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Abstract: The development of high thermally conductive polymer composites with low filler content
remains challenging in the field of thermal interface materials (TIMs). Herein, we fabricated a series
of flexible fiber membranes (TMMFM) with high thermally conductive based on thermoplastic
polyurethane (TPU) and acidified multiwalled carbon nanotubes (a-MWCNTs) via electrospinning
and ultrasonic anchoring method. The SEM and TEM results demonstrated that the a-MWCNTs
aligned along the fiber orientation in the membrane and anchored on the membrane surface strongly,
which can establish the heat conduction path both in the horizontal and vertical directions. With the
incorporation of 10 wt% a-MWCNTs, the horizontal direction (λ‖) and vertical direction (λ⊥) thermal
conductivity value of TMMFM-5 was 3.60 W/mK and 1.79 W/mK, respectively, being 18 times and
10 times higher compared to pure TPU fiber membranes. Furthermore, the TMMFM maintained
favorable flexibility of the TPU matrix because the small amount of a-MWCNTs only slightly hinders
the mobility of the TPU molecular chain. The performance of the obtained TMMFM unveils their
potential as a promising choice of flexible TIMs.

Keywords: multiwalled carbon nanotubes; electrospinning; flexible fiber membrane; thermal
conductivity

1. Introduction

Thermoplastic polyurethane (TPU) is widely used in the electronic industry owing to
its outstanding chemical resistance, excellent flexibility, elasticity and processability [1–4].
Therefore, TPU has great application potential in thermal interface materials (TIMs), which
play a crucial role in efficient thermal management [5–9]. However, the intrinsic low
thermal conductivity (λ) of TPU (~0.2 W/mK [10]) has restricted its further application
in TIMs. In order to improve the polymer’s thermal transport property, incorporating it
with inorganic high thermally conductive fillers is considered one of the most effective
methods [11–14].

Due to the high thermal conductivity (~3000 W/mK [15]), thermal stability, elastic
modulus and aspect ratio of one-dimensional carbon nanotubes (CNTs), they are broadly
used as thermally conductive filler to improve the thermal conductivity of polymer matri-
ces [16,17]. Zhu et al. [18] reported that the λ value increased by 71.7% in geopolymer-based
composites when 5 vol% SiO2-CNTs was added. Bustero et al. [19] introduced 5 wt% CNTs
into an epoxy resin matrix, and the λ value increased by 340% compared to that of pure
epoxy resin. However, the reported λ values of CNT-based composites remain below
expectations. This might be ascribed to the aggregation and disorientation of CNTs, which
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largely attenuate thermal conductivity in a certain direction [20,21]. Moreover, improve-
ment in thermal conductivity was often limited due to phonon scattering when heat passed
through the interface. Therefore, building a continuous thermally conductive highway in
composites to reinforce the heat conduction capacity remains challenging, especially with
low filler content.

Compared with common methods (CVD, cross-linking, ice-templated method, etc.),
the electrospinning technique is a common and facile method for preparing oriented
polymers and nanofibers [22–26]. Gu et al. [27] prepared thermally conductive boron
nitride/polyimide (BN/PI) composites by electrospinning and hot-pressing technology.
When the content of BN amounted to 30 wt%, the λ value increased from 0.174 W/mK
to 0.696 W/mK. Dong et al. [28] fabricated polyacrylonitrile (PAN) by incorporating it
with 2 wt% multiwalled CNTs (MWCNTs) via electrospinning, and the λ value increased
by about 134% in PAN-based composites. Based on the above work, it is established
that the electrospinning technique is beneficial to the directional arrangement of fillers in
nanofibers, which will help to enhance in-plane heat conduction. However, out-of-plane
heat conduction is limited. Furthermore, the above studies fail to accomplish significant
improvement in the thermal conductivity of composites at low filler content. Hence, it
is difficult to achieve high thermal conductivity of composites under low CNT content
only with electrospinning technology, especially out-of-plane high thermal conductivity.
It is worth noting that Guan et al. [29] obtained electrospun polyamide (PA 66) nanofiber
bundles with increased mechanical property and conductivity by absorbing MWCNTs on
the surface. This research testifies that absorbing filler on the surface of electrospinning
fiber can greatly upgrade its performance.

