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Abstract: A combination of calcination and hydrothermal processing was used to prepare a
g-C3N4/UiO-66-NH2/CdS photocatalyst, and the degradation of tetracycline (TC) over this material
was assessed. The photocatalytic performance of this nanocomposite was approximately 4.4 and
2.3 times those of CdS and g-C3N4, respectively, and was found to be affected by the CdS loading
amount, the pH of the reaction solution and the initial TC concentration. This catalyst also exhibited
stable performance over four consecutive reaction cycles. The highly enhanced photoactivity of the
g-C3N4/UiO-66-NH2/CdS is attributed to the introduction of CdS, which widens the range over which
the material absorbs visible light and inhibits the recombination of electron–hole pairs. The results of
this study suggest further applications for this material in the treatment of contaminated wastewater
powered by solar energy.
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1. Introduction

Environmental pollution by antibiotics is a pressing global problem. Because these compounds are
resistant to degradation, they are not effectively removed by traditional water purification treatments,
and so represent a potential threat to human health and the environment. It would, therefore,
be beneficial to develop an effective means of removing antibiotic pollutants. To date, the most
common methods of treating wastewater containing antibiotics include biodegradation [1], membrane
separation [2], adsorption [3], and photocatalysis [4]. Among these, photocatalysis has been most
widely studied because this process is both environmentally friendly and simple.

Graphitic carbon nitride (g-C3N4), a metal-free photocatalyst with a two-dimensional (2D)
structure, has the advantages of being easy to synthesize, highly stable, inexpensive, and nontoxic [5].
For these reasons, this material has been widely used in photocatalysis, including applications such
as water splitting [6], the degradation of organic compounds [7], the reduction in Cr (VI) [8], and
the conversion of CO2 [9]. Even so, because g-C3N4 exhibits minimal absorption of visible light and
poor charge transport characteristics, its photocatalysis performance is generally unsatisfactory [10].
To date, a variety of strategies for improving the performance of g-C3N4 have been developed,
such as doping with heteroatoms [11], the formation of composites with other semiconductors [12],
and dye-sensitization [13]. Among these methods, the fabrication of composite materials has been
found to greatly increase not only the visible light utilization efficiency of g-C3N4 but also the separation
rate of photogenerated electron–hole pairs. Hence, various g-C3N4-based visible-light-driven
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composite photocatalysts have been reported, including g-C3N4/metal organic frameworks (MOFs) [14],
g-C3N4/CdS [15], and g-C3N4/AgPO3 [16].

More recently, ternary g-C3N4/MOF/X photocatalytic systems have become a research focus
because these materials provide interfaces with a high degree of contact along with synergistic
effects based on their various components [17]. As an example, Wang et al. [18] combined UiO-66
as a cocatalyst with N-K2Ti4O9/g-C3N4 to promote the degradation of Rhodamine B (RhB) under
visible light. Their experimental data suggested that the resulting increase in photocatalytic activity
could be attributed to the greater adsorption capacity and the synergistic effect derived from
the combined ingredients. Liang et al. [19] prepared BiOI@UiO-66(NH2)@g-C3N4 via an in-situ
solvothermal–hydrothermal method, and showed that this Z-scheme photocatalyst exhibited improved
activity during the degradation of RhB or tetracycline (TC) under visible-light. Liang’s data also
demonstrated that the enhanced photocatalytic performance was caused by the introduction of the
BiOI, which widened the photoabsorption range of the catalyst and promoted the formation of an
n-p-n type heterojunction to drive the Z-scheme mechanism. Among the materials assessed thus far,
CdS has been especially widely investigated, because it provides excellent visible-light response and a
suitable band width of about 2.4 eV while being simple to prepare.

In the present paper, we synthesized a g-C3N4/UiO-66-NH2/CdS composite photocatalyst
and characterized this material using X-ray diffraction (XRD), fourier transform infrared (FT-IR)
spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Using
TC as a model pollutant, photodegradation experiments were performed to evaluate the photocatalytic
performance of this composite. The effects of CdS loading, the initial TC concentration, the pH of the
reaction solution, and the other factors on the photocatalytic activity were studied. The results show
that this as-synthesized g-C3N4/UiO-66-NH2/CdS composite material effectively degraded TC in water,
suggesting that this material has potential as a photocatalyst.

