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Abstract: For the development of spacecraft with long-servicing life in low earth orbit (LEO), high-
temperature resistant polymer films with long-term atomic oxygen (AO) resistant features are highly
desired. The relatively poor AO resistance of standard polyimide (PI) films greatly limited their
applications in LEO spacecraft. In this work, we successfully prepared a series of novel AO resistant
PI composite films containing nanocaged polyhedral oligomeric silsesquioxane (POSS) components
in both the PI matrix and the fillers. The POSS-containing PI matrix film was prepared from a POSS-
substituted aromatic diamine, N-[(heptaisobutyl-POSS)propyl]-3,5-diaminobenzamide (DABA-POSS)
and a common aromatic diamine, 4,4′-oxydianline (ODA) and the aromatic dianhydride, pyromellitic
dianhydride (PMDA) by a two-step thermal imidization procedure. The POSS-containing filler,
trisilanolphenyl POSS (TSP-POSS) was added with the fixed proportion of 20 wt% in the final
films. Incorporation of TSP-POSS additive apparently improved the thermal stability, but decreased
the high-temperature dimensional stable nature of the PI composite films. The 5% weight loss
temperature (T5%) of POSS-PI-20 with 20 wt% of DABA-POSS is 564 ◦C, and its coefficient of
linear thermal expansion (CTE) is 81.0 × 10−6/K. The former is 16 ◦C lower and the latter was
20.0 × 10−6/K higher than those of the POSS-PI-10 film (T5% = 580 ◦C, CTE = 61.0 × 10−6/K),
respectively. POSS components endowed the PI composite films excellent AO resistance and self-
healing characteristics in AO environments. POSS-PI-30 exhibits the lowest AO erosion yield (Es) of
1.64 × 10−26 cm3/atom under AO exposure with a flux of 2.51 × 1021 atoms/cm2, which is more
than two orders of magnitude lower than the referenced PI (PMDA-ODA) film. Inert silica or silicate
passivation layers were detected on the surface of the PI composite films exposed to AO.

Keywords: polyimide film; polyhedral oligomeric silsesquioxane; atomic oxygen; thermal properties;
self-healing

1. Introduction

Research on the improvement of the atomic oxygen (AO)-resistant properties of stan-
dard polyimide (PI) films have become one of the most important topics in the development
of high-performance polymer materials for low earth orbit (LEO) spacecraft [1–3]. The stan-
dard PI films, such as poly(pyromellitic dianhydride-4,4′-oxydianiline) (PIPMDA-ODA, trade-
mark: Kapton®, Dupont, DE, USA), poly(3,3′,4,4′-biphenyltetracarboxylic dianhydride-1,4-
phenylenediamine) (PIBPDA-PDA, trademark: Upilex-S®, Ube, Japan) have been widely used
in spacecraft due to their excellent combined properties, including good thermal resistance,
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excellent radiation resistance, good mechanical properties, and so on [1]. However, they
are usually subject to AO erosion with an erosion yield at the level of 10−24 cm3/atom in
LEO space environments [4–6]. This means that the PI film designed and served as the
protecting layers for LEO spacecraft themselves might be eroded by AO exposure first,
thereby losing the protecting functions. Even if the PI films are protected by AO-resistant
surface coatings or fillers, such as silica, titania, alumina, germanium, and so on, the highly
active AO might destroy the PI film matrixes via an undercutting route [7,8].

After several decades of basic and applied studies for the AO erosion mechanisms of
standard PI films, there have been establishing some effective procedures for enhancing
the AO-resistant abilities of the PI films. These procedures can roughly be classified as the
passive and active ones. Both procedures obey the same mechanism and all achieve the AO
protection via the formation of inorganic passivation layers [9,10]. The difference lies in the
pathways achieving the purpose. The former usually provides the AO protections directly
via applying surface coatings or external fillers [11–13]. The latter usually indirectly achieve
the active protection via incorporation of specific elements, such as silicon or phosphorus,
which could in-situ form the inorganic oxides passivation layer when being exposed
in an AO environment [14–16]. Both procedures have advantages and disadvantages.
The passive procedures are usually cost-effective and can usually achieve excellent AO
protection to the PI films in short-term LEO exploration. However, the procedure usually
suffers from the AO undercutting due to the unavoidable defects in the coatings and
uniformity in the dispersion of the fillers [17,18]. The active procedures usually require the
design and development of new functional monomers, which makes them cost-sensitive.
In addition, the incorporation of new monomers might make the PI films inherent thermal
and mechanical properties deteriorate. At last, in order to form the effective passivation
layers, considerable amounts of the polymer matrix have to be consumed [19,20].

