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Abstract: The propose of this review was to summarize the advances in multi-scale surface technology
of titanium implants to accelerate the osseointegration process. The several multi-scaled methods used
for improving wettability, roughness, and bioactivity of implant surfaces are reviewed. In addition,
macro-scale methods (e.g., 3D printing (3DP) and laser surface texturing (LST)), micro-scale (e.g.,
grit-blasting, acid-etching, and Sand-blasted, Large-grit, and Acid-etching (SLA)) and nano-scale
methods (e.g., plasma-spraying and anodization) are also discussed, and these surfaces are known
to have favorable properties in clinical applications. Functionalized coatings with organic and
non-organic loadings suggest good prospects for the future of modern biotechnology. Nevertheless,
because of high cost and low clinical validation, these partial coatings have not been commercially
available so far. A large number of in vitro and in vivo investigations are necessary in order to obtain
in-depth exploration about the efficiency of functional implant surfaces. The prospective titanium
implants should possess the optimum chemistry, bionic characteristics, and standardized modern
topographies to achieve rapid osseointegration.

Keywords: macro-scale; micro-scale; nano-scale; surface modification; roughness; rapid bone integration

1. Introduction

In recent decades, the worldwide demand for dental and orthopedic implants has grown steadily,
reaching approximately $45.5 billion sales in 2014 [1–3]. Brånemark [4] studied the osseointegration
process and applied the first dental implant in the 1960s. Since then, the detailed study and development
of dental and orthopedic implants have been continued. Long-term follow-up for the different types of
implants in patients has been adequately reported in the literature [5–10]. The clinical success rate
of dental implants was reported to be more than 87.8% over a follow-up period of 36 years, which is
mainly related to early bone regeneration [5]. Dental implant design and its topography are among the
vital factors influencing its early osseointegration process. Since the 1970s, dental implant shapes have
transformed from hexagonal to conical connections and they are usually designed as rough titanium
surfaces [1,5,11]. The efficiency of the connection method directly affects the long-term stability of
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the bone tissue in the neck of the dental implant. The long-term stability of conical connections
is better than that of hexagonal connections. In addition, the rough surface increases the contact
area between the implant and the osteoblasts, thus accelerating bone healing. It also reduces bone
resorption by increasing the bonding strength and thus improving the interfacial stress distribution,
which in turn reduces the healing time in dental implants [11,12]. Two types of bone to implant surface
interactions are observed in the initial stages of osseointegration. The first type involves a fibrous soft
tissue capsule formation, and if it does not achieve the proper fixation with the surrounding bone,
it will probably lead to implant failure. The second type, associated with the direct interaction of
bone with the implant surface, is defined as osseointegration [1]. It is generally recognized that high
fixation is one of the prerequisite parameters for successful long-term implantation [13]. The rate
of osseointegration and the percentage of bone-to-implant contact (BIC) are highly dependent on
the surface properties [14–16]. Various parameters such as chemical composition, surface energy,
wettability (hydrophobicity/hydrophilicity), roughness, topography, and surface morphology play
crucial roles in adhesion and the survival of cells [17,18]. Usually, materials with excellent biological
and mechanical properties such as commercially pure titanium (CP Ti), Ti-6Al-4V, and zirconia have
been previously used in dental and orthopedic implants [19–24].

Considering the non-toxic nature and biocompatibility characteristics, titanium is one of the best
choices in implant applications. Titanium shows a vast number of remarkable properties, for instance,
high fatigue and corrosion resistance in biological fluids [25]. Furthermore, among various Ti alloys,
theβ-type alloys reveal lower elastic moduli [26,27], excellent corrosion resistance [28,29], and improved
biocompatibility [30–39]. However, the bio-inertness of Ti alloys leads to an extended osseointegration
time with bone. In order to overcome this limitation, surface treatment technologies can be used to attain
bioactive surfaces on Ti substrates [40–43]. The macro-scale, micro-scale, and nano-scale morphology
of the implant surfaces have a crucial influence on the early bone formation and fixation [16,44,45].
Most titanium implant surfaces with certain roughness characteristics were fabricated through mixed
technologies (e.g., grit-blasting, acid-etching). In addition, the latest research literature concentrates
on macro-, micro-, and nano-scale surface modification through different methods with promoted
osseointegration responses [42,46,47]. Meanwhile, the multi-scaled morphologies enhance protein
adsorption and stimulate osteogenic cell migration in order to accelerate the osseointegration period [48].
In addition, periodontitis (CP) and coronary heart disease (CHD) patients have bigger challenges
regarding dental implant implantation, as these patients are more likely to develop peri-implantitis. In
clinical studies, asymmetric dimethylarginine (ADMA) [49], endothelin-1(ET-1) concentrations [50],
and vitamin D [51] have nonnegligible effects on CP and CHD. These studies suggested that patients
suffering from CP and CHD have higher salivary levels of ET-1 and lower serum levels of vitamin D
than healthy control subjects [50,51]. In a multivariate model, the significant predictors of salivary
ADMA levels were hs-C-reactive protein [49]. Therefore, the exact role of the potential benefits of
ADMA, ET-1, and vitamin D should be further studied in detail.