2. Materials and Methods

2.1. Materials

Zirconium chloride (ZrCl4, 99.9%), cadmium nitrate (Cd(NO3)2, 99%), urea (CO(NH2)2, 99%),
2-aminoterephthalic acid (H2BDC-NH2, 98%), thiourea (CH4N2S, 99%), polyvinyl pyrrolidone (PVP,
99%), ethanol (C2H5OH, 99.5%), methanol (CH3OH, 99.5%), N,N-dimethylformamide (DMF, 99.5%),
sodium hydroxide (NaOH, 96%), hydrochloric acid (HCl, 37wt%), and TC (C22H24N2O8, 99%) were
purchased from the Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All chemicals were
obtained commercially and used without further purification.

2.2. Preparation of g-C3N4

The required amount of urea was ground and transferred to a crucible with a lid. The crucible
was then placed in a muffle furnace and heated from ambient temperature to 550 ◦C at 5 ◦C/min,
then maintained at that temperature for 4 h in air. After cooling the product, it was ground to obtain
g-C3N4 as a light-yellow powder.

2.3. Preparation of g-C3N4/UiO-66-NH2 Composite

A 3:1 (by mass) mixture of g-C3N4 and UiO-66-NH2 was ground for 30 min, then transferred into
a crucible and heated in a muffle furnace at 350 ◦C for 2 h in air. The g-C3N4/UiO-66-NH2 composite
was collected after cooling and is referred to herein as gU-3.

2.4. Preparation of the g-C3N4/UiO-66-NH2/CdS Composite

Cd(NO3)2 (7.5 mmol) and thiourea (7.5 mmol) were dispersed in deionized water (50 mL) after
which PVP (90 mg) was dissolved in the mixture. Various amounts of gU-3 were added to this
solution, followed by ultrasonication for 1 h and stirring at 1200 rpm for 6 h. The resulting mixture
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was transferred to a 100 mL hydrothermal reactor and then heated in an oven at 160 ◦C for 12 h.
The sample was allowed to cool and the product was collected by centrifugation at 8000 rpm, washed
with H2O and ethanol to remove impurities, and finally dried at 80 ◦C under vacuum for 10 h to give
the g-C3N4/UiO-66-NH2/CdS. The materials synthesized in this manner are referred to herein as gUS-X,
where X = MCdS/MgU-3. Figure 1 presents a diagram summarizing the synthesis of these composites.
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Figure 1. Schematic illustration of the synthetic route to the g-C3N4/UiO-66-NH2/CdS composites.

2.5. Characterization

The crystalline structures of the g-C3N4/UiO-66-NH2/CdS photocatalysts were assessed by
XRD using a Bruker D8-ADVANCE (Bruker AXS, Karlsruhe, Germany) with Cu Kα radiation over
the 2θ range of 5–60◦. FTIR spectra (KBr pellets as substrate) were recorded on a Nicolet 5700
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) in the range from 4000 to 400 cm−1.
The morphologies of the photocatalysts were examined by TEM and SEM using a Tecnai G2 F20
S-TWIN (FEI, Hillsboro, OR, USA) and Sirion 200 (FEI, Hillsboro, OR, USA). Photoluminescence
(PL) spectra were acquired using a fluorescence spectrophotometer (F-380, Hitachi, Tokyo, Japan).
Ultraviolet-visible (UV-Vis) absorption spectroscopy and diffuse reflectance spectroscopy (DRS) were
performed using a spectrophotometer (UV-3600, Shimadzu, Kyoto, Japan) over the range of 200–800 nm.
An ESCALAB 250XI (Thermo Fisher Scientific, Waltham, MA, USA) with a He I (21.22 eV) lamp was
employed to perform UV photoelectron spectroscopy (UPS) to ascertain the valence band positions
and work functions of the samples. Electrochemical impedance spectroscopy (EIS) was conducted
with an electrochemical workstation (CHI 760E, CH Instruments, Shanghai, China) using a standard
three-electrode system. The pH values of the various samples were determined using a pH meter.

