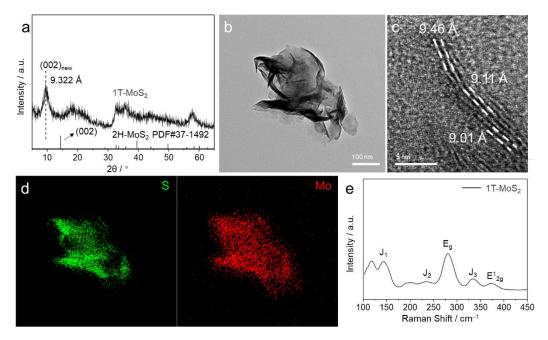


Supplementary Materials

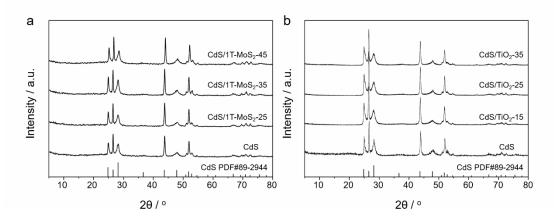
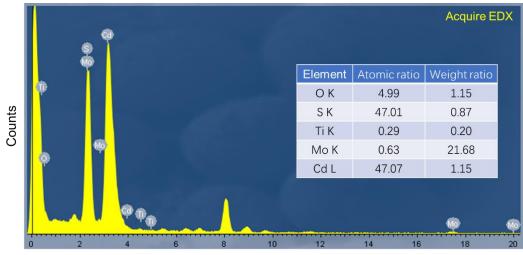

Rationally Designed CdS-Based Ternary Heterojunctions: A Case of 1T-MoS₂ in CdS/TiO₂ Photocatalyst

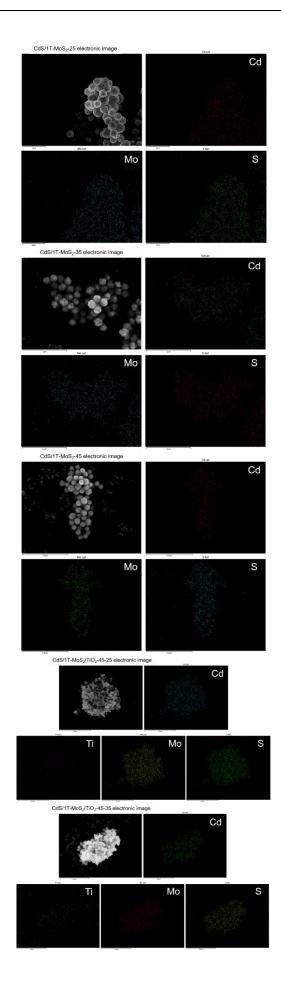
Wenqian Chen ^{1,3,*,†}, Shaomei Zhang ^{1,2,†}, Ganyu Wang ^{1,2}, Gang Huang ⁴, Zhichong Yu ^{1,2}, Yirui Li ^{1,2} and Liang Tang ^{1,2,*}

- ¹ Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, China
- ² School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; shaomeizhang@shu.edu.cn (S.Z.); wgy@shu.edu.cn (G.W.); zhichongyu@shu.edu.cn (Z.Y.); yiruili@shu.edu.cn (Y.L.)
- ³ Shanghai Institute of Applied Radiation, Shanghai University, 20 Chengzhong Road, Shanghai 201800, China
- ⁴ Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; gang.huang@kaust.edu.sa
- * Correspondence: wenqianchen@shu.edu.cn (W.C.); tang1liang@shu.edu.cn (L.T.)
- + Equal contribution.

Figure S1. (a) XRD pattern and (b) SEM image of the pure CdS nanoparticles, (c) XRD pattern and (d) SEM image of the TiO₂ nanosheets.

Figure S2. (a) XRD pattern, (b) TEM image, (c) HRTEM image, (d) EDS element mapping images of S, Mo, and (e) Raman spectra of 1T-MoS₂ nanosheets. Different with 2H phase (JCPDS card No. 37-1492), 002 peak of 1T phase shifted to a low angle of 9.48° (this is corresponding to an interlayer distance of 9.32 Å), and the second-order diffraction peak of 18.31° occurred simultaneously [1]. The d-spacing difference of 002 peak between the 2H and 1T phase is 3.17 Å, which is due to the intercalation of NH₄+ between MoS₂ layers [2]. HRTEM shown the 1T-MoS₂ nanocrystals were composed of 3–6 layers, with the maximum interval of 9.46 Å, consistent with the XRD results. TEM mapping revealed the uniform distribution of Mo, S elements in the 1T-MoS₂ nanosheet. These results represent the successful synthesis of 1T-MoS₂.


