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Abstract: Hybrid nanoplasmonic systems can provide a promising platform of potential nonlinear
applications due to the enhancement of optical fields near their surfaces in addition to the
control of strong light–matter interactions they can afford. We theoretically investigated the optical
multistability of a probe field that circulated along a unidirectional ring cavity containing a metal
nanoparticle–graphene nanodisk–quantum dot hybrid system; the quantum dot was modeled as
a three-level atomic system of Lambda configuration interacting with probe and control fields
in the optical region of the electromagnetic spectrum. We show that the threshold and degree of
multistability can be controlled by the geometry of the setup, the size of metal nanoparticles, the carrier
mobility in the graphene nanodisk and the detunings of probe and control fields. We found that
under electromagnetically-induced transparency conditions the system exhibits enhanced optical
multistability with an ultralow threshold in the case of two-photon resonance with high carrier
mobility in the graphene nanodisk. Moreover, we calculated the limits of the controllable parameters
within which the switching between optical multistability and bistability can occur. We show that
our proposed hybrid plasmonic system can be useful for efficient all-optical switches and logic-gate
elements for quantum computing and quantum information processing.

Keywords: optical multistability threshold; unidirectional ring cavity; giant self-Kerr nonlinearity;
metal nanopaticle–graphene nanodisk–quantum dot hybrid system

1. Introduction

Optical bistability at the nanoscale is an attractive research field due to the interesting phenomena
it encompasses resulting from controlling light with light [1], and its promising potential applications,
including optical memories [2–4], optical transistors [5] and all-optical switches [6,7]. Specifically,
optical bistability is a nonlinear optical effect arising from third-order nonlinear susceptibility in which
the refractive index depends on the light intensity exhibiting self-Kerr nonlinearity [8]. A system
is said to be bistable if it has two output states corresponding to the same value of input intensity.
This requires an internal feedback mechanism provided by a Kerr nonlinear medium situated inside
an optical cavity that enhances the light–matter interaction [7,9].

However, increasing the number of stable output states against a specific input optical state,
i.e., optical multistability, can be more attractive than binary optical stability for many applications,
such as all-optical switching [10–12], quantum computing and quantum information processing [13].
Thus, the optical multistability has been extensively studied in multi-level atomic systems with
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different configurations inside an optical cavity via the interactions between the nonlinear medium
and two optical fields [12,14–16].

As a promising controllable platform for the nonlinear applications, hybrid plasmonic systems
represent good candidates to demonstrate optical multistability [17–21]. To be of practical interest,
the threshold value of input power for multistability should be small [9]. Thanks to the enhanced optical
intensities in plasmonic nanocomposites, the desired threshold power required to obtain nonlinear
effects is relatively small [20,22]. Moreover, multi-level atomic systems, under coherent excitation
resulting in electromagnetically induced transparency (EIT), exhibit an enhanced third-order nonlinear
response that could be employed for optical bistability and multistability [20,23–25]. For metal
nanoparticle (MNP)–quantum dot (QD) hybrid systems, it has been shown that enhanced optical
bistability can be controlled by the center-to-center distances between MNP and QD [22,26].

On the other hand, due to the unique nonlinear optical properties resulting from the linear
dispersion relation near Dirac points, graphene has remarkably large third-order nonlinear optical
susceptibility [27,28]. Recently, Dai X. et al. proposed a modified Kretchmann–Reather configuration to
realize low threshold optical bistable devices at terahertz frequencies by using a plasmonic structure
with an insertion of graphene [29]. Moreover, it has been experimentally shown that surface plasmons
of graphene can be used as an internal feedback to demonstrate an ultralow threshold optical bistability
due to the large nonlinear response exhibited by plasmonic structures [30]. It has also been shown that
controllable switching between optical bistability and optical multistability is feasible via frequency
detunings of probe and control fields in a graphene monolayer system driven by an elliptically
polarized control field and a right-hand circularly polarized probe field [31]. Additionally, the optical
bistability has been investigated in graphene multilayer systems. It was found that increasing the sheet
numbers could lead to large bistability loop width [32]. Recently, T. Naseri et. al. have theoretically
investigated THz optical bistability of graphene-coated, cylindrical, core-shell gold nanoparticles.
Their hybrid system has exhibited switching between optical bistability and multistability that can be
achieved by controlling the Fermi energy and relaxation time of graphene [33].