2.6. Evaluation of Photocatalytic Activity

In a typical trial, 50 mg of the g-C3N4/UiO-66-NH2/CdS photocatalyst was suspended in 100 mL
of a 20–50 mg/L TC solution, and a full spectrum 300 W xenon lamp was used as the light source. Prior
to illumination, the reaction mixture was stirred in the dark for 60 min to ensure adsorption–desorption
equilibrium between the TC and photocatalyst, after which irradiation was applied. During the
exposure to light, 6 mL aliquots of the suspension were extracted at 30 min intervals for 180 min
and centrifuged. UV–Vis spectra of the supernatants were then acquired to determine the residual
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concentration of TC. The pH of the TC solution was regulated using 0.05 M NaOH or HCl solutions
before the start of the reaction. The TC photodegradation efficiency (D%) was calculated as:

D% =
C0 −Ct

C0
× 100% (1)

where C0 is the initial TC concentration and Ct represents the residual concentration of TC after a
specific irradiation time (t).

3. Results and Discussion

3.1. Characterization of the g-C3N4/UiO-66-NH2/CdS Composite

The XRD patterns obtained from the as-prepared gUS-1 and gU-3 and from the original CdS and
g-C3N4 are shown in Figure 2a. The pattern produced by the g-C3N4 is consistent with literature reports
and contains two characteristic peaks at 12.7◦ and 27.5◦ corresponding to the (100) and (002) planes of
the graphite phase structure, respectively [20,21]. The pattern generated by the g-C3N4/UiO-66-NH2

(gU-3) is similar to that of the g-C3N4, indicating that the crystal structure of the latter was not
changed after the addition of the UiO-66-NH2. The lack of an effect can possibly be ascribed to the
low loading levels and high dispersion of the UiO-66-NH2 in the composite of gU-3. In the case of
the CdS, the XRD pattern shows a hexagonal phase, and the main diffraction peaks appear at 25.3◦,
26.7◦, 28.3◦, 37.2◦, 43.9◦, 48.2◦, and 52.1◦, corresponding to the (100), (002), (101), (102), (110), (103),
and (201) crystal planes, respectively [22]. Interestingly, all these peaks were also produced by the
g-C3N4/UiO-66-NH2/CdS composite (gUS-1), suggesting that the crystal structure of the CdS was
well-preserved after this compound was anchored onto the g-C3N4/UiO-66-NH2 sheets. Additionally,
the gUS-1 hybrids showed new peaks at 23.7◦ and 30.5◦ that correspond to donor-acceptor interactions
between the CdS and g-C3N4 [23,24].
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Figure 2. (a) XRD patterns and (b) FTIR spectra of the various photocatalysts.

The FTIR spectra of the g-C3N4, gU-3, gUS-1, and CdS are presented in Figure 2b. The g-C3N4

spectrum exhibits peaks at 811 and 1235 cm−1 that are ascribed to the bending vibration of triazine
units and stretching modes of C–N–C groups [25]. The CdS also generated peaks between 1200 and
1800 cm−1 that are attributed to Cd-S bonds [26]. Interestingly, the spectra of the gU-3 and gUS-1 are
similar and both contain a peak related to g-C3N4, confirming that g-C3N4 was the primary component
of both. In addition, the two characteristic CdS peaks at 1288 and 1658 cm−1 are present in the gUS-1
spectrum, indicating the successful loading of CdS in the gUS-1.

