small molecules, the slippage distance of graphene nanosheets
increased sharply when long-chain molecules were used as a crosslinking agent, resulting
in a significant improvement in mechanical properties. Wan et al. [68] used long-chain
bis (1-pyrene methyl) docosa-10,12-diynedioate (BPDD, C16H9CH2OOC(CH2)8C≡C-C≡C
(CH2)8COOCH2C16H9) monomers to π-π bond adjacent graphene nanosheets, which
exhibited an ultrahigh tension strength of 1054 MPa.
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3.2. Hydrogen Bonding

Spider silk has excellent mechanical properties and is superior to most other fibers
due to the multi-scale hierarchical structure formed by multiple hydrogen bonds between
its proteins [69]. Although the bond energy of hydrogen bonds is weaker than that of the
covalent bonds, multiple hydrogen bonds can also significantly improve the performance
of materials [70]. Inspired by nature, polymers containing multiple hydrogen bonds such
as cellulose, sodium alginate, calcium alginate, poly (vinyl alcohol), and chitosan, etc.
are used to hydrogen bond adjacent graphene nanosheets to improve their mechanical
properties [71,72]. For example, RGO/CA (calcium alginate) film was demonstrated by
Jia et al. [73] through a vacuum-assisted assembly. The cross-section surface morphol-
ogy of composite film showed an oriented structure. The tensile strength of 118 MPa
and toughness of 4.6 MJ/m3 were attributed to the synergistic interaction of the hydro-
gen interaction between CA and rGO and ionic bonding between calcium ions and rGO
nanosheets. Moreover, the film showed a high EMI shielding reliability. Furthermore, Duan
et al. [74] reported a reduced graphene oxide-nanofibrillar cellulose-10,12-pentacosadiyn-1-
ol (rGO-NFC-PCDO) ternary composite film with layered structure (Figure 7a). Because the
abundant hydroxyl groups on NFC react with the oxygen-containing group on GO to form
hydrogen bonding, introduced PCDO can covalently cross-link GO through esterification.
RGO-NFC-PCDO ternary composite film has a tensile strength of 314.6 ± 11.7 MPa and
a toughness of 9.8 ± 1.0 MJ/m3, which are higher than that of other GO-based films, as
shown in Figure 7b. Under stress, the hydrogen bond between rGO and NFC is first broken,
and the stress is uniformly dispersed in rGO and NFC. At the same time, PCDO molecules
consume more energy in the stretching process. During further stretching, the NFC chain
is pulled out. Then, the covalent bonding between PCDO and rGO is destroyed (Figure 7c).
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3.3. Ionic Bonding

Various oxygen-containing functional groups such as hydroxyl, epoxide, and carboxyl
groups are distributed on the surface and edge of GO sheets. Due to the ionization
of hydroxyl and carboxyl groups, GO has a strong negative charge when dispersed in
water [75]. GO may interact with positively charged metal ions [76]. In nature, the report
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found that the presence of small amounts of metal elements, (such as Zn, Mn, Ca, or Cu) in
insects or other organisms can significantly increase their mechanical strength [77]. Inspired
by this phenomenon, Mg2+, Cu2+, Ca2+, Zn2+ and other metal ions were incorporated into
the internal structure of GO film to form ionic bonds with oxygen-containing functional
groups on GO, which significantly improved the mechanical properties and stability of the
graphene-based film. For example, Ruoff et al. [78] modified a graphene oxide paper with
a small amount of Mg2+ or Ca2+. Because metal ions were tightly bonded to the carboxyl
group on edge of GO sheets, a small amount of Mg2+ or Ca2+ content (less than 1 wt%) can
significantly improve the mechanical stiffness (10–200%) and fracture strength (50%) of
GO paper, as shown in Figure 8a. Furthermore, Xing et al. [76] introduced the Ca2+ into
graphene oxide/Sodium alginate (GO/SA) film via a facile and environmentally friendly
method. Because the adjacent graphene oxide sheets were bridged by the SA and Ca2+