Interestingly, it has been theoretically shown that metal nanoparticle–graphene nanodisk–
quantum dot hybrid systems can demonstrate a controllable giant self-Kerr nonlinearity under EIT
conditions with low light intensity [20]. Specifically, it has been found that the magnitude and sign of
the nonlinear refractive index can be controlled by the geometry of the hybrid system, Rabi frequency
of the control field and detuning of both probe and control fields. Thus, with this novel hybrid
plasmonic system, it is expected to obtain low threshold optical bistability and multistability.

In this work, we investigated the optical multistability in the metal nanoparticle–graphene
nanodisk–quantum dot (MNP–GND–QD) hybrid system depicted in Figure 1, in a unidirectional ring
cavity under EIT conditions where the quantum dot is modeled as a three level atomic system of
Lambda configuration interacting with probe and control fields under the rotating wave approximation.
The ranges of the system parameters were explored to optimize the optical multistability in such a
novel system.
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Figure 1. (a) The MNP–GND–QD hybrid system setup. (b) Λ-type atomic configuration of the QD.
(c) Unidirectional ring optical cavity having four mirrors and the MNP–GND–QD hybrid system of
length L. The mirrors M3 and M4 are perfect mirrors. The incident and transmitted fields are denoted
by EI

p and ET
p respectively.

2. Theoretical Model

We consider the MNP–GND–QD hybrid system deposited on a gallium arsenide (GaAs) substrate
as illustrated in Figure 1 The QD is modeled as a three level atomic system of Λ configuration,
where the transition |1〉 ↔ |2〉 of dipole moment µ12 is induced by the probe field of frequency ωp,
Rabi frequency Ωp and detuning of ∆p = ω12 − ωp, whereas the control field of frequency ωc,
Rabi frequency Ωc and detuning of ∆c = ω13 − ωc is driving the transition |1〉 ↔ |3〉 of dipole
moment µ13. Note that the dipole moment µ12 ( µ13) lies along the x (z) direction, so that the probe
(control) field is applied along the x (z) direction. By analyzing the dipole–dipole interaction between
the components of the system within the near field approximation, and solving the Lindblad quantum
master equation using a Hamiltonian given in terms of the dipole field felt by the QD with two-photon
detuning, ∆2 = ∆p − ∆c, in the rotating wave approximation, one can get the following equations of
motion for the density matrix elements [34]:

ρ̇13 = −
[(γ13

2
+

γ12

2

)
+ i (∆c −Λz (ρ33 − ρ11))

]
ρ13

+iΩc (Πz + Φz) (ρ33 − ρ11) + i
[
Ωp (Πx + Φx) + Λxρ12

]
ρ23, (1a)

ρ̇12 = −
[(γ13

2
+

γ12

2

)
+ i
(
∆p −Λx (ρ22 − ρ11)

)]
ρ12

+iΩp (Πx + Φx) (ρ22 − ρ11) + i [Ωc (Πz + Φz) + Λzρ13] ρ32, (1b)

ρ̇32 = −
(γ32

2
+ i∆2

)
ρ32 + i [Ω∗c (Π

∗
z + Φ∗z ) + Λ∗z ρ31] ρ12

−i
[
Ωp (Πx + Φx) + Λxρ12

]
ρ31, (1c)
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ρ̇11 = − (γ12 + γ13) ρ11 + i [Ωc (Πz + Φz) + Λzρ13] ρ31

+i
[
Ωp (Πx + Φx) + Λxρ12

]
ρ21 + c.c., (1d)

ρ̇22 = γ12ρ11 + γ32(ρ33 − ρ22)− i
[
Ωp (Πx + Φx) + Λxρ12

]
ρ21 + c.c., (1e)

ρ̇33 = γ13ρ11 + γ32(ρ22 − ρ33)− i [Ωc (Πz + Φz) + Λzρ13] ρ31 + c.c., (1f)

In Equations (1), γ1i represents the spontaneous decay rate of the QD while γ32 stands for the
lower states’ dephasing. It is remarkable that the Rabi frequency of probe field (control field) is
enhanced by a factor |Πx + Φx| (|Πz + Φz|), whereas Λx ( Λz) enhances the dephasing rate induced
by the probe (control) field. The enhancement factors Π, Φ and Λ resulting from the dipole–dipole
interaction are given for the system shown in Figure 1 by [34]:

Πx =
1

4πε∗

[
αx

G (3cosφ1 − 1)
R3

QG
+

αM (3cosφ2 − 1)
R3

QM

]
, (2a)

Φx =
−αx

GαM

(4πε∗)2 R3
GM

[
3cosφ1 − 1

R3
QG

+
3cosφ2 − 1

R3
QM

]
, (2b)