The morphology of each as-synthesized photocatalyst was characterized by TEM and SEM
(Figure 3). The g-C3N4, UiO-66-NH2, and CdS were found to be composed of sheets (Figure 3a),
spherical particles (Figure 3b), and walnut-like nanoparticles (Figure 3c), respectively, all of which
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are consistent with literature reports [27–29]. When the UiO-66-NH2 was introduced, the sheet
structure of the g-C3N4 transitioned to agglomerated particles (Figure 3d), possibly as a result of the
formation of a heterostructure between the UiO-66-NH2 and g-C3N4. In addition, Figure 3e clearly
shows CdS particles on the gUS-1 composite. EDS was used to confirm the presence of Cd and S
in the gUS-1 specimen (Figure 3f) at concentrations of approximately 14 and 1.3 wt%. Figure 3g,h
present TEM and high resolution TEM (HRTEM) micrographs of the gUS-1, which demonstrate that
the UiO-66-NH2 nanoparticles were evenly dispersed over the g-C3N4 sheets (as indicated by the
red rectangles in Figure 3g). The HRTEM image of the gUS-1 shows lattice spacings of 0.335 and
0.358 nm that correspond to the (002) and (100) planes of the CdS, respectively, confirming that CdS
was successfully loaded onto the g-C3N4/UiO-66-NH2. The EDS map in Figure 3i demonstrates that Zr
(yellow), Cd (violet), S (red), and N (green) were homogeneously dispersed on the g-C3N4 surface,
suggesting that UiO-66-NH2 and CdS were grown on the g-C3N4 sheets.
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Figure 3. SEM images of the (a) g-C3N4, (b) UiO-66-NH2, (c) CdS, (d) gU-3, (e) gUS-1 and (f) EDS of
gUS-1. TEM images of (g) gUS-1, (h) HRTEM image of gUS-1, and (i) EDX mapping of gUS-1.

The optical properties of the g-C3N4, UiO-66-NH2, CdS, gU-3, and gUS-1 were assessed using
UV–Vis and PL spectroscopy, with the results presented in Figure 4. The UiO-66-NH2 and g-C3N4

both absorbed strongly in the range of 200–450 nm (Figure 4a), and the estimated band gaps for these
materials were 2.76 and 2.91 eV (Figure 4c), in agreement with literature values. The visible light
absorption threshold of the gU-3 composites was also around 450 nm. Interestingly, the energy gap
of each gU-3 composite (2.89 eV) was similar to that of the g-C3N4, implying that the g-C3N4 and
UiO-66-NH2 were not simply mixed but rather formed a heterojunction [30]. The CdS was also found
to absorb strongly around 580 nm (2.27 eV). After hybridization, the gUS-1 composites showed strong
absorption in the range of 200–550 nm. The corresponding absorbance edges at 425 and 550 nm (2.7 and
2.28 eV) can possibly be attributed to the interactions between the CdS, UiO-66-NH2, and g-C3N4 [31].
Furthermore, the indirect band gap of g-C3N4, UiO-66-NH2, CdS, gU-3, and gUS-1 were 3.1, 2.99, 2.38,
3.08, and 3.01 eV, respectively (Figure 4d). These data also show that the presence of CdS increased
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the range of visible light that the g-C3N4/UiO-66-NH2/CdS was able to absorb, and so improved the
catalyst’s utilization of visible light.
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Figure 4b provides the PL spectra of the photocatalysts at an excitation wavelength of 325 nm.
The powdered g-C3N4 exhibited strong photoluminescence, demonstrating the rapid recombination
of photogenerated electron–hole pairs. The intensity of the gU-3 was lower, suggesting that the
UiO-66-NH2 suppressed the recombination of photogenerated carriers. Moreover, the loading
of CdS further reduced the photoluminescence intensity. The gUS-1 showed lower fluorescence
intensity than the gU-3, indicating that the recombination rates of electron–hole pairs were inhibited
in the former. The CdS had the lowest fluorescence intensity and so evidently had the highest
separation rate of photogenerated electron–hole pairs. However, the CdS also showed poor
photocatalytic activity, and so the photodegradation process appears to have been controlled by
many factors. The g-C3N4/UiO-66-NH2 in the gUS-X appears to have had the primary effect during
the photodegradation of TC. The above results indicate that, following the incorporation of the CdS,
the light absorption of the material increased, which in turn promoted the photocatalytic reactions.