Considering the individual disadvantages for these two procedures, a combination
of the passive and active pathways was proposed in recent years. In our previous work,
the AO-resistant POSS fillers were used in combination with the AO-resistant phosphorus-
containing matrix, so that the obtained composite films had excellent AO resistance. Due
to the synergistic effect of phosphorus and silicon elements, the AO erosion yield of
the derived composite films was as low as 3.1 × 10−26 cm3/atom (Fluence: 4.0 × 1020

atoms/cm2) [21]. The lowest erosion yield was only 2.2% of that of referenced Kapton®

films. Song, et al. also reported the synergistic improvement of AO resistance of PI films
by introduction of both phosphorus and silicon elements [22]. Although the combined
procedures provided excellent AO resistance for the PI films, the compatibility between the
PI matrix and the fillers has to be addressed so as to achieve the best protective efficiency.

In recent years, polyhedral oligomeric silsesquioxane (POSS) have been paid increas-
ing attention as a promising component to enhance the AO resistant properties of the PI
films due to the great potential ability to form silicon-containing passivation layers when
reacted with AO [23]. Various POSS-substituted PI films, either in the positions of main
chain or side chain of the PI molecular chains have been reported in the literature [24–26].
In 2012, Minton and coworkers systemically reported the research and development of
main-chain POSS-substituted Kapton® PI film (MC-POSS-Kapton) and side-chain substi-
tuted one (SC-POSS-Kapton) [24]. Both POSS-containing PI films have been investigated
as high-performance AO-resistant candidates in real LEO space environments and the
results showed that it was a promising and practical pathway to enhance the AO-resistant
properties of the standard Kapton® films by combining POSS units into the PI films via
copolymerization. Especially, the SC-POSS-Kapton® film exhibited relatively lower cost
and comparable AO resistance compared with the main chain one. Thus, SC-POSS-Kapton®

showed great application future in long-term LEO exploration. In addition, POSS com-
pounds have also been used as the fillers to develop PI composite films with improved AO
resistance [27–29]. In 2016, Qian et al. reported the AO behaviors of PI films derived from
the Kapton® matrix and the trisilanolphenyl POSS (TSP-POSS) additives [27]. TSP-POSS
endowed the good AO resistance of the composite films while maintaining the inherent
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thermal and mechanical properties of the Kapton® matrix film. The AO erosion yields of
TSP-POSS/Kapton composite films are comparable to those of the MC-POSS-Kapton and
SC-POSS-Kapton films.

In our previous work, the effects of the side-chain substituted POSS units on the
optical, thermal, mechanical, and AO erosion behaviors of PI (PMDA-ODA) films were
systemically reported [30]. In the current work, the POSS units were endeavored to
incorporate into the PI (PMDA-ODA) films via the combination of copolymerization and
physical blending procedures. The copolymerization was achieved by the use of the
diamine monomer, DABA-POSS, and the blending was performed by the use of TSP-POSS
additives, whose molecular structures are shown in Figure 1. Effects of the side-chain POSS
and the external POSS components on the physical and chemical properties, especially
thermal and AO erosion behaviors were investigated in detail.
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Figure 1. Nanocaged polyhedral oligomeric silsesquioxane (POSS) units used in the current work.

2. Materials and Methods
2.1. Materials

TSP-POSS was obtained from Hybrid Plastics, Co. Ltd., (Hattiesburg, MS, USA).
DABA-POSS was prepared according to our previous work [30]. Pyromellitic dianhydride
(PMDA) and 4,4′-Oxydianline (ODA) were purchased from Tokyo Chemical Industry
(TCI) Co., Ltd., Tokyo, Japan. PMDA was treated under vacuum at 180◦ for 10 h to
remove the water absorbed prior to use, ODA was used directly. Ultra-dry solvents
with the water contents below 200 ppm, including N-methyl-2-pyrrolidinone (NMP),
N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF) were purchased from
Sinopharm Chem Reagent Co. Ltd. (Shanghai, China) without purification.