Figure S3. XRD patterns of binary heterojunctions $CdS/1T-MoS_2$ (a) and CdS/TiO_2 (b).

Energy / KeV

Figure S4. EDS spectrum of CdS/1T-MoS₂/TiO₂-45-15 heterojunctions.

CdS/TiO2-15 electronic image	Cit test
	Cd
T	S
CdS/TiO ₂ -25 electronic image	Cd Lat
	Cd
Ti tat2	S Kat
T	S
CdS/TIO ₂ -35 electronic image	Cd
Tild2	5 Kot

Figure S5. SEM-EDS image of CdS/ TiO₂, CdS/1T-MoS₂ and CdS/1T-MoS₂/TiO₂. EDS element mapping shows the existence of Cd, S, Mo, Ti and their uniform distribution in the composites.

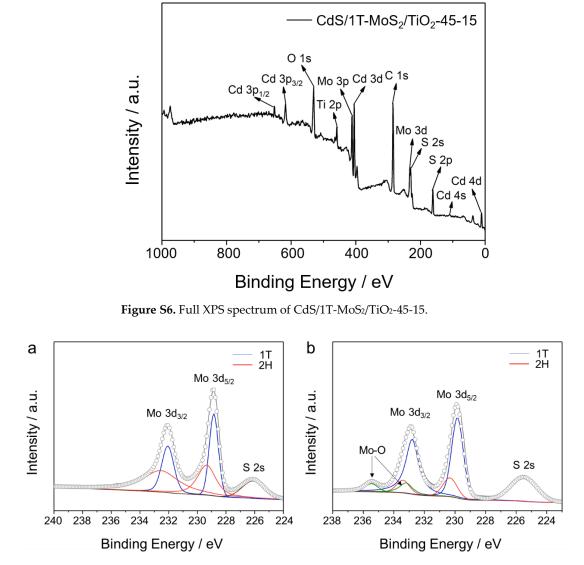
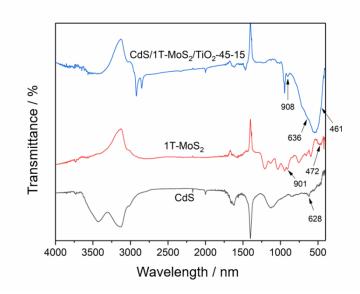



Figure S7. Deconvolutions of Mo 3d XPS analyses of $1T-MoS_2$ (a) and CdS/ $1T-MoS_2/TiO_2-45-15$ (b) samples.

Figure S8. FTIR of pure CdS, 1T-MoS₂ and CdS/1T-MoS₂/TiO₂-45-15 nanocomposites. The IR characteristic peak of CdS at 628 cm⁻¹ is attributed to the stretching frequency of the Cd-S bond [3]. The peak around 472 cm⁻¹ was associated with Mo-S and the peaks at 901 cm⁻¹ were assigned to Mo-O vibrations of 1T-MoS₂[4]. For CdS/1T-MoS₂/TiO₂-45-15, the corresponding Mo-S and Cd-S peaks were blue shifted. The characteristic peak at 461 cm⁻¹ is in accordance with the presence of Ti-O bond [5]. The Raman spectra (Figure 3a) also indicated that there are three the above-mentioned components in our composite.

Figure S9. (a) Nitrogen sorption isotherms and (b) corresponding pore size distribution curves of CdS and CdS/1T-MoS₂/TiO₂-45-15. N₂ adsorption-desorption isotherms of CdS and CdS/1T-MoS₂/TiO₂ demonstrate a typical type-IV curve, indicating a mesoporous structure of the composite. Brunauer-Emmett-Teller surface area and pore size of CdS nanoparticles are calculated to be \approx 2.85 m² g⁻¹ and 26.78 nm, respectively, which are smaller than that of CdS/1T-MoS₂/TiO₂ heterojunction (\approx 12.31 m² g⁻¹ and 31.43 nm, respectively), revealing the successful loading of 1T-MoS₂ and TiO₂ on the mesoporous CdS.