3.2. Photocatalytic Degradation of Tetracycline

3.2.1. Effect of the CdS Loading Amount

The effect of CdS loading on the performance of the g-C3N4/UiO-66-NH2 was evaluated by
assessing the photocatalytic activities during the degradation of TC over the g-C3N4, CdS, gU-3,
and gUS-X. As a reference, a blank experiment was also carried out without a catalyst, using an
initial TC concentration of 20 mg/L under visible light. This trial established that there was very
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little photolysis of the TC under a 300W xenon lamp after 3 h, indicating that TC was stable under
these conditions and the rate of degradation was negligible. From Figure 5a, it is apparent that the
TC degradation rates decreased in the order of gUS-X > gU-3 > g-C3N4 > CdS. The photocatalytic
efficiencies of the composite photocatalysts were, therefore, higher than those of the single materials.
Specifically, the as-prepared gUS-1 displayed the highest photocatalytic performance, with 83% TC
decomposition. The TC removal provided by the gUS-1 was almost 30% higher than that of the
gU-3, showing that the CdS played an important role in facilitating the overall photocatalytic process.
The optimal CdS loading was evidently on the order of 50 wt%, and so the gUS-1 composite was used
for further investigations. However, it should be noted that the removal efficiencies shown by the
gUS-0.5 and gUS-2 were similar to that obtained from the gUS-1 (Figure 5a), meaning that CdS loadings
in the range of 33 to 66 wt% provided a similar level of performance. Moreover, the photocatalytic
performance declined with further increases in the CdS loading. This result indicates that the CdS is
the not most important factor in the TC oxidation process, in agreement with the PL data.
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TC over the gUS-1, and (f) recycling trials during the photocatalytic degradation of TC over the gUS-1.
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3.2.2. Effect of the Initial TC Concentration

The initial concentration of TC is a crucial factor affecting the removal efficiency [32–34], and so a
series of photocatalytic degradation tests using the gUS-1 composite were carried out at different initial
TC levels in the range of 20–50 mg/L. As shown in Figure 5b, these experiments were divided into two
parts: an adsorption process (the dark part of experiments) and a photocatalytic process (the light part
of experiments). The results show that the adsorption of TC by the gUS-1was unaffected by variations
in the TC concentration, with removal percentages by adsorption of 5%, 2%, and 1%, respectively, at the
different TC concentrations. This variation is considered to be negligible compared to the removal
associated with the photocatalytic process. During the light stage, photodegradation percentages of
83%, 67%, and 50% were obtained at initial concentrations of 20, 30, and 50 mg/L, respectively. These
correspond to degradation capacities of 33.2, 40.2, and 50 mg/g, respectively. It is evident that the
removal capacity of the photocatalyst increased along with increases in the initial TC concentration,
which reflects the increased difficulty in removing trace contaminants. The photocatalytic activity of
the gUS-1 sample during TC degradation is compared with previously reported data in Table 1 [35–39].
This comparison demonstrates that the gUS-1 exhibited high removal efficiency relative to similar
photocatalysts. Hence, the present g-C3N4/UiO-66-NH2/CdS photocatalysts could potentially be used
to mitigate antibiotic contamination of water.

Table 1. Comparison of the photocatalytic TC degradation of various photocatalysts.

Samples CCatalyst g/L CTC mg/L DR% References

Sn3O4/g-C3N4 0.5 10 72.2% 35
g-C3N4/Nb2O5 0.5 10 76.2% 36
β-Bi2O3@g-C3N4 0.5 10 80.2% 37

g-C3N4/Ag2CO3/graphene 0.6 20 81.6% 38
g-C3N4/Ag/P3HT 1 20 75% 39

gUS-1 0.5 20 83% this work

As can be seen from Figure 5c, the degradation data are well fit (with correlation coefficients of
at least 0.87) using a pseudo-first-order kinetics model. Figure 5d shows that the gUS-1 exhibited
the highest reaction rate constant for TC degradation (0.00922 min−1), and this value was 4.4 and
2.3 times those obtained for the CdS (0.00208 min−1) and g-C3N4 (0.00401 min−1). These results
provide additional evidence that the g-C3N4/UiO-66-NH2/CdS was a more effective photocatalyst for
TC degradation than the parent materials under visible light irradiation. The values of the kinetic
parameters are set out in the Table 2.