Inspired by Guan’s work, herein, we studied the incorporation of a facile electrospin-
ning technique with the ultrasonic anchoring method to fabricate thermally conductive and
flexible fiber membranes based on a-MWCNTs and TPU, which greatly improved the heat
conduction path both in the horizontal and vertical directions. Under the action of electro-
spinning, a-MWNCTs were distributed along the axial direction inside TPU fibers, resulting
in an increase in the thermal conductivity of TMMFM in the horizontal direction. With the
dual synergy of ultrasonication and intermolecular hydrogen bonding, a-MWNCTs could
be evenly anchored on the surface of TPU fibers, which promoted the thermal conductivity
of TMMFM in the vertical direction at a-MWCNT low loading. In addition, TMMFM could
maintain its flexibility because the small amount of a-MWCNTs only slightly hindered the
mobility of the TPU molecular chain. We believe that this methodology may be favored
in guiding the future design of flexible fiber membrane composites with high thermal
conductivity.

2. Experimental Methods
2.1. Materials

The MWCNTs (average length = 3–15 µm, average diameter = 10–20 nm) were
purchased from Nanjing Xianfeng Nano Material Technology Co., Ltd. Thermoplastic
polyurethane (TPU) (Elastollan 1185A) with a density of 1.12 g/cm3 and a melt flow index
of 17.5 g/10 min (215 ◦C, 10 kg) was supplied by BASF Co., Ltd. Sulfuric acid (H2SO4, 98%),
nitric acid (HNO3, 70%), acetone and N, N-dimethylformamide (DMF) were purchased
from Guangzhou Chemical Co., Ltd. All materials were used as received without any
further purification.

2.2. Synthesis of Acidified MWCNTs (a-MWCNTs)

First, 1 g of MWCNTs was added to a 100 mL mixed solution of sulfuric acid and nitric
acid (volumetric ratio = 3:1) and stirred at 80 ◦C for 8 h. The mixture was then repeatedly
centrifuged and washed with deionized water until the pH was close to 7. Finally, the
suspension was filtered with a cellulose acetate membrane with a diameter of 0.45 µm and
dried in a 40 ◦C oven for 12 h to obtain a-MWCNTs.
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2.3. Fabrication of a-MWCNTs@TPU-a-MWCNTs Fiber Membranes (TMMFM)

The TPU matrix was first dissolved in the solvent DMF, and a-MWCNTs fillers
(mTPU/ma-MWCNTs = 19:1) were added and dispersed by mechanical stirring for 6 h
to obtain the corresponding electrospinning solution. The prepared electrospinning so-
lution was loaded into a plastic syringe and fed through a metallic nozzle at a feed rate
of 1 mL/h. The applied voltage was 15 kV, the temperature was 25 ◦C and the distance
between the metallic needle and the rotating drum was 15 cm. The a-MWCNTs@TPU
fiber membranes were collected on aluminum foil, which was attached to the rotating
drum. Afterward, a-MWCNTs@TPU fiber membranes were immersed in the a-MWCNTs
dispersion (0.5 mg/mL) and ultrasonicated for 1 min, 5 min and 10 min, respectively,
then dried in a 50 ◦C oven for 24 h to obtain a-MWCNTs@TPU-a-MWCNTs fiber mem-
branes with additional content of approximately 1 wt%, 3 wt% and 5 wt% a-MWCNT,
respectively. For comparison, TPU fiber membranes were prepared according to the same
method. For convenience, TPU, a-MWCNTs@TPU and three different a-MWCNTs loading
a-MWCNTs@TPU-a-MWCNTs fiber membranes were denoted as TFM, TMFM, TMMFM-1,
TMMFM-3 and TMMFM-5, respectively. The detailed constitution of fiber membranes is
listed in Table 1, and the preparation process of TMMFM is presented in Figure 1.

Table 1. Constituents of composite membranes.

Sample TFM TMFM TMMFM-1 TMMFM-3 TMMFM-5

TPU, wt% 100 95 94 92 90
a-MWCNTs, wt% 0 5 6 8 10
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Figure 1. Schematic diagram of preparation of TMMFM.