through hydrogen bonding and ionic bonding interaction, Ca-GO/SA film with the tensile
strength of 97 ± 4 MPa was stronger than GO/SA film with a tensile strength of 80 ± 7 MPa
(Figure 8b,c). There are many reports about the use of Ca2+, but some researchers also
introduced Cu2+ into the graphene-based film. For example, Wang et al. [79] constructed an
ultra-robust and high-toughness GO paper via the synergistic reinforcement of CNTs and
Cu2+. Compared with the GO papers, the tensile strength, elastic modulus, and toughness
of the Cu-CNTs/GO paper was increased by 409.7%, 81.5%, and 188.2%, respectively. Cu-
CNTs/GO composite paper has π-π interactions between CNTs and GO and ionic bonding
between Cu2+ and the carboxyl groups on GO sheets or CNTs, as shown in Figure 8d.
During the tensile process, the synergistic effect of π-π interactions and ionic bonding
interactions enhance the interaction among GO sheets and promote the uniform stress
transfer in the composite paper. During the fractures, due to the synergistic inhibition
of CNTs and Cu2+, the slippage of GO sheets is restrained compared with the GO paper
(Figure 8e).

Nanomaterials 2021, 11, x FOR PEER REVIEW 9 of 20 
 

 

3.3. Ionic Bonding 
Various oxygen-containing functional groups such as hydroxyl, epoxide, and car-

boxyl groups are distributed on the surface and edge of GO sheets. Due to the ionization 
of hydroxyl and carboxyl groups, GO has a strong negative charge when dispersed in 
water [75]. GO may interact with positively charged metal ions [76]. In nature, the report 
found that the presence of small amounts of metal elements, (such as Zn, Mn, Ca, or Cu) 
in insects or other organisms can significantly increase their mechanical strength [77]. In-
spired by this phenomenon, Mg2+, Cu2+, Ca2+, Zn2+ and other metal ions were incorporated 
into the internal structure of GO film to form ionic bonds with oxygen-containing func-
tional groups on GO, which significantly improved the mechanical properties and stabil-
ity of the graphene-based film. For example, Ruoff et al. [78] modified a graphene oxide 
paper with a small amount of Mg2+ or Ca2+. Because metal ions were tightly bonded to the 
carboxyl group on edge of GO sheets, a small amount of Mg2+ or Ca2+ content (less than 1 
wt%) can significantly improve the mechanical stiffness (10–200%) and fracture strength 
(50%) of GO paper, as shown in Figure 8a. Furthermore, Xing et al. [76] introduced the 
Ca2+ into graphene oxide/Sodium alginate (GO/SA) film via a facile and environmentally 
friendly method. Because the adjacent graphene oxide sheets were bridged by the SA and 
Ca2+ through hydrogen bonding and ionic bonding interaction, Ca-GO/SA film with the 
tensile strength of 97 ± 4 MPa was stronger than GO/SA film with a tensile strength of 80 
± 7 MPa (Figure 8b,c). There are many reports about the use of Ca2+, but some researchers 
also introduced Cu2+ into the graphene-based film. For example, Wang et al. [79] con-
structed an ultra-robust and high-toughness GO paper via the synergistic reinforcement 
of CNTs and Cu2+. Compared with the GO papers, the tensile strength, elastic modulus, 
and toughness of the Cu-CNTs/GO paper was increased by 409.7%, 81.5%, and 188.2%, 
respectively. Cu-CNTs/GO composite paper has π-π interactions between CNTs and GO 
and ionic bonding between Cu2+ and the carboxyl groups on GO sheets or CNTs, as shown 
in Figure 8d. During the tensile process, the synergistic effect of π-π interactions and ionic 
bonding interactions enhance the interaction among GO sheets and promote the uniform 
stress transfer in the composite paper. During the fractures, due to the synergistic inhibi-
tion of CNTs and Cu2+, the slippage of GO sheets is restrained compared with the GO 
paper (Figure 8e). 