The purpose of this article is to report the state of the art on the multi-scale technological
advancements of titanium implant surfaces to accelerate osseointegration. This review mainly focuses
on innovative physicochemical procedures in multi-scale-based techniques. The physical and chemical
characteristics such as wettability, roughness, and bioactivity of titanium implants in relation to
biological performance is fully discussed. In this regard, the multi-scale functional coatings have the
potential to increase the protein adsorption and speed up the osteogenic cell migration, angiogenesis
and the early bone formation and its mineralization. Nevertheless, the optimum process parameters
for various technologies still need to be clarified and will be discussed in detail in this article.

1.1. Chemical Composition and Wettability

In general, CP Ti and its alloys are used to fabricate dental implant fixtures [52]. Meanwhile,
the choice of titanium and its alloys as an implant material depends on the high biocompatibility,
corrosion resistance, strength, and the osseointegration function [53]. In addition, the biocompatibility
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of titanium-based alloys is determined by its composition, patient health conditions, and implanting
position. Compared with other metallic systems, pure titanium and its alloys are clinically preferred
because of their biosafety and the low density value of about 4.51 g/cm3 [54]. CP Ti according to its
purity, oxygen, carbon, and iron elements is usually classified into four grades (graded from I to IV);
this chemical content determines the purity and grade of CP Ti [1,11]. Most of the used implant fixtures
are manufactured from CP Ti grade IV and the abutments are made from Ti-6Al-4V alloy (grade V
titanium alloy) [1,11]. The yield strength and fatigue properties of Ti-6Al-4V are higher than that of
pure titanium, and the annealed Ti–6Al–4V has a yield strength in the range of 825–869 MPa and a
plasticity of about 6–10%, to bear the stress magnitude from occlusal loading [55–57]. Furthermore,
the wettability of titanium implant surfaces affects cell behavior in the initial osseointegration
stage [7,17,58,59]. Considering the interaction of human body fluids, cells, and tissues with the implant
surface, hydrophilic surfaces (water contact angle is ranging from 40◦ to 70◦) are more suitable than
hydrophobic surfaces [7,60]. The optimum parameters and characteristics regarding the contact angle
are still controversial. Previous research [61] revealed that a hydrophilic surface optimization using
Sand-blasted, Large-grit, and Acid-etching (SLA) led to a higher BIC percentage of 81.91% than a
regular SLA process with 66.57% on CP Ti surfaces four weeks after implanting in miniature pigs.

1.2. Roughness and Morphology

The human skeleton exhibits a hierarchical structure of the macro-, micro-, and nano-scale levels,
as seen in Figure 1 [62]. Bone consists of organic (type I and type IV collagen and fibrillin) and inorganic
mineral (hydroxyapatite, HA) constituents. Considering the bone structure and density, its structure
can be classified into two main types of bone: trabecular bone (cancellous bone) and cortical bone
(compact bone). Cancellous bone is made of a porous network, and its porosity is in the range of
50–90%, depending on the specific location and age. Compact bone has a compact structure with a
porosity in the range of 3–12% [14,63,64].

Nanomaterials 2020, 10, x FOR PEER REVIEW 3 of 27 

 

 

In general, CP Ti and its alloys are used to fabricate dental implant fixtures [52]. Meanwhile, the 

choice of titanium and its alloys as an implant material depends on the high biocompatibility, 

corrosion resistance, strength, and the osseointegration function [53]. In addition, the 

biocompatibility of titanium-based alloys is determined by its composition, patient health conditions, 

and implanting position. Compared with other metallic systems, pure titanium and its alloys are 

clinically preferred because of their biosafety and the low density value of about 4.51 g/cm3 [54]. CP 

Ti according to its purity, oxygen, carbon, and iron elements is usually classified into four grades 

(graded from I to IV); this chemical content determines the purity and grade of CP Ti [1,11]. Most of 

the used implant fixtures are manufactured from CP Ti grade IV and the abutments are made from 

Ti-6Al-4V alloy (grade V titanium alloy) [1,11]. The yield strength and fatigue properties of Ti-6Al-