Λx =
µ2

12

(4πε∗)2 h̄ε0εb

[
αx

G (3cosφ1 − 1)2

R6
QG

+
αM (3cosφ2 − 1)2

R6
QM

]
, (2c)

Πz =
1

4πε∗

[
αz

G (3cosθG − 1)
R3

QG
+

αM (3cosθM − 1)
R3

QM

]
, (2d)

Φz =
2αz

GαM

(4πε∗)2 R3
GM

[
3cosθG − 1

R3
QG

+
3cosθM − 1

R3
QM

]
, (2e)

Λz =
µ2

13

(4πε∗)2 h̄ε0εb

[
αz

G (3cosθG − 1)2

R6
QG

+
αM (3cosθM − 1)2

R6
QM

]
, (2f)

αx
G (αz

G) is the shape-dependent polarizability of GND induced by x (z) polarized field while αM
represents the polarizability of MNP given in terms of its volume and dielectric constant of the metal
εM and the background εb [35]. The center-to-center distances RQG, RQM and RGM are governed by
the triangle law:

RQG =

(
sin θM
sin θQ

)
RGM (3a)

RQM =

(
sin θG
sin θQ

)
RGM (3b)

The MNP–GND–QD hybrid system sample of length L is placed in a unidirectional ring cavity,
having four mirrors as shown in Figure 1. Mirrors M1 and M2 have identical reflection R and
transmission T coefficients, where R + T = 1. On the other hand, mirrors M3 and M4 are considered
to be perfect reflectors to simplify optical multistability analysis. The MNP–GND–QD hybrid sample
is situated in one of the arms of the cavity whose dynamics is described by the time evolution of the
density matrix elements given by Equation (1). By using this standard model [36], the probe field passes
through the nonlinear medium of length L from the partially transparent mirror M1 and is redirected
back to the entry point by the system of mirrors illustrated in Figure 1. Therefore, the optical stability
can be analyzed by measuring the input and output beams generated by the two partially transmitting
mirrors, M1 and M2. Note that only the probe field acts as a cavity field and circulates inside the
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cavity, whereas the control field does not circulate inside the cavity. Therefore, the induced atomic
polarization responsible for the optical multistability is P(ωp) = Nµ21ρ21, where N is the atomic
number density, µ12 is the transition dipole matrix element for the probe field transition that induces
atomic coherence ρ21. The propagation of the probe field Ep in the unidirectional optical ring cavity
is governed by the following Maxwell equation under the slowly varying envelope approximation
where d2/dz2 can be neglected [8]:

∂Ep

∂t
+ c

∂Ep

∂z
= i

ωpP(ωp)

2ε0
(4)

By inserting the relation of polarization induced by the probe field into Equation (4) we obtain at
steady state:

∂Ep

∂z
= i

Nωpµ21ρ21

2cε0
(5)

For a perfectly tuned ring cavity, the incident (EI
p) and the transmitted (ET

p ) probe fields obey the
following boundary conditions in the steady state limit [1]:

Ep(L) =
ET

p√
T

(6a)

Ep(0) =
√

TEI
p + RET

p (L) (6b)

Solving the differential equation Equation (5) using the boundary conditions given by Equation (6)
leads to:

Y = X− iCρ21 (7)

where Y = µ12EI
p/h̄γ12

√
T and X = µ12ET

p /h̄γ12
√

T are normalized incident and output fields
respectively given in a dimensionless form. Note that the second term of Equation (7) describes the
feedback mechanism provided by the system of mirrors that is essential to obtain optical bistability
and multistability, where C is the cooperation parameter that is proportional to the density of
absorbing atoms in the cavity. More precisely, C = αL/2T, where α = Nωpµ2

12/cε0h̄γ12 is the
absorption coefficient.

3. Results and Discussion

In order to analyze the optical multistability in the MNP–GND–QD hybrid system and optimize its
threshold in this system, we used the same parameters as in reference [20], wherein it was shown that
the MNP–GND–QD hybrid system can demonstrate giant self-Kerr nonlinearity under EIT conditions.
Due to the unique properties of GND plasmons, including the high mobility and relatively long
propagation distances [37], we adjusted the energy of its plasmons to be resonant with the exciton of
the QD. Consider GND of radius 7 nm and thickness of 0.5 nm at Fermi energy 1.36 eV and temperature
300 K, and carrier mobility 104 cm2/Vs. With these parameters of GND deposited on GaAs substrate,
we get plasmon resonances along x and z directions, i.e., h̄ωx

sp = 2.17 eV and h̄ωz
sp = 0.6418 eV.