 

Figure 8. (a) Schematic model of the reaction between graphene oxide paper and MCl2 in M-modified graphene oxide
papers. Reprinted with permission from ref. [78] Copyright 2008, American Chemical Society. (b) Stress-strain curves
of GO/SA films and Ca-GO/SA films. (c) Structural model for metal ion-modified nacre-mimetic film. Reprinted with
permission from ref. [76] Copyright 2017, Elsevier. (d) Schematic illustration showing the interactions between Cu2+ and GO
or CNTs. (e) Schematic diagram showing the stress transfer mechanisms and fracture behaviors of GO and Cu-CNTs/GO.
Reprinted with permission from ref. [79] Copyright 2017, Elsevier.



Nanomaterials 2021, 11, 2539 10 of 20

3.4. Covalent Bonding

It was found that borate was used to covalently cross-link RG-II in higher plants
to improve the mechanical strength of cell network of the plant [80]. An et al. [81] used
borate ions to covalently cross-link adjacent graphene oxide sheets and combine low-
temperature annealing. Borate ortho-ester bonds were formed by the reaction of borate
ions with hydroxyl groups on GO sheets, and more covalent bonds were formed during
the thermal annealing process, which improved the mechanical properties more than that
of the unmodified film (Figure 9a). In addition, some researchers have used glutaraldehyde
(GA) as a crosslinking agent to introduce into the graphene-based film, forming a covalent
crosslink among adjacent graphene nanosheets. For example, Gao et al. [82] introduced
GA and H2O into GO sheets to strengthen the interlayer adhesion. Aldehyde groups
on GA reacted with hydroxyl groups on GO sheets through intermolecular acetalization,
enhancing covalently crosslinked adjacent GO sheets. Water molecules can not only weaken
the adhesion between layers, but also act as a lubricant to promote the GO sheets slippage
during loading. Therefore, the combined use of GA and H2O can make the properties of
GA-H2O-treated GO superior to other composite films.

However, GA is toxic. Therefore, it is necessary to develop natural green products
as crosslinking agents to improve the mechanical properties of the graphene-based film.
Chitosan (CS) is the product of removing part of acetyl group from chitin, which has
many advantages such as biodegradability, non-toxicity, and having many amino groups
and hydroxyl groups [83]. For example, Wan et al. [84] demonstrated a strong and tough
graphene-chitosan (rGO-CS) film. The tensile strength, toughness, and electrical conduc-
tivity of the rGO-CS film reached 526.7 MPa, 17.7 MJ/m3 and 155 S/cm, respectively,
owing to the synergistic interactions of hydrogen and covalent bonding. Thus, it can
absorb more energy to promote stress transfer and achieve a high tensile strength and
toughness of composite film (Figure 9b). In addition, dopamine is a kind of material
containing amino and catechol functional groups, and it can self-polymerize to long-chain
polydopamine (PDA) under alkaline conditions. PDA has a strong bonding ability to any
substance, and its abundant amino groups and catechol groups can form stable covalent
bonds with oxygen-containing functional groups [85]. Cui et al. [86] developed a strongly
integrated and high-toughness graphene oxide film via dopamine covalent cross-link. The
maximum tensile strength and toughness of rGO-PDA film were 204.9 ± 17.0 MPa and
4.0 ± 0.9 MJ/m3 respectively, which is higher than that of the pure GO film. Figure 9c
exhibits the structural model for dopamine cross-link graphene oxide film. Adjacent GO
sheets were crosslinked by PDA, provided there was enough space for GO sheets slippage,
and absorbed more energy during loading.
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3.5. Synergistic Interaction

Nature materials such as nacre, bones, and silk, etc. are composed of hard and soft
phases arranged in a complex hierarchical structure, showing unique strength and tough-
ness. Therefore, the layered design in nature is an effective way to improve the mechanical
properties of materials [87]. Inspired by this, the combination of different interfacial interac-
tions can synergistically enhance the mechanical properties of the graphene-based film. For
example, Li et al. [88] reported a strong and tough rGO/NFC/PDA ternary composite film.
Because of the synergistic interaction of hydrogen bonding, ionic bonding, and covalent
bonding, RGO/NFC/PDA ternary composite film has a tensile strength of 528 MPa and
toughness of 7.3 MJ/m3, which are superior to other GO-based composite films.