Table 2. The pseudo-first-order reaction kinetics parameters for the various catalysts.

Sample k b R2

g-C3N4 0.00401 0.04827 0.94
CdS 0.00208 −0.01071 0.99
gU-3 0.00425 0.08814 0.90

gUS-10 0.003 0.007 0.99
gUS-2 0.008 0.252 0.89
gUS-1 0.00922 0.27568 0.89

gUS-0.5 0.008 0.209 0.90
gUS-0.1 0.005 0.177 0.87

3.2.3. Effect of pH

In general, the pH of a solution is an important factor that affects the degradation efficiency during
photocatalysis. In addition, TC is an amphoteric compound that takes different forms with changes in
pH. According to the literature, TC is primarily in the form of a cation under acidic conditions (pH < 4),
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a zwitterion over the pH range of 4–7.5, and an anion in the pH range of 7.5–10 [40]. The present work
performed trials over the pH span of 3–11 so as to assess each of these ranges, and the effect of pH on
the degradation of TC using the gUS-1 sample is shown in Figure 5e. The pH of the solution had only
a minimal effect on the adsorption capacity of the gUS-1, while the photodegradation efficiency was
significantly modified by changes in the pH of the TC solution. Specifically, the photodegradation
rate of TC roughly follows in the order of pH (9) > pH (11) > pH (7) > pH (5) > pH (3). As shown
in Table 3, the maximum rate constant (k) increased with increases in the initial pH of the solution,
suggesting that the photodegradation performance of the gUS-1 under neutral or alkaline conditions
was enhanced. This finding that cationic TC inhibits the photo-oxidation process is in agreement with
previous reports [41–43]. This phenomenon may be explained by the higher electron density in the
ring system of anionic TC compared with the cation, which promotes the attack of radical species.
In addition, the OH− concentration in the reaction solution would be low at lower pH values, and this
is not conducive to the additional generation of OH radicals.

Table 3. Pseudo-first-order reaction kinetics parameters for TC degradation at various pH values.

pH k b R2

3 0.00458 −0.00162 0.99
5 0.00846 −0.01071 0.93
7 0.00872 0.27789 0.91
9 0.01781 0.27994 0.82

11 0.01625 0.17306 0.87

3.2.4. Reusability and Stability of the gUS-1 Composites

The recycling characteristics of a photocatalyst are an important factor with regard to industrial
applications, and so the stability of the gUS-1 during repeated uses was examined. After each use,
the sample was collected by centrifugation, washed, and dried before the next degradation test.
During four repeated trials, the photocatalytic performance of the material, as reflected in the TC
degradation efficiency, remained constant at approximately 80.1% (Figure 5f), indicating that the
gUS-1 had excellent recycling properties. Figure 6 displays the XRD patterns (a) and FT-IR spectra (b)
acquired from the gUS-1 before and after the four cycles. There are no significant differences in the
characteristic peak positions between before and after the replicate trials, confirming that the crystalline
structure of the gUS-1 was not changed.
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3.2.5. Electrochemical Properties of gUS-1

In general, a smaller arc radius in the electrochemical impedance spectroscopy (EIS) data for a
semiconductor indicates a lower charge-transfer resistance. Figure 7 presents the EIS spectra obtained
from the g-C3N4, gU-3, and gUS-1 samples. It is evident that the g-C3N4 produced the largest radius,
suggesting that the transfer of photoinduced carriers was hindered by the higher charge-transfer
resistance of g-C3N4. Conversely, the radius generated by the gUS-1was the smallest among these
samples, meaning that the separation of photoinduced electron–hole pairs was more rapid, and the
charge transfer efficiency in the g-C3N4/UiO-66-NH2/CdS photocatalysts was improved. These results
are in good agreement with those obtained from the PL analyses.
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3.3. Possible Mechanism of Photocatalytic Degradation