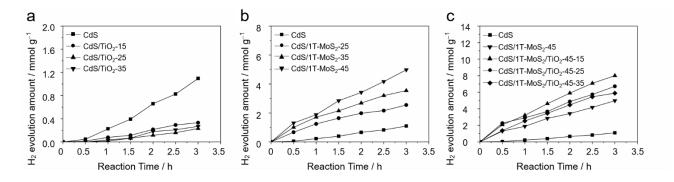


Figure S10. Total amount of photocatalytic hydrogen production in 3h of (a) CdS/TiO₂, (b) CdS/1T-MoS₂, and (c) CdS/1T-MoS₂/TiO₂.

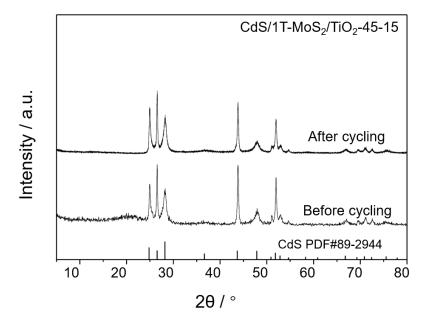


Figure S11. XRD pattern after hydrogen production cycle of CdS/1T-MoS₂/TiO₂-45-15.

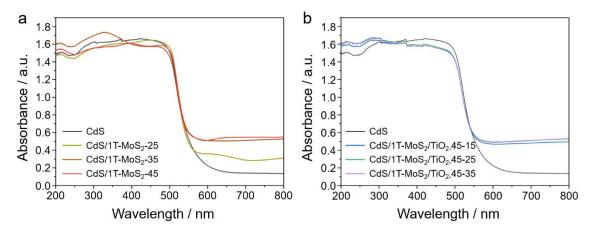
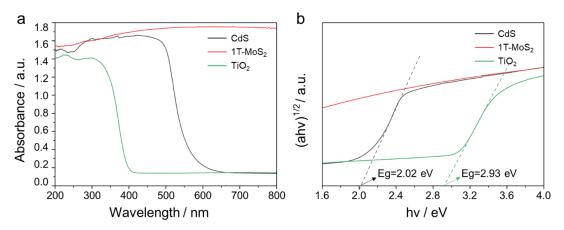



Figure S12. UV-vis diffuse reflectance spectra (DRS) of (a) binary CdS/1T-MoS₂ and (b) ternary CdS/1T-MoS₂/TiO₂.

Figure S13. (a) UV-vis diffuse reflectance spectra (DRS) and (b) The plot of $(\alpha hv)^{1/2}$ vs photo energy (*hv*) of CdS, 1T-MoS₂ and TiO₂.

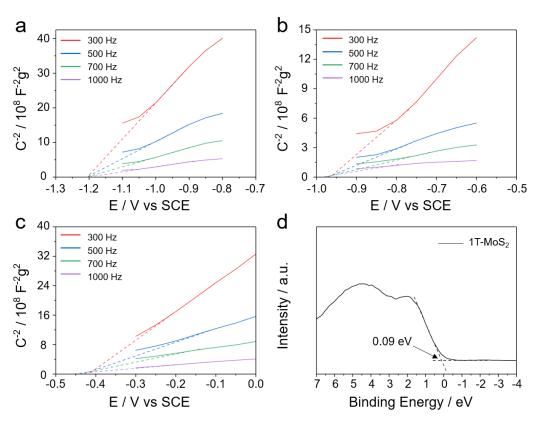


Figure S14. Mott-Schottky plots at different frequencies of (a) CdS, (b) TiO₂, and (c) 1T-MoS₂. (d) XPS-VB spectra of 1T-MoS₂.

Reference

- 1. M.Wu.; J.Zhan.; K.Wu.; Z.Li.; L.Wang.; B.Geng.; L.Wang.; D.Pan.; J. Mater. Chem. A 2017, 5 14061–14069.
- 2. A.Anto.Jeffery.; C.Nethravathi.; M.Rajamathi.; J. Phys. Chem. C 2014, 118, 1386–1396.
- 3. L. Zhang.; X. Li.; Z. Mu.; J. Miao.; K. Wang.; R. Zhang.; S. Chen.; RSC Advances 2018, 8, 30747–30754.
- 4. J. Panda.; B. Tudu.; AIP Conference Proceedings 2018, 1953, 030127.
- 5. Mahalingam, T.; Selvakumar, C.; Ranjith Kumar, E.; Venkatachalam, T. Physics Letters A 2017, 381, 1815–1819.