Super-tough graphene oxide/sulfonated styrene ethylene/butylene-styrene (GO-
SSEBS) film was demonstrated by Song et al., as shown in Figure 10a [89]. The tensile
strength and toughness of GO-S-10 reached 158 ± 6.0 MPa and 15.3 ± 1.5 MJ/m3, which
are 76% and 900% higher than pure GO, owing to the π-π interaction formed between GO
and poly-styrene (PS) in SSEBS and hydrogen bonding formed between oxygen-containing
groups on GO with sulfonic acid groups on SSEBS. GO-S-10 has two failure stages in stress-
strain curves, including plastic deformation and a hardening stage compared with GO.
At the initial loading, the GO-S-10 first undergoes plastic deformation. The EB soft chain
in SSEBS begins to extend from the randomly coiled conformation between GO sheets,
resulting in large energy dissipation. With the continuous stretching, the EB segment
extends further. Then, the hardening stage occurs and the EB chain begins to fracture
(Figure 10b). Furthermore, Zhou et al. [90] used Mxene sheets to functionalize graphene
oxide via Ti-O-C covalent bonding to obtain MrGO and 1-aminopyrene-disuccinimidyl
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(AD), which were then used to crosslink MrGO through π-π interaction to obtain MrGO-AD
composite film (Figure 10c). The MrGO-AD composite film has an ultrahigh tensile strength
of 699.1 ± 30.6 MPa, a failure strain of 12.0 ± 0.7%, and a toughness of 42.7 ± 3.4 M/J m3,
superior to that of other GO-based films.
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γ-poly(glutamic acid) acid (PGA) is a naturally occurring polymer that can be pro-
duced by bacteria [91]. It contains many -COOH and -NH2 functional groups. Liang
et al. [92] fabricated a layered GO/PGA/Ca2+ composite film via synergistic interaction
of hydrogen bonding between GO and PGA and ionic bonding between GO and Ca2+, as
shown in Figure 11a. The composite film exhibited a tensile strength of 150 ± 51.9 MPa and
an outstanding Young’s modulus of 21.4 ± 8.7 GPa, representing an enhancement of 120%
and 70% compared with GO film, respectively. Liang et al. and many previous reports
immersed the prepared graphene-based film into the metal solution to synergistically
improve the interfacial interaction of film. However, the ionic bond is usually chelated by
GO and exists in the intermediate layer of GO nanosheets. The relatively weak ionic bond
inevitably limits the load transfer of the GO nanosheets under stress [93]. In the jaw of
Glycera, a small amount of copper ions are present in proteins, chelated by the imidazole
group of histidine [94]. The formed metal-ligand coordination bond is half the strength
of the covalent bond and it is highly cross-linked into the protein, which is beneficial to
load transfer [95]. Inspired by this, Cheng et al. [93] introduced Cu2+ into CS to form a
metal-ligand coordination bond, and mixed it with GO solution to prepare a rGO/CS/Cu2+

composite film, as shown in Figure 11b. The tensile strength and electrical conductivity of
the rGO/CS/Cu2+ composite film reached 868.6 MPa and 234.8 ± 14.4 S cm−1, respectively.
The binding force between Cr3+ and oxygen-containing functional groups is stronger than
other alkaline earth-metal ions [96]. Wang et al. [97] described a new continuous bridging
strategy in which GO nanosheets were first bridged by Cr3+ and rGO was then π-π bonded
through PSE-AP to obtain a SBG composite film (Figure 11c). The SBG film exhibited
an excellent tensile strength of 821.2 MPa, a toughness of 20.2 MJ m−3, and an electrical
conductivity of 415.8 S cm−1, which are 4.0, 7.5, and 1.9 times higher than that of rGO,
respectively.
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4. Applications