2.4. Characterization

Fourier transform infrared (FTIR) spectra measurements were performed with a
resolution of 4 cm−1 and a range from 500 to 4000 cm−1 (Thermo Fisher Nicolet 6700,
Waltham, MA, USA). The morphologies of MWCNTs, a-MWCNTs and fiber membranes
were examined using a scanning electron microscope (SEM, Phenom-World ProX, Eind-
hoven, Netherlands) and a transmission electron microscope (TEM, HITACHI HT7700,
Tokyo, Japan). MWCNTs and a-MWCNTs were configured as nearly clear and transparent
dispersion in the TEM sample preparation process to avoid any unfavorable factors. Elec-
trospun nanofibers were directly deposited onto a copper grid for a few seconds during
electrospinning for TEM observation. The mechanical properties of fiber membranes were
determined using a tensile strength machine with a 500 N load cell (SUST CMT-2202,
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Zhuhai, China) with a constant rate of 10 mm/min. Rectangular strips with dimensions
of 60 × 10 × 0.25 mm3 were cut off from the fiber membranes for the mechanical perfor-
mance test. The rectangular samples were fixed by two insulating jigs of the universal
tensile testing machine, and the gage length was 20 mm. Differential scanning calorimetry
(DSC) analyses of the specimens were performed at 10 ◦C/min (nitrogen atmosphere) over
the temperature range of −50 ◦C to 40 ◦C using DSC3 (METTLER, Zurich, Switzerland).
The thermal diffusivity of the samples was measured using an LFA 467 light flash system
(NETZSCH, Selbu, Germany) at 25 ◦C. The dimensions of the samples for the cross-plane
thermal diffusivity test were 100 × 100 × 0.25 mm3, and for the in-plane thermal diffusiv-
ity test were 254 mm in diameter and 0.25 mm in thickness. All specimens were coated
with a thin layer of fine graphite powder on both sides to ensure that the samples were
covered tightly without light leakage and uniform heat transfer. Thermal conductivity (λ)
was calculated from the formula:

λ = α× ρ× CP

where α is the thermal diffusivity of the samples; ρ is the density of the samples, which is cal-
culated by the weight and volume of the samples with dimensions of 100 × 100 × 0.25 mm3;
and CP is the specific heat capacity, which is obtained by DSC. The thermal images and
the temperature of the samples were captured by an infrared camera (MAGNITY MAG12-
111703, Shanghai, China) during the test. Three samples were prepared for each sample to
test for all the methods.

3. Results and Discussions
3.1. Morphology

Figure 2 presents the morphologies of MWCNTs, a-MWCNTs, TFM, TMFM and
TMMFM-5. It can be seen from Figure 2a that the winding between MWCNTs is very
serious, owing to the large aspect ratio of MWCNTs and relatively strong van der Waals
force between the tubes. After surface modification, the winding phenomenon of MWCNTs
was greatly improved, as shown in Figure 2b. Figure 2b also confirms that a-MWCNTs are
well dispersed compared to MWCNTs. Moreover, as shown in Figure S1, after acidification,
the peaks of C=O stretching and −OH bending of MWCNTs at 3430 and 1627 cm−1 are
significantly enhanced. All the results indicate that the surfaces of a-MWCNTs are rich
in −OH and −COOH functional groups. As evidenced by the SEM image presented in
Figure 2d, TPU fibers are randomly distributed with a smooth surface. However, the
surface of TMFM becomes sharply rough, as shown by the red arrows in Figure 2e, with the
loading of a-MWCNTs. The TEM of TMFM indicates that the protrusion of fiber is mainly
ascribed to the bending and winding of the intrinsic structure of a-MWCNTs (represented
by blue arrows in Figure 2c). Additionally, a-MWCNTs have a certain orientation in TPU
fibers with uniform distribution and no apparent agglomeration (see yellow arrows in
Figure 2c). In Figure 2f, the nanofiber is densely decorated by a-MWCNTs to form a
hierarchical micronanostructure. It is worth noting that a-MWCNTs are homogeneously
covered on the surface of nanofibers under the action of ultrasound, avoiding a-MWCNTs
aggregation on the nanofiber surface. Furthermore, a-MWCNTs were firmly anchored on
the surface of TPU fibers. The reasons are as follows: (1) under the action of ultrasonication,
the a-MWCNTs collide with the fibers at high speed and remain on the fibers. (2) With
strong intermolecular hydrogen bonding between a-MWNCTs and TPU, a-MWNCTs can
be strongly anchored on the surface of TPU fibers.
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TMMFM-5 (f).