2.2. Measurements

The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of PI
composite films were obtained using a Bruker Tensor-27 FT-IR spectrometer (Ettlingen,
Germany) with the scan range of wavenumber from 4000 to 400 cm−1. The wide-angle X-
ray diffraction (XRD) patterns of PI composite films were determined with Rigaku D/max-
2500 X-ray diffractometer (Tokyo, Japan) using Cu-Kα1 radiation at room temperature
between 3 ◦C and 80 ◦C. X-ray photoelectron spectroscopy (XPS) data were measured
with ESCALab220i-XL electron spectrometer (Thermo Fisher Scientific, Waltham, MA,
USA). XPS spectra were obtained using MgKα X-ray source with a power of 300 W. The
base pressure of vacuum chamber was set at 3 × 10−9 mbar. The binding energies were
284.8 eV derived from the adventitious C1s as a reference. Field emission scanning electron
microscopy (FE-SEM) was carried out using a Technex Lab Tiny-SEM 1540 (Tokyo, Japan)
with an accelerating voltage of 15 KV for imaging. Pt/Pd was sputtered on each film before
the SEM measurements. The atomic force microscopy (AFM) images of PI composite films
were measured in tapping mode on a Bruker Multimode 8 AFM microscope (Santa Barbara,
CA, USA).

For the transparency measurements, ultraviolet-visible (UV-Vis) spectra of PI com-
posite films were recorded on a Hitachi U-3210 spectrophotometer (Tokyo, Japan) at room
temperature. PI samples were dried at 100 ◦C for 1 h to remove any absorbed moisture
prior to tests. Yellow index (YI) and haze values of the PI films (thickness: 20 µm) were
measured using an X-rite Ci7800 spectrophotometer (Grand Rapids, MI, USA).
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Thermogravimetric analysis (TGA) was performed with a Perkin-Elmer TGA4000
thermal analysis system (Waltham, MA, USA). The thermal scanning mode ranges from
50 to 750 ◦C at a heating rate of 10 K/min in nitrogen atmosphere with a gas flow of
20 mL/min. Similarly, thermo-mechanical analysis (TMA) was recorded on a TA-Q 400
thermal analysis system (New Castle, DL, USA). The thermal scanning mode ranges from
50 to 400 ◦C at a heating rate of 10 K/min in nitrogen atmosphere. The size of the film
samples was 10× 5× 0.025 mm3. The coefficients of linear thermal expansion (CTE) values
of composite films were recorded in the range of 50–200 ◦C.

The AO erosion behaviors of PI composite films were tested in a ground-based AO ef-
fect simulation facility [30]. The AO fluence was measured after exposure by the etch depth
of Kapton® reference sample, whose erosion yield (EKapton) was 3.0 × 10−24 cm3/atom.
The fluence could be calculated from the etch depth by the following Equation (1):

F =
∆HKapton

EKapton
(1)

where, F = AO fluence (atoms/cm2); ∆HKapton = erosion depth of the Kapton® reference
sample (cm); EKapton = erosion yield of Kapton® reference sample (3.0 × 10−24 cm3/atom).

According to the equation above, the fluence of AO in this experiment is calculated to
be 2.51 × 1021 atoms/cm2. In order to study the etching depth, the samples were covered
with stainless steel meshes to produce the etched and pristine areas, which were used
to measure the step height using a profilometer. The erosion yield of the sample, Es, is
calculated through the following Equation (2) [27]:

Es =
∆Hs

∆HKapton
EKapton (2)

where, Es = erosion yield of the sample (cm3/atom); ∆Hs = erosion depth of the sample (cm).

2.3. Synthesis of PAA Varnishes and Preparation of PI Composite Film

The preparation of poly(amic acid) (PAA) composite solutions was achieved by the
combination of copolymerization and physical blending of POSS-containing components,
which could be illustrated by the synthesis of POSS-PAA-30 containing 30 wt% of DABA-
POSS and 20 wt% of TSP-POSS. The experimental device is equipped with a mechanical
stirrer, an ice-cold bath, and a 500-mL three-necked round-bottom flask with nitrogen
inlet. First, ODA (15.35 g, 76.67 mmol), DABA-POSS (15.15 g, 15.02 mmol), TSP-POSS
(12.63 g) and ultra-dry DMAc solvent (182.5 g) were added into the flask. A clear solution
was obtained after stirring at 5–10 ◦C for 2 h under nitrogen flow. Then, PMDA (20.00 g,
91.69 mmol) and the additional DMAc (70.0 g) were added to the reaction mixture obtained
above. The solid content of the reaction mixture was adjusted to be 20 wt% by this
procedure. The cold bath was removed and the reaction mixture was stirred at room
temperature for another 22 h. The deep-brown viscous solution obtained was filtered
through a 0.45-µm polytetrafluoroethylene (PTFE) syringe filter. Then the prepared POSS-
PAA-30 solution was stored in a glass bottle at −18 ◦C before use.