With the continuous increase of energy consumption, the development of renew-
able energy has become one of the most important topics. The energy market urgently
needs electrochemical energy storage devices with efficient energy storage and conver-
sion capabilities [98]. The growing demand of flexible supercapacitors has aroused great
interest. Because of its high electrical conductivity, large specific surface area, and espe-
cially its strong mechanical properties, graphene-based film is considered a promising
electrode material for supercapacitors [99]. Song et al. [100] fabricated a graphene-based
film by introducing an activated-carbonized cotton fiber (ACC) to regulate the chemical
composition, surface area, and pore size distribution. They found that ACC-rGO film
exhibited an enhanced energy storage capability (capacitance of 310 F g−1 and 150 F g−1

at 0.1 A g−1 and 10 A g−1, respectively), an excellent power density of 156.5 mW cm−2,
and an energy density of 240 µWh cm−2 (Figure 12a). Li et al. [101] developed a flexible
all-solid-state supercapacitor of graphene/MoS2 film with a volumetric capacitance of
19.44 F cm−3. Moreover, it could maintain 87% of its original capacitance after 300 stretch
cycles, which exhibited excellent stretchability and stability compared with most other
supercapacitors. With the rapid development of wearable electronic devices, the demand
for flexible lithium-ion batteries is increasing. The performance of lithium-ion batteries
largely depends on electrode materials. Graphene is also considered as a suitable ma-
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trix for the formation of flexible electrodes. Zhou et al. [102] demonstrated a lamellar
graphene/nanocellulose/silicon (GN/NC/Si) film through covalent crosslinking of glu-
taraldehyde (Figure 12b). When used as an anode, GN/NC/Si film has a high reversible
capacity of 1251 mAhg−1 at 100 mAg−1 after 100 cycles and an excellent rate capability.
Moreover, the film represents robust mechanical strength and good flexibility. Further-
more, a free-standing flexibility Li4Ti5O12-rGO (LTO-rGO) film was fabricated by Zhu
et al. [103]. The LTO-rGO electrode had good electron/ion conductivity and mechanical
properties, an enlarged electrode/electrolyte contact area, and an excellent specific capacity
of 135.4 mAhg−1 at 40 C.

The greenhouse gases produced in fossil fuels have caused many environmental
problems such as abnormal climates, rising sea levels, and air pollution, which seriously
endanger the survival of human beings. Graphene-based film has a unique layered and
porous structure, so it has received extensive attention in environmental applications [104].
Among them, graphene-based film is widely used in the application of gas treatment.
A novel ZIF-8@GO film for hydrogen selectivity was reported by Huang et al. [105]
(Figure 12c). At 250 ◦C and 1 bar, the mixture separation factors of H2/CO2, H2/N2,
H2/CH4, and H2/C3H8 were 14.9, 90.5, 139.1, and 3816.6, with H2 permeances of about
1.3 × 10−7 mol·m−2·s−1·Pa−1, which is promising for hydrogen separation and purifica-
tion by molecular sieving. Furthermore, Zeynali et al. [106] also reported a graphene
oxide film for hydrogen separation. For the GO film, the H2/CO2 and H2/N2 values
were 3.83 and 16.5 (H2 permeance equal to 5.9 × 10−7 mol·m−2·s−1·Pa−1), respectively,
while these values at 473 K and 1 bar pressure gradient were 15.7 and 10.6 (H2 permeance
equal to 7.6 × 10−7 mol·m−2·s−1·Pa−1). In addition, graphene-based film also is widely
used in the application of water treatment. Grossman et al. [107] used classical molecular
dynamic simulations to explore how multilayer nanoporous graphene (NPG) might serve
as a reverse osmosis film in water desalination. Compared with single-layer film, multi-
layer NPG has a similar desalination performance, and its separation performance can be
designed by manipulating different configuration variables (Figure 12d). Graphene-based
materials have the characteristics of high specific area, high electron mobility, and low
electrical noise. In recent years, it has been widely used in sensing applications [108]. At
present, a series of sensors have been developed such as chemical sensors, bio-sensors,
and gas sensors, etc. Goldsmith et al. [109] developed a cost-effective portable graphene
biosensor for the detection of the Zika virus using highly specific immobilized monoclonal
antibodies. The percentage of capacitance change in response to antigen dose was consis-
tent with the clinical level, and the antigen detection concentration in buffer was as low
as 450 PM (Figure 12e). Furthermore, Zhang et al. [110] used a laser-induced graphene
(LIG) electrochemical sensor for detection of trans-resveratrol (TRA) molecules in red wine
and grape skin. The LIG sensor had excellent repeatability, stability, reproducibility, and
reliability. Moreover, this sensor showed a good linear response in the concentration range
of 0.2 to 50 µmol L−1, and the lower limit of detection (LOD) was 0.16 µmol L−1. Besides,
researchers have developed gas sensors. For example, Seekaew et al. [111] reported a novel
graphene-based electroluminescent (EL) gas sensor for CO2 detection at room temperature.
Compared with other graphene-based gas sensors, a graphene-based EL gas sensor can
measure the CO2 concentration through the change of EL intensity, and it can be directly
applied on a smartphone without additional hardware (Figure 12f).
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5. Conclusions and Outlook