To support the plasmons of GND and provide more options to control the system, we used a spherical
silver nanoparticle of ε∞ = 5.7 [38], and plasma frequency of ωpl = 1.36× 1016 s−1, and damping rate
of plasmons of γM = 1014 s−1. CdSe self-assembled QD of N = 1020 m−3 was chosen to compensate for
the losses of plasmons due to its optical emission band, which was near resonant with h̄ωx

sp = 2.17 eV
in GND induced by x-polarized probe field. The physical parameters used in the numerical simulation
are summarized in Table 1.
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Table 1. The physical parameters used in the numerical simulations.

System Component (s) Parameter (Symbol) Value

The Metal Nanoparticle (MNP)
High-frequency dielectric constant (ε∞) ε∞ = 5.7

Plasma frequency (ωpl ) ωpl = 1.36× 1016 (s−1)

Damping rate of plasmon(s) (γM ) γM = 1014 (s−1)

The Graphene Nanodisk (GND)

Thickness (Lx) Lx = 0.5 (nm)
Radius (Lz) Lz = 7 (nm)
Mobility (µ) µ = 104 (cm2/V s)

Fermi energy (FE) FE = 1.36 (eV)

The CdSe Quantum Dot (CdSe QD)
Dielectric constant (εq ) εq = 6.5

Dipole moment transition (µij) µ12 = µ13 = 0.1 (e nm)

Atomic number density (N) N = 1020 (m−3)

The GaAs substrate (Background) Dielectric constant (εb ) εb = 12.9

In the following we investigate the controlling of optical multistability by the parameters of
the system, including the inclination angle of the MNP; the edge-to-edge distances between GND
and MNP; and the size of MNP. The effects of the detunings of the probe and control fields were
examined in addition to the carrier mobility in GND. We compared the results under EIT conditions,
i.e., Ωc ≥ γ12, and γ23 � γ12, to when these conditions were not fulfilled in order to optimize the
threshold of optical multistability in the proposed MNP–GND–QD hybrid system.

Under EIT conditions, i.e., Ωc
γ12

= 2 and γ32
γ12

= 0.4, we firstly examine the effects of the edge-to-edge
distances between GND and MNP (R) on the output–input relationship, as illustrated in Figure 2.
It is remarkable that our proposed hybrid plasmonic system supports the optical multistability due
to giant self-Kerr nonlinearity demonstrated by our proposed system, as shown in reference [20].
Obviously, the degree of multistability decreases as (R) increases. With increasing (R), larger input
field is needed to achieve the optical multistability. Specifically, increasing R from 5 nm (Figure 2a)
to 7 nm (Figure 2b) leads to increasing the threshold of optical multistability from 20 W cm−2 to
188 W cm−2. Interestingly, these values of the threshold are ultralow compared to those that have
recently been obtained for some graphene plasmonic systems [29,39,40]. In fact, increasing the
edge-to-edge distances between MNP and GND will lead to increased distances between GND
and QD, as noted from Equation (3), which negatively affects the energy transfer between their
optical excitations. Interestingly, a switching between optical multistability and bistability can be
induced at relatively large edge-to-edge distances between GND and MNP that represent 0.6296 of the
center-to-center distance between MNP and GND (RM + R + Lz), as illustrated in Figure 2c.

In order to compare the sensitivity of the optical multistability to the geometry of the system via
manipulating the edge-to-edge distances between MNP and GND, and the inclination angle of the
two components with respect to QD, we checked in Figure 3 the output–input relationship at different
values of θM. We observed that a small θM led to a large number of loops of multistability with
relativity low threshold. As θM increases, the degree of multistability decreases, while the threshold
increases. It is clear that the optical multistability of the MNP–GND–QD hybrid system exhibits high
sensitivity to θM, since increasing the latter by 0.05 rad leads to doubling the optical multistability
threshold. Moreover, a transition between optical multistability and bistability is shown at relativity
large θM, where θM > θG. This is due to the large center-to-center distances between GND and QD
obtained in this case as noted by Equation (3).
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Figure 2. The output versus the input for different values of the edge-to-edge distances (R)
between GND and MNP under electromagnetically induced transparency (EIT) conditions; Ωc