3.2. Thermal Stability

TGA and DSC curves of TFM, TMFM and TMMFM are shown in Figure 3a,b, and the
corresponding characteristic thermal data are presented in Table 2. As shown in Table 2,
both the onset degradation temperature (T5: 5 wt% degradation) and the maximum weight
loss rate temperature (Tmax) of TMFM are higher than that of TFM. Furthermore, the glass
transition temperature (Tg) value TMFM enhances from −31.9 ◦C to −23.1 ◦C. Clearly, the
temperature increase of T5, Tmax and Tg is related to the addition of MWCNTs. The existence
of a small amount of a-MWCNTs might restrict the movement of the TPU molecular chains,
promoting the thermal stability and rigidity of fiber membranes. On the other hand, the
TPU molecular chains can be oriented during the electrospinning process, which also
contributes to the increase in thermal stability and rigidity of all the fiber membranes.
However, compared to that of TMFM, the T5 and Tmax values of TMMFM-1, TMMFM-3
and TMMFM-5 slightly decrease to 317.2 ◦C, 405.1 ◦C, 297.9 ◦C, 397.4 ◦C and 297.1 ◦C,
394.6 ◦C, respectively, and the corresponding Tg value decreases to −24.6 ◦C, −26.6 ◦C
and −27.4 ◦C, respectively. The results indicate the thermal stability of TMMFM is slightly
degraded after anchoring a-MWCNTs onto the surface of TPU fibers. The slightly decreased
thermal stability performance may be associated with the high thermal conductivity of
MWCNTs (~3000 W/mK [30]). With the action of ultrasonication, the surface of TPU fibers
is covered and anchored by a-MWCNTs (shown in Figure 2f). Therefore, with the increase
in thermal conductivity, heat can be efficiently transferred in the fibers, which accelerates
the decomposition of TMMFM. As for the slightly decreased Tg value of the TMMFM, it
may be also related to the surface of fibers. After the a-MWCNTs anchored on the surface
of TMFM, the oriented TPU molecular chains may be slightly damaged, leading to easy
relaxation for the molecular segment [31,32].
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Figure 3. TGA (a) and DSC (b) curves of TFM, TMFM and TMMFM.

Table 2. Thermal characteristics of TFM, TMFM and TMMFM.

Sample T5 (◦C) Tmax (◦C) Tg (◦C)

TFM 309.0 394.2 −31.9
TMFM 321.4 412.8 −23.1

TMMFM-1 317.2 405.1 −24.6
TMMFM-3 297.9 397.4 −26.6
TMMFM-5 297.1 394.6 −27.4

3.3. Mechanical Property

To investigate the influence of the decoration of a-MWNCTs on mechanical properties,
monotonic tensile tests of TFM, TMFM and TMMFM were carried out at a tensile rate
of 10 mm/min. Figure 4a presents the typical stress–strain curves of TFM, TMFM and
TMMFM. It is noteworthy that TMFM and TMMFM display an obvious decline in elonga-
tion at break compared to that of TFM, but the elongation at break for TMFM and TMMFM
remains about 350%. Moreover, TFM and TMMFM can be easily rolled into a coil-like
shape, as shown in Figure 4c, indicating that the flexibility of TMMFM can be maintained.
The main chain structure of TPU plays a decisive role in the flexibility of polymer chains.
A small amount of a-MWCNTs only slightly hinders the rotation of the TPU molecular
chain, so TMMFM can maintain the intrinsic flexibility of the TPU matrix. Compared to
TFM, the tensile strength of TMFM and TMMFM increased, especially the tensile strength
of TMFM, which increased from 5.3 ± 0.7 MPa for TFM to 7.7 ± 0.8 MPa. It is reported that
the inorganic fillers can act as a nucleating agent in the crystallization process of polymer
composites to improve their crystallinity [33]. Therefore, the increasing tensile strength
of the TMFM and TMMFM composites is denoted from the inorganic filler MWCNTs
material. In addition to the reasons described above, a schematic diagram of the fracture
process of TMFM is shown in Figure 4b, and the other reasons for the reinforcement of
composites tensile strength are as follows [34]: (1) The orientation arrangement and slip
of MWCNTs at the fracture site require additional energy. (2) The more evenly dispersed
MWCNTs are in TPU, the lower the probability of stress concentration is, making the
distribution of cracked area more homogeneous. (3) The surface of MWCNTs (with the
adhesion promoting COOH groups) improves CNT-TPU adhesion via hydrogen bonding
interaction, which then, together with the good mechanical strength of CNTs, is reflected
as the good strength of the composites.