4V are higher than that of pure titanium, and the annealed Ti–6Al–4V has a yield strength in the 

range of 825–869 MPa and a plasticity of about 6–10%, to bear the stress magnitude from occlusal 

loading [55–57]. Furthermore, the wettability of titanium implant surfaces affects cell behavior in the 

initial osseointegration stage [7,17,58,59]. Considering the interaction of human body fluids, cells, and 

tissues with the implant surface, hydrophilic surfaces (water contact angle is ranging from 40° to 70°) 

are more suitable than hydrophobic surfaces [7,60]. The optimum parameters and characteristics 

regarding the contact angle are still controversial. Previous research [61] revealed that a hydrophilic 

surface optimization using Sand-blasted, Large-grit, and Acid-etching (SLA) led to a higher BIC 

percentage of 81.91% than a regular SLA process with 66.57% on CP Ti surfaces four weeks after 

implanting in miniature pigs.  

1.2. Roughness and Morphology  

The human skeleton exhibits a hierarchical structure of the macro-, micro-, and nano-scale levels, 

as seen in Figure 1 [62]. Bone consists of organic (type I and type IV collagen and fibrillin) and 

inorganic mineral (hydroxyapatite, HA) constituents. Considering the bone structure and density, its 

structure can be classified into two main types of bone: trabecular bone (cancellous bone) and cortical 

bone (compact bone). Cancellous bone is made of a porous network, and its porosity is in the range 

of 50–90%, depending on the specific location and age. Compact bone has a compact structure with 

a porosity in the range of 3–12% [14,63,64]. 

 

Figure 1. Structure of skeleton: descending hierarchical macro- to nano-scale structures of natural 

bone. (Reproduced with permission from [62]. Copyright Elsevier, 2016). 

Numerous studies [17,65,66] indicate that the roughness and morphology features of the implant 

surface have considerable effects on the osseointegration rate and its fixation quality with bone. 

Figure 1. Structure of skeleton: descending hierarchical macro- to nano-scale structures of natural bone.
(Reproduced with permission from [62]. Copyright Elsevier, 2016).

Numerous studies [17,65,66] indicate that the roughness and morphology features of the implant
surface have considerable effects on the osseointegration rate and its fixation quality with bone.
Surface roughness can be divided into three levels: macro-scale, micro-scale, and nano-scale [15].
The topographical roughness in macro-scale ranges from millimeters to tens of microns. Most of the
macro-scale features are fabricated with screws, modifying the roughness to more than 10 µm [1,67].
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The initial fixation and stability of implants can be increased by roughening the smooth surfaces.
Furthermore, surfaces with high roughness values lead to a better interlocking reaction in the implant
bone interface zone compared to smooth surfaces. Nevertheless, surfaces with high roughness also
have some limitations such as the increase of peri-implantitis and ion leakage. The roughness value
in the micro-scale condition ranges between 1 and 10 µm; this roughness range represents the best
interlocking reaction between mineralized bone and implants [1,65,68]. A study reported [1] that
the surface should be fabricated with hemispherical pits with approximately 1.5 µm depth and
4 µm diameter. The nano-scaled topography condition is in the range of less than one micrometer.
There are various surface morphologies made using different techniques and the related adjusting
process parameters, for instance, nano pit, nanotubular, nanowire, nanorod, and nanopore [44,69–73].
Accordingly, the Three-Dimensional Printing (3DP) and Laser Surface Texturing (LST) procedures
improve the surface morphology at the macro-scale, while the grit-blasting and acid-etching procedures
can produce surface features and morphologies at the micro-scale [74–80]. Plasma-spraying and
anodization processes modify the morphology at nano-scale [81–83].

2. Results and Discussion

2.1. Macro-Scale Treatment

2.1.1. Three-Dimensional Printing

3DP is a well-established and versatile additive material technology that attracts the researchers’
attention due to its individuation in the fabrication of complex constructs [84]. Nowadays, in 3DP
implant preparation, the major focus changes from mechanical strength optimization toward rapid
bone regeneration and infection inhibition. 3DP technologies have the capability to fabricate porous
implants with precise mechanical properties, favorable pore architectures, and even produce implants
with patient-specific functional designs [8,83,85]. The 3DP manufactured implants from titanium and
its alloys have been thoroughly studied and clinically used for decades, however, further research in
this field is necessary to develop stabilized long-term properties. In this section, the factors influencing
bone regeneration (for example, pore size, porosity, pore structure, and roughness) are discussed [86].
Meanwhile, the bone-formation ability of titanium implants by means of different manufacturing
techniques will be explained, systematically [87,88]. It should be considered that the material structure
design combined with biomimetic functionalization in order to enhance its long-term osseointegration
capacity is necessary.