γ12
= 2,

and γ32
γ12

= 0.4. The other parameters were ∆p
γ12

= 1, ∆c
γ12

= 0, RM = 15 nm, θM = 0.4 rad, θG = 1 rad and
C = 121.36, and the mobility of GND was µ = 104 cm2/Vs.
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Figure 3. The output versus the input for different values of the inclination angle of MNP with respect
to QD, under EIT conditions; Ωc

γ12
= 2, and γ32

γ12
= 0.4. The other parameters were ∆p

γ12
= 1, ∆c

γ12
= 0,

RM = 15 nm, R = 5 nm, θG = 1 rad and C = 121.36, and the mobility of GND was µ = 104 cm2/Vs.
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The effect of the size of MNP is investigated in Figure 4. The threshold size of MNP required
to get a high degree of multistability with a low threshold is that of radius equal to 0.555 of the
center-to-center distance between MNP and GND; i.e., RM = 15 nm, which has been used in Figure 4.
Increasing the size of MNP leads to decreasing the degree of optical multistability and increasing
its threshold. This can be attributed to the large associated center-to-center distances between MNP
and GND that strongly decrease the enhancement factor (Λ), as observed by Equation (2), in addition
to the large corresponding center-to-center distances between GND and QD that lead to a reduction of
the energy transfer between the two components. For this reason, when we set the size of MNP to
0.6363 of the center-to-center distances between MNP and GND, we observed a switching between
optical multistability and bistability, as shown in Figure 4c.

0 50 100 150

Input |Y|

0

10

20

30

40

O
u
tp

u
t 

|X
|

For R
M

=15 nm

0 50 100 150

Input |Y|

0

10

20

30

40

O
u
tp

u
t 

|X
|

For R
M

=16 nm

0 50 100

Input |Y|

0

10

20

30

40

O
u

tp
u
t 

|X
|

For R
M

=21 nm

0 50
0

2

4
(a)

0 50 100
0

2

4
(b)

0 50 100
0

2

4
(c)

Figure 4. The output versus the input for different values of the MNP size, under EIT conditions;
Ωc
γ12

= 2, and γ32
γ12

= 0.4. The other parameters were ∆p
γ12

= 1, ∆c
γ12

= 0, R = 5 nm, θM = 0.4 rad, θG = 1
rad and C = 121.36, and the mobility of GND was µ = 104 cm2/Vs.

It is worth noting here that the tolerance intervals for the critical parameters that our system
can afford without losing the optical multistability performance are almost reasonable. In particular,
the system still demonstrates optical multistability with edge-to-edge distances between MNP and
GND (R) in the range 5–17 nm (Figure 2), an inclination angle of MNP (θM) in the range 0.4–1.1 rad
(Figure 3) and a radius of MNP RM in the range 15–21 nm (Figure 4).

To figure out how the optical multistability of our proposed system can be controlled by the
detunings of probe and control fields, we plot in Figures 5 and 6 the relationships between the output
and input fields at different values of ∆p and ∆c. Figure 5 shows the control of optical multistability of
the MNP–GND–QD hybrid system by the detuning of the probe field. It is clear from Figure 5c that,
when the probe field is resonant with the atomic transition |1〉 ↔ |2〉, the threshold of multistability
is significantly reduced while the number of its loops is increased. This seems reasonable since a
strong coupling between GND and QD is induced at resonance resulting in the enhancement of the
nonlinearity of the proposed hybrid system and a reduction in the input field required to trigger the
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optical multistability. Moreover, if the damping rate of excited state (|1〉) exceeds the detuning of the
probe field, the threshold of optical multistability is relatively large (Figure 5a) and decreases as the
ratio ∆p/γ12 increases (Figure 5b) .
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Figure 5. The output versus the input for different values of ∆p
γ12

, under EIT conditions; Ωc
γ12

= 2,

and γ32
γ12

= 0.4. The other parameters were ∆c
γ12

= 0, R = 5 nm, θM = 0.4 rad, θG = 1 rad and C = 121.36,
and the mobility of GND was µ = 104 cm2/Vs.

On the other hand, we examine in Figure 6 the extent to which the optical multistability of the
proposed MNP–GND–QD can be controlled by the detuning of the control field that does not circulate
in the optical ring cavity. Compared to Figure 5, with a resonant control field, similar results were
found, but different behavior was observed for off-resonant control field. Specifically, we observed
that the threshold of optical multistability was relatively small for the case of ∆c < γ12 (Figure 6a).
Interestingly, the case of resonant probe and control fields that is depicted in Figure 5c shows an
extremely low threshold of optical multistability due to the enhanced energy transfer associated with
two-photon detuning [41].