Hydroxyl radicals (·OH), superoxide radicals (·O2−), and holes (h+) are critical factors in
photocatalytic oxidation [44]. Thus, to better understand the role of different free radicals in the
degradation of TC, radical capture experiments were carried out. In these trials, benzoquinone
(BQ), isopropanol (IPA), and ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) were used to
scavenge ·O2−, ·OH, and h+, respectively [45]. As can be seen from Figure 8, the photocatalytic activity
significantly decreased with the addition of BQ and EDTA-Na, suggesting that h+ and ·O2− were the
major active species in the photocatalytic process using gUS-1. The addition of IPA had little effect on
the degradation efficiency, and so ·OH was evidently a secondary active species. Thus, both ·O2− and
h+ are believed to have been the primary active species during the photocatalytic degradation of TC
over the g-C3N4/UiO-66-NH2/CdS photocatalysts.

Given the above experiment results, a plausible photocatalytic mechanism for TC degradation
over the gUS-1 composite was devised and is summarized in Figure 9. Note that UPS data and the band
structure of photocatalyst are provided in Figure S1 and Table S1. Because the conduction band (CB)
potentials of the g-C3N4 and CdS were more negative than that of the UiO-66-NH2, electrons from the
CB of the former materials could be injected into the lowest unoccupied molecular orbital (LUMO) of the
UiO-66-NH2, resulting in the effective inhibition of photogenerated electron–hole pair recombination.
Accumulated electrons in the UiO-66-NH2 with a potential lower than −0.62 eV were then capable of
reducing dissolved oxygen adsorbed onto the gUS-1 surface to generate ·O2− (E(O2/·O2

−) = −0.33 eV
vs. NHE) [46]. In this process, photoelectrons were transferred to Zr-O clusters to produce Zr3+ ions
and could react with O2 to generate ·O2−, while the Zr3+ ions were oxidized back to Zr4+ [47–49].
Simultaneously, the h+ in the valence band (VB) of UiO-66-NH2 migrated to the VB of the g-C3N4 or
CdS, such that only a small proportion of the h+ located in the UiO-66-NH2 VB generated ·OH radicals.
The photogenerated h+ in the VB of the CdS or g-C3N4 were incapable of oxidizing hydroxyl groups
into ·OH radicals (E(OH−/·OH) = +1.99 eV vs. NHE) [50], and so these accumulated h+ instead oxidized
the TC. Therefore, both h+ and ·O2− played primary roles in the photodegradation of TC, in agreement
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with the experimental result. Furthermore, as noted, introducing the CdS extended the range of light
absorption and improved the separation of electron–hole pairs. The overall photocatalytic reaction
sequence over the gUS-1 during TC degradation can, therefore, be described by the series of equations:

g-C3N4/CdS + hv→ e− +h+,

UiO-66-NH2(Zr4+) + e−→ UiO-66-NH2(Zr3+),

UiO-66-NH2(Zr3+) + O2→ UiO-66-NH2(Zr4+) +·O2−,

h+/·O2− + TC→ degraded products.
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4. Conclusions

A g-C3N4/UiO-66-NH2/CdS composite catalyst was prepared by a combination of calcination and
hydrothermal methods, and the gUS-1 specimen demonstrated the best photocatalytic performance
with regard to the degradation of TC under visible light. Compared with the UiO-66-NH2 and g-C3N4,
the photoabsorption region of the composite material was widened, while its fluorescence intensity was
diminished. The experimental data also indicate that the photocatalytic activity of the gUS-1 during
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the oxidation of TC was higher than that of the CdS or g-C3N4 under visible light, and that the former
material provided a reaction rate constant 4.4 and 2.3 times those associated with TC degradation over
the CdS and g-C3N4, respectively. This enhanced photocatalytic activity is ascribed to the loading of
CdS, which improved the utilization of visible light and restrained the recombination of the electrons
and the holes. This work provides a new theoretical background for the design of novel photocatalytic
materials for the treatment of antibiotic-contaminated wastewaters.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/9/1824/s1.
Figure S1: UPS spectra of g-C3N4, UiO-66-NH2, and CdS; Table S1: band structures of the g-C3N4, UiO-66-NH2,
and CdS.
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