The degassed POSS-PAA-30 solution was warmed to room temperature before use,
and then blade-coated onto a clean glass substrate. The thickness of the wet PAA films
was controlled by the height of the slit. The glass substrates were then placed in an oven
with flowing nitrogen gas. The POSS-PAA-30 was gradually thermally imidized with the
following curing procedure: 80 ◦C/3 h, 120 ◦C/1 h, 150 ◦C/1 h, 180 ◦C/1 h, 250 ◦C/1 h,
300 ◦C/1 h, and 350 ◦C/0.5 h. Then, the glass substrate was immersed in warm deionized
water to obtain the free-standing POSS-PI-30 film.

The other PAA solutions and the corresponding PI films, including POSS-PI-10, POSS-
PI-15, POSS-PI-20, and POSS-PI-25 were prepared according to a similar procedure. The
difference was the contents of DABA-POSS were different. The pristine PI (PMDA-ODA)
film was also prepared in a similar way.
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3. Results and Discussion
3.1. PI Composite Films Preparation

A serious of POSS-PAA composite varnishes were first prepared by the combination
of copolymerization and physical blending procedures according to the chemical reaction
equation shown in Figure 2 and the illustrated procedure shown in Figure 3. The detailed
synthesis formulations are listed in Table 1. The weight proportion of the TSP-POSS addi-
tives in the final PI films was controlled to be 20 wt%, while the weight proportion of the
DABA-POSS was set to from 10 wt% to 30 wt%. The selected amount of 20 wt% for the TSP-
POSS filler is based on our previous work [21], at which the excellent combined properties
for the PI composite films were obtained. DABA-POSS exhibited good polymerization
reactivity and afforded POSS-PAA solutions high viscosities, indicating the high molecular
weights of the polymers. TSP-POSS additive showed good compatibility with the PAA
matrix, as could be evidenced by the homogeneous and transparent appearance of the
obtained PAA composite solutions, in which no phase separation and gelling occurred even
being stored at −18 ◦C for several months. The corresponding PI composite films were
obtained by thermally imidized the precursors POSS-PAA from 80 to 350 ◦C in nitrogen.
The fingernail-creasable PI composite films showed good flexibility and toughness.
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Table 1. Formulation for the synthesis of POSS-PAAs.

PAA PMDA
(M = 218.12 g/mol)

ODA
(M = 200.24 g/mol)

DABA-POSS
(M = 1008.71 g/mol)

TSP-POSS
(M = 931.34 g/mol)

DMAc
(g)

POSS-PAA-10 20.00 g
(91.69 mmol)

17.53 g
(87.56 mmol)

4.17 g
(4.13 mmol) 10.43 g 208.5 g

POSS-PAA-15 20.00 g
(91.69 mmol)

17.06 g
(85.21 mmol)

6.54 g
(6.48 mmol) 10.90 g 218.0 g

POSS-PAA-20 20.00 g
(91.69 mmol)

16.55 g
(82.64 mmol)

9.14 g
(9.06 mmol) 11.42 g 228.4 g

POSS-PAA-25 20.00 g
(91.69 mmol)

15.98 g
(79.80 mmol)

11.99 g
(11.89 mmol) 11.99 g 239.9 g

POSS-PAA-30 20.00 g
(91.69 mmol)

15.35 g
(76.67 mmol)