Nanomaterials 2021, 11, 2504 7 of 12
Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 4. (a) Representative stress–strain curves of TFM, TMFM and TMMFM. (b) Schematic. diagram of the fracture 
process of TMFM. (A) Notches form as a result of tensile force, (B) notches are stretched at the crazing area, (C) crazing 
extends across the fibers with CNTs well aligned and (D) crazing fibers are broken. CNTs reinforce the fiber by pull-out 
from the TPU matrix. (c) Digital images of TFM and TMMFM. 

The hydrogen bonding that enhanced interfacial compatibility between TPU and 
MWCNTs was explored via FTIR, as shown in Figure 5. In the FTIR spectrum of TFM, the 
peak at 3321 cm−1 is the characteristic N-H stretching band of urethanes, and the peak at 
2937 cm−1 is the adsorption peak of C-H stretching vibrations. The two strong vibrations 
at around 1729 cm−1 and 1596 cm−1 belong to -H-N-COO-. Moreover, the peaks at 1529 
cm−1 and 1076 cm−1 belong to N-H bending and C-O-C bands, respectively. After introduc-
ing a-MWCNTs into TPU fibers, the absorption peak at 3321 cm−1, 2937 cm−1, 1729 cm−1, 
1529 cm−1 and 1076 cm−1 shifted to 3315 cm−1, 2935 cm−1, 1728 cm−1, 1526 cm−1 and 1073 cm−1, 
respectively [31,32,35]. Such changes indicated that there was hydrogen bonding interac-
tion between TPU molecular chains and a-MWCNTs. It is notable that the as-discussed 
hydrogen bonding interaction not only contributed to the tensile strength of TPU compo-
site fiber membranes but also contributed to form a heat conduction pathway to promote 
the thermal conductivity performance. 

 
Figure 5. FTIR spectra of TFM and TMFM. 

Figure 4. (a) Representative stress–strain curves of TFM, TMFM and TMMFM. (b) Schematic. diagram of the fracture
process of TMFM. (A) Notches form as a result of tensile force, (B) notches are stretched at the crazing area, (C) crazing
extends across the fibers with CNTs well aligned and (D) crazing fibers are broken. CNTs reinforce the fiber by pull-out
from the TPU matrix. (c) Digital images of TFM and TMMFM.

The hydrogen bonding that enhanced interfacial compatibility between TPU and
MWCNTs was explored via FTIR, as shown in Figure 5. In the FTIR spectrum of TFM, the
peak at 3321 cm−1 is the characteristic N-H stretching band of urethanes, and the peak at
2937 cm−1 is the adsorption peak of C-H stretching vibrations. The two strong vibrations at
around 1729 cm−1 and 1596 cm−1 belong to -H-N-COO-. Moreover, the peaks at 1529 cm−1

and 1076 cm−1 belong to N-H bending and C-O-C bands, respectively. After introducing
a-MWCNTs into TPU fibers, the absorption peak at 3321 cm−1, 2937 cm−1, 1729 cm−1,
1529 cm−1 and 1076 cm−1 shifted to 3315 cm−1, 2935 cm−1, 1728 cm−1, 1526 cm−1 and
1073 cm−1, respectively [31,32,35]. Such changes indicated that there was hydrogen bond-
ing interaction between TPU molecular chains and a-MWCNTs. It is notable that the
as-discussed hydrogen bonding interaction not only contributed to the tensile strength of
TPU composite fiber membranes but also contributed to form a heat conduction pathway
to promote the thermal conductivity performance.
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3.4. Thermal Conductivity