One of the unique properties of graphene that controls the magnitude of the extinction
cross-section and the energy of graphene plasmons is the mobility of graphene charge carriers (µ).
However, due to the high carrier mobility in graphene, the different values of (µ) with the same order
of magnitude can lead to the same energy of plasmons. Therefore, we can safely change the values
of the mobility while ensuring that the energy of GND plasmons remains resonant with excitons in
the QD. Figure 7 shows the effect of the graphene carrier mobility on the optical multistability. It can be
seen that the number of loops increases while the threshold of multistability decreases as the mobility
of graphene increases. This result can be understood based on the relation between the relaxation
rate of graphene plasmons and the mobility of its charge carriers, i.e., γG = ev2

F/µEF. In other words,
higher mobility means lower damping rate of graphene plasmons that can enhance the nonlinearity of
the system.

Based on the above results for optical multistability under EIT conditions, it is remarkable that
an extremely low threshold of optical multistability can be obtained for a resonant probe field that
induces the plasmons of a relatively large-mobility GND as shown in Figures 5c and 7d, compared to
those have been found for MNP-QD hybrid system [26].
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Figure 6. The output versus the input for different values of ∆c
γ12

, under EIT conditions; Ωc
γ12

= 2,

and γ32
γ12

= 0.4. The other parameters were ∆p
γ12

= 1, R = 5 nm, θM = 0.4 rad, θG = 1 rad and C = 121.36,
and the mobility of GND was µ = 104 cm2/Vs.

Figure 7. The output versus the input for different values of the mobility of GND under EIT conditions;
Ωc
γ12

= 2, and γ32
γ12

= 0.4. The other parameters were ∆p
γ12

= 1; (a–c) ∆p
γ12

= 0; (d) ∆c
γ12

= 0, R = 5 nm,
θM = 0.4 rad, θG = 1 rad and C = 121.36.
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Finally, in Figure 8 we show some of the above multistability curves when the conditions of EIT
are not fulfilled; i.e., Ωc

γ12
= 0.5, and γ32

γ12
= 1. From these results, it can be seen that under conditions

of EIT, the multistability threshold is significantly reduced because of the enhanced nonlinearity
induced by steep dispersion associated with EIT. On the other hand, the limits of the parameters
within which the switching between optical multistability and bistability can occur, are unaffected,
as shown in Figure 8b. Taking into account all cases examined in Figure 8, we can conclude that when
EIT conditions are not fulfilled, we can obtain a relatively low threshold for multistability only for a
resonant probe field (Figure 8c). This is apparently due to the strong energy transfer between plasmons
in GND and excitons in the QD for resonant probe field.
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Figure 8. The output versus the input out of EIT conditions; Ωc
γ12

= 0.5, and γ32
γ12

= 1. The other parameters

were ∆p
γ12

= 1 in (a,b,d), ∆c
γ12

= 0, R = 5 nm, θM = 0.4 rad, θG = 1 rad and C = 121.36, and the mobility
of GND was µ = 104 cm2/Vs in (a–c).

4. Conclusions

We studied the optical multistability induced in a unidirectional ring cavity due to the
interactions in a MNP–GND–QD hybrid system with probe and control fields in the optical range
of the electromagnetic spectrum, where the QD is considered as a three-level atomic system of
Lambda configuration. We have found that our proposed system can support controllable optical
multistability resulting from the giant self-Kerr nonlinearity demonstrated by this system. Moreover,
the extremely low threshold and high degree of optical multitability were obtained at two-photon
resonance with high mobility GND under EIT conditions. We calculated the limits of the geometrical
structure parameters within which the switching between optical multistability and optical bistability
can occur. Interestingly, this optical switching can also be controlled by the detuning and Rabi
frequency of the probe and control fields. Therefore, the values related to the geometrical structure
and materials parameters of the hybrid system as well as the power and detuning of the probe and
control fields, turned out to be well within the limits of current materials technology.

Our results demonstrate that MNP–GND–QD hybrid systems are unique platforms on which to
observe controllable optical multistability that can be switched to optical bistability. Thus, the results
of our work may contribute to a deeper insight on the control of light by light in such novel systems
that can be used to build efficient optical multistable nanoswitches and logic-gate elements for
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quantum memories. To achieve a more comprehensive understanding of this unique system and
its potential applications, future works could include investigations into the optical multistability in
MNP–GND–QD hybrid systems with typical values of Fermi energy that are suitable for operation in
infrared light.
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