15.15 g
(15.02 mmol) 12.63 g 252.5 g

The successful incorporation of POSS units into the composite films, on one hand
could be directly proven by the structure characterization, such as ATR-FTIR and XPS
measurements, and on the other hand could be indirectly reflected by the XRD and optical
properties evaluation. Figure 4 shows the ATR-FTIR spectra and the typical absorptions of
the POSS-PI composite films. First, the asymmetrical stretching vibration and symmetric
stretching vibration are at 1776 cm−1 and 1717 cm−1, respectively, and the stretching
vibration of C-N bonds are at 1375 cm−1. These are the characteristic absorptions of imide
rings. The characteristic absorptions of C=C bonds at 1499 cm−1 in phenyl units were
observed in all of the PI systems in the spectra. Moreover, the characteristic absorptions
of Si-O-Si in both of the DABA-POSS and the TSP-POSS were all detected at 1086 cm−1.
In addition, the peaks at 2953 cm−1 could be assigned to the absorptions of saturated
C-H bonds in isobutyl groups in DABA-POSS units. The absorptions of Si-OH in the
TSP-POSS filler at the wavenumber around 3300–3500 cm−1 were not observed in the
spectra, which are in consistence with the other PI/TSP-POSS system [31]. This might be
due to the low contents of the Si-OH units in the PI composite films.
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The XRD patterns of the POSS-PI composite film were shown in Figure 5. The sharp
reflection of the TSP-POSS compound disappeared in the spectra of the composite films,
indicating that the POSS-additives have good compatibility with the PI-matrix. This might
be due to the similarity of the chemical structures for the POSS components. In addition,
the bulky POSS units apparently decreased the crystallinity of the PI molecular chains,
thereby giving the films an amorphous property.
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The good miscibility of the additives with the DABA-POSS-PI matrix could be further
revealed by the optical characteristics of the composite films. The optical data are tabulated
in Table 2. Figures 6 and 7 present the UV-Vis spectra and the CIE Lab optical parameters
of the PI composite films, respectively. As can be seen from Figure 5 and Table 2, the PI
composite films presented similar optical transparency with the transmittance values of
61.2–73.3% at the wavelength of 550 nm and UV cutoff wavelengths (λcut) between 411 nm
and 431 nm. Incorporation of the TSP-POSS additives into the films slightly increased the
yellow indices (b*) and haze values of the composite films. Obviously, the haze values of
the PI composite films increased from 7.19% to 15.82% when the contents of DABA-POSS
increased from 10 to 30 wt% in the films. Furthermore, the haze values of the pristine
DABA-POSS-PI films and the composites films are compared in Table 2. It can be clearly
deduced from the data that addition of TSP-POSS deteriorated the haze values of the
composite films when the contents of DABA-POSS were lower than 20 wt%. However, the
PI composite films gradually exhibited lower haze values at higher DABA-POSS contents.
POSS-PI-30 with the DABA-POSS content of 30 wt% and the TSP-POSS content of 20 wt%
showed a haze value of 15.82%, which is about half of the analogous PI film without TSP-
POSS additives (haze = 31.70%). This might be attributed to the formation of continuous
POSS components in the composite films at higher loadings, which efficiently reducing the
light scattering caused by the dispersed POSS components at lower contents.

Table 2. Optical properties of POSS-PI composite films.

PI λcut
1 (nm) T550

2 (%) L* 3 a* 3 b* 3 Haze 4 (%)

POSS-PI-10 431 68.8 87.55 −6.88 83.04 7.19 (4.78)
POSS-PI-15 431 61.2 85.63 −4.02 87.99 16.63 (7.65)
POSS-PI-20 411 73.3 86.78 −5.52 82.75 11.79 (9.55)
POSS-PI-25 428 64.8 85.69 −4.08 86.26 14.15 (14.53)
POSS-PI-30 425 63.7 84.53 −2.41 87.73 15.82 (31.70)

1 Cutoff wavelength. 2 T550: Transmittance at the wavelength of 550 nm (thickness: 25 µm); 3 L*, a*, b*: color parameters calculated
according to a CIE Lab equation. L* is the lightness, where 100 means white and 0 implies black. a*: positive value means red, negative
value indicates green. b*: positive value means yellow, negative value indicates blue; 4 The data in the parentheses are the values without
TSP-POSS additives [30].
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3.2. Thermal Properties