This review summarized the research progress of graphene-based film, involving
the preparation methods, interface modification approach, and state of the art applica-
tions. Various methods such as vacuum filtration and spin coating can be used to prepare
graphene-based film. Among them, only blade coating can achieve large-scale industrial
production, but the production quantity is still limited. At the same time, the mechanical
properties of macro graphene-based film can be enhanced by constructing covalent or
non-covalent bonds at the active sites of GO. However, there are also many limitations.
Firstly, the interfacial modification method of graphene-based film is extremely complex,
costly, and uses a large amount of toxic or harmful solvents, rendering it unsuitable for
industrialization. Therefore, it is necessary to develop efficient, cheap, easy-to-operate,
and environmentally friendly preparation strategies. Secondly, the current research on the
properties of graphene-based film was mainly focused on the mechanical and electrical
properties and to a smaller extent on thermal properties. A key challenge is to simultane-
ously improve the mechanical properties and thermal conductivity of the graphene-based
film used in microelectronics devices. The interface modification methods mainly involve
some polymers and long or small-chain molecule cross-linking agents, but these cross-
linking agents will decompose under high-temperature carbonization and graphitization
conditions. At present, the general reduction method of graphene-based film in the litera-
ture is HI low-temperature reduction, but high thermal conductivity cannot be obtained.
Therefore, the needs still remain to develop graphene-based film with both high mechanical
properties and thermal conductivity simultaneously.

With the continuous expansion of the heat dissipation market for radio-base stations,
power modules, and terminal electronics products in the 5G era, graphene dissipation film
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made of graphene oxide as a raw material through the coating, drying, heat treatment,
calendaring, and cutting processes becomes a common choice for many manufacturers.
After the first application of graphene film in the Huawei Mate20X, the first domestic 5G
tablet Huawei MatePadPro5G was equipped with an ultra-thick 3D graphene film with
400 µm. Furthermore, Redmi K40, vivo Z6, and Oppo Reno 3 also used graphene film for
heat dissipation. At the same time, iPhone and Samsung also accelerated the application
of graphene dissipation technology in terminals. In recent years, companies that produce
graphene dissipation film such as Changzhou Fuxi Ltd., Shenrui Moxi Ltd., and Yuntian
Morui Ltd., among others, have emerged in China. Their products have entered the supply
chain system of mobile manufacturers. However, some of them still suffer from limited
production capacity. Therefore, it is important to realize the green, large-scale, stable,
and high-quality industrial production of high-performance graphene-based film to meet
the needs of the development of large power dissipation needs in 5G, Opto, LED, IGBT,
and other applications. The graphene industry has great prospects and growth potential.
However, as an emerging industry, the graphene industry needs more development. Only
through major-breakthroughs in many technical contexts can it bring disruptive changes.
We are looking forward to that day.
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