To explore the correlation between the structure of the TMMFM network and the
λ of the composites, the cross-plane (λ⊥) and in-plane (λ‖) thermal conductivity were
studied. As can be seen in Figure 6a,b, with the mass fraction of a-MWCNTs increasing,
the α and λ values of the composites increase greatly. In particular, the λ⊥ and λ‖ values of
TMMFM-5 are significantly improved to 1.79 W/mK and 3.6 W/mK, about 13 and 18 times
higher than that of TFM (λ⊥ of 0.18 W/mK and λ‖ of 0.2 W/mK), respectively. In order
to reflect the excellent thermal conduction enhancement of MWCNTs, in this study, some
previously reported CNT-based film-like composites are summarized in Figure 7 and
Table S1 [19,28,36–39]. Among these studies, Jang et al. [39] reported that the λ value of
MWCNT/PA6 increased by 232% when 10 wt% MWCNTs were introduced. Obviously,
in our work, the enhancement of thermal conductivity for TMMFM-5 (with 10 wt% a-
MWCNTs loading) is significant in comparison with similar research.
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The schematic diagram of the heat conduction route of TMMFM is depicted in Figure 8.
The strong hydrogen bonding interaction between a-MWCNTs and TPU and electrospin-
ning favored a-MWCNTs oriented in TPU fibers in the horizontal direction. In addition,
hydrogen bonding interaction effectively improved interfacial compatibility and reduced
interfacial thermal barriers between a-MWCNTs and the TPU matrix. Consequently, the
high orientation of a-MWCNTs and hydrogen bonding interaction between a-MWCNTs
and TPU accelerated phonon transmission, resulting in enhancement of the λ value of the
composites. Furthermore, with a-MWCNTs anchored onto the surface of TPU fibers by
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ultrasonic anchoring technology, a-MWCNTs interconnected to form more efficient heat
conduction pathways in the vertical direction. The combination of these strategies greatly
promoted the heat dissipation capacity of TPU fiber membranes.
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Figure 8. Thermal conductivity mechanical schematic diagram of TMMFM.

In order to further study the heat transfer performance of the composites, we placed
the fiber membranes on a heating plate with constant temperature (70 ◦C) and recorded
their surface temperature at different times by infrared thermal imaging instrument.
Figure 9a,b shows the corresponding infrared thermal images and experimental results
of fiber membranes. In Figure 9b, with the increase in a-MWCNTs loading anchored on
the surface of TPU fibers, the surface temperature of TMMFM increased faster, indicating
higher thermal conductivity and better heat transfer capability of the composites. Further-
more, the temperature distribution on the surface of each specimen is even (see Figure 9a),
which verifies that a-MWCNTs maintains a uniform dispersion on the macro level.
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4. Conclusions

In summary, flexible and high thermal conductive TMMFM were prepared by incor-
porating electrospinning with ultrasonic anchoring technology. With the electrospinning
process, a-MWNCTs were distributed inside the TPU fiber along the axial direction, thereby
reducing the heat transfer resistance and increasing the λ‖ value of TMMFM. Through the
dual synergistic effect of ultrasonication and intermolecular hydrogen bonds, a-MWNCTs
could be uniformly anchored on the surface of TPU fibers, which increased the λ⊥ value of
TMMFM under low loading of a-MWCNTs. With the incorporation of 10 wt% a-MWCNTs,
the λ‖ and λ⊥ values of TMMFM-5 were 3.60 W/mK and 1.79 W/mK, respectively, being
18 times and 10 times higher compared to pure TPU fiber membranes. Furthermore, the
TMMFM maintained favorable flexibility of the TPU matrix because a small amount of
a-MWCNTs only slightly hindered the mobility of the TPU molecular chain. The above-
mentioned results unveil the potential for the obtained TMMFM as a promising choice for
use in flexible TIMs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11102504/s1, Figure S1: FTIR spectra of MWCNTs and a-MWCNTs, Table S1: A
comparison of the enhancement of thermal conductivity for CNTs-based film-like composites.
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