In order to evaluate the thermal stability of the PI composite films, TGA and TMA
measurements was used, and the data obtained are summarized in Table 3. The TGA and
corresponding derivative TGA (DTG) plots of the PI films are shown in Figure 8. The
POSS-PI composite films displayed good thermal stability before 450 ◦C in nitrogen, and
then the films started decomposing and maintained nearly 60 wt% of their original weights
at 750 ◦C. The 5% weight loss temperatures (T5%) of the composite films decreased with the
increasing contents of DABA-POSS in the polymers. Basically, the T5% values of the film
decrease by 5–8 ◦C for every 5% increase of the DABA-POSS contents in the film. What’s
more, addition of TSP-POSS apparently improved the thermal decomposition temperatures
of the PI composite films. The T5% values of the composite films were about 40 ◦C higher
than those of the pristine films without TSP-POSS additives. For example, POSS-PI-30 film
showed a T5% value of 554 ◦C, which was 42 ◦C higher than that of the PI-30 film without
TSP-POSS [30]. Higher silicon contents in the PI composite films afforded much higher
char yield of the films at high temperatures. The residual weight ratios at 750 ◦C (Rw750)
values of the composite films were all higher than 70.0% in nitrogen, while the un-filled
films showed the Rw750 values below 60.0%. The increase of the thermal stability of the
composite films might be owing to the enhanced interactions and miscibility between the
TSP-POSS additives and the POSS-containing PI matrix. According to the DTG plots in
Figure 8b, the maximum decompose temperatures (Tmax) for the PI composite films were
all higher than 600 ◦C and also decreased with the increase of the DABA-POSS contents in
the composite films.
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Table 3. Thermal properties of POSS-PI composite films.

Samples T5%
1 (nm) T10%

1 (%) Rw750
1 (%) Tmax

1 (◦C) CTE (×10−6/K)

POSS-PI-10 580 (534 3) 608 (568) 70.6 (59.1) 624.6 61.0 (45.6 2)
POSS-PI-15 572 (528) 601 (528) 70.7 (58.5) 620.7 74.7 (50.4)
POSS-PI-20 564 (524) 592 (548) 71.0 (59.6) 620.4 81.0 (56.1)
POSS-PI-25 559 (519) 585 (541) 71.3 (59.9) 611.9 79.6 (55.0)
POSS-PI-30 554 (512) 579 (531) 70.7 (59.3) 602.2 ND 3

1 T5%: 5% weight loss temperature; T10%: weight loss temperature; Rw750: residual weight ratio at 750 ◦C in nitrogen; Tmax: temperature
at which the maximum thermal decomposition occurred. 2 The data in the parentheses are the values without TSP-POSS additives [30].
3 Not detected.
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In our previous work, it has been found that the introduction of side-chain-substituted
POSS units deteriorated the high-temperature dimensional stability of the derived PI films
because of the easy movement of the latent POSS groups at elevated temperatures [30]. In
the current work, the addition of TSP-POSS additives further increased the CTE values
of the derived PI composite films, which could be deduced from the TMA curves of the
films shown in Figure 9. For example, the CTE value of POSS-PI-20 film in the temperature
range of 50–200 ◦C is 81.0 × 10−6/K, which was obviously higher than the CTE of the
analogous PI film without TSP-POSS additives (CTE = 56.1 × 10−6/K). It is possible that
the TSP-POSS additive act as a “plasticizer”, which made the matrix easy to move at
elevated temperatures.
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3.3. AO Erosion Properties

The ground-simulated AO facility was used to investigate the AO erosion behaviours
of the composite films. And the experimental erosion yields (Es) of the PI films were
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tabulated in Table 4. The fluence of atomic oxygen is 2.51 × 1021 atoms/cm2. Figure 10
illustrates the Es values of the POSS-PI films together with the representative appearances
and SEM images of the POSS-PI-10 and POSS-PI-30 films after AO erosion, respectively.
It can be clearly observed that as the POSS contents in the composite films are higher, the
Es values are lower. The Es value of the POSS-PI-30 film was 1.64 × 10−26 cm3/atom,
which was nearly an order of magnitude lower than the Es value of the PI sample without
TSP-POSS filler (Es = 11.1 × 10−26 cm3/atom) and was only 0.55% of the referenced
Kapton® film (Es = 300 × 10−26 cm3/atom). The lowest Es value of the novel PI composite
films developed in the current work is more than two orders of magnitude lower than
that of the standard Kapton® film. The big difference in the Es values of these two series
of PI films is mainly due to the synergistic effects of the nanocaged POSS units in both
matrix and the additives for the newly developed PI composite films. The POSS units
effectively decreased the AO erosion of the PI composite films. In addition, AO exposure
deteriorated the optical transparency of the PI composite films, and a relatively dense
layer could be observed on the surface of the POSS-PI-30 film through SEM detection. The
surface elemental compositions of the PI composite films before and after AO exposure
were then detected by XPS. The plots were shown in Figure 11, and the corresponding
data were listed in Table 4. The elemental proportions of the silicon (Si) and oxygen (O) on
the surface of the films increased significantly after AO exposure; however, those of the
carbon (C) and nitrogen (N) decreased. By comparing the shifts of the binding energies for
the Si2p and O1s components, SiOx or silicate layers could be confirmed to form on the
surface of the AO-eroded PI samples. Undoubtedly, these inert passivation layers provided
efficient protection for the under-layer films.

Table 4. XPS results for the unexposed and exposed POSS-PI composite films.

Samples
Es

1

(10−26 cm3/atom)

Relative Atomic Concentration (%)

Unexposed Samples AO Exposed Samples

Si2p C1s O1s N1s Si2p C1s O1s N1s

POSS-PI-10 9.21 (26.0 2) 8.96 68.07 19.62 2.72 24.33 23.01 51.22 0.95
POSS-PI-15 6.06 (21.0) 4.90 74.65 16.63 2.94 23.36 27.56 47.78 0.70
POSS-PI-20 2.15 (16.9) 4.73 75.56 16.75 2.42 15.27 53.00 31.11 0.62
POSS-PI-25 1.82 (12.8) 4.94 74.93 16.81 2.87 21.33 30.77 46.20 1.45
POSS-PI-30 1.64 (11.1) 4.61 72.89 18.60 2.76 9.55 64.29 23.94 1.99

PI-ref 3 300 ND 4 ND ND ND ND ND ND ND
1 Erosion yield with the AO fluence of 2.51 × 1021 atom/cm2; 2 The data in the parentheses are the values without TSP-POSS additives
with the AO fluence of 2.16 × 1021 atom/cm2 [30]; 3 PIPMDA-ODA; 4 Not detected.
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Figure 10. AO erosion yields as a function of DABA-POSS contents for the POSS-PI composite
films (Insert: Appearance and field emission scanning electron microscopy (FE-SEM) images of
POSS-PI-10-AO and POSS-PI-30-AO exposure to 2.51 × 1021 atom/cm2 AO attack, respectively).
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Figure 11. X-ray photoelectron spectroscopy (XPS) spectra of POSS-PI composite films. (a) Before
AO exposure; (b) After AO exposure.

The formation of the passivation layers caused by AO exposure could also be verified
by inspecting the surface roughness of the AO-attacked surface of the composite films.
Figure 12 showed the AFM images of the AO-eroded POSS-PI composite films in a 2D
height scan on an area of 10 µm × 10 µm. AO exposure obviously increased the surface
roughness of the films, as indicated by the large peak-to-valley depth (Rt). Basically, the
surface roughness caused by the AO exposure decreased gradually with the increasing
contents of POSS components in the films due to the formation of compact passivation
layer. For instance, the Rt values of the composite films decreased from the initial value
of −286.3–285.2 nm of POSS-PI-10-AO to −19.0–41.2 nm of POSS-PI-30-AO. This result
indicates that the distribution of passivation layer onto the surface of the composite films
progressively became dense and compact, thus providing much efficient protection for the
underlying films and apparently reducing the AO erosion yield of the composite films.
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Figure 12. Atomic force microscopy (AFM) patterns of POSS-PI composite films after AO exposure
(Fluence: 2.51 × 1021 atom/cm2).

4. Conclusions

A series of PI composite films with POSS components in both the matrix and the fillers
were designed and synthesized. This structural design reduced the AO erosion yields of
the PI composite films. After an AO erosion with the fluence of 2.51 × 1021 atom/cm2, the
composite films exhibited the erosion yield as low as 1.64 × 10−26 cm3/atom, which was
ranked as one of the lowest values for the PI films reported in the literature. The good
miscibility and compatibility of the POSS-substituted PI matrix and the POSS-containing
additives achieved the molecular-level combination. This feature endowed composite films
good uniformity, by which the active AO protection via DABA-POSS in the matrix and the
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passive AO protection via TSP-POSS in the fillers achieved good synergistic effects. The
main disadvantage for the PI composite films might be the deteriorated high-temperature
dimensional stability due to the internal plasticization effects of the POSS components.
Fortunately, the relatively mild temperature cycle in LEO space environments might
provide some practical applications for the composite films developed in this study. It is
foreseeable that the excellent AO resistance of the POSS-containing PI composite films
might provide long-term AO protection for LEO spacecraft in the future.
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