Over the past few decades, varieties of 3DP techniques have been thoroughly studied [8,89–91].
It is generally believed that 3DP techniques can be classified into main two categories with laser and
electron beam input systems [92]. The representative technologies are selective laser melting (SLM)
and electron beam melting (EBM). The processes of SLM is also known as laser beam melting (LBM),
direct metal laser Sintering (DMLS), LaserCUSING, or laser metal fusion (LMF) [92], as shown in
Figure 2 [93].

The implant surface roughness fabricated using SLM technology (arithmetical mean roughness
(Ra): 5–20 µm)) is smoother than the EBM (Ra: 20–50 µm) counterpart, because of its smaller laser spot
size and thinner layer thickness (30–50 vs. 50–70 µm), smaller powder size (average diameter 30–50 vs.
60–80 µm), and lower energy input [94,95]. Many reports have proved that titanium and its alloys
prepared using SLM and EBM methods improved the osseointegration [96]. Nevertheless, a common
standard for the optimum roughness has not been introduced yet. A study [97] has confirmed that
the osseointegration of titanium implant surfaces can be enhanced by achieving the roughness range
from 0.5 to 2.0 µm, thus, it is necessary to do further surface modifications in order to improve
surface roughness.
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Figure 2. (a) Schematics of a laser beam melting (LBM) machine; (b–d) porous structures; (e–f) micro-CT
images of human cancellous bones; (g) stacked hollow cubes; (h–i) the surgical template in pre-blasting
and after blasting condition; (j) the dental restorations; (k) a personalized femoral component.
(Reproduced with permission from [93]. Copyright Elsevier, 2019).

The cytotoxicity of Ti-6Al-4V made using SLM and EBM approaches was evaluated with fibroblasts,
and it was seen that there was not any significant difference between values in comparison to the
negative control group [98]. The almost same results were observed [99] in the cell proliferation of
Ti-6Al-4V treated using SLM and EBM with mesenchymal stromal cells (MSC). In another study [88],
different basic structures (cubic, diagonal, pyramidal) for Ti-6Al-4V scaffolds are produced using
SLM and EBM. Under static conditions, human primary osteoblasts were cultured on the samples.
The cell activity and matrix production in both of the two groups increased (no significant difference).
The collagen type 1 in Ti-6Al-4V SLM and EBM scaffold specimens with 700 µm pore size and 51%
porosity revealed a remarkable increase during osteoblast differentiation [88].

There is a crucial evaluation criterion, BIC percentage; a higher BIC percentage means a greater
bone ingrowth level. Experimental studies [79,88,100] reported that the pore size and porosity of
SLM were 250–800 µm and 63%, and the pore size and porosity of EBM were 350–1400 µm and
49%, respectively. In the Ti-6Al-4V specimens, BIC was not observed, and there was also no sign of
histological differences in the femoral condyle of goats after four weeks of implantation between the
two groups. After implanting for 15 weeks, both of the two groups were intimately connected to the
host bone, and the histomorphometry results showed that the BIC value of the EBM specimen group
was higher than that of the SLM [101].

Structural characteristics of scaffold have vital effects on the mechanical properties and biological
performance. Several studies [100,102,103] have revealed that the different architectures with different
pore sizes (100–1000 µm), porosity (30–80%), and pore shapes promote the initial osseointegration
period. However, there is a controversy about the optimal structure. Table 1 summarizes the research
literature and lists the influencing factors like material, technology, scaffold, and biological performance.

In summary, 3DP technology is used to produce biomedical metal implants with complex
shapes, which promise good prospects for their clinical application in the future. The standard
regulatory guidelines for additive manufactured medical devices are a prerequisite to further medical
implantation. Meanwhile, the reliability and repeatability of stable physicochemical properties,
biological characteristics, security, and its specifications are necessary. Especially, surface modification
in the 3DP implants is an indispensable concept in order to attain high osseointegration performances.
Insufficient bone formation, vascularization, contiguous infection, and implant durability are still
the main challenges. Lastly, the excessive production cost of the 3DP technique limits its further
development and large-scale application.
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Table 1. The important parameters for 3DP architectured implant preparation, in vivo studies.

3DP Material 3DP Method Pore Size (µm) (a) Porosity (%) Pore Shape Animal Model Time (b) Result Ref.

Ti SLM
300,
600,
900

61.6
66.4
64

diamond lattice with
hexagonal pore throat

shape
Rabbit femur 8W P600 implant is a suitable porous structure. [104]

Ti-6Al-4V
(grade 5) EBM 500–700 65–70 \

Sheep
vertebra 26W A higher degree of osseointegration was observed inside the

porous structure than in that of the dense group. [105]

Ti-6Al-4V SLM 600 70 \ Beagle tibia 12W
The volume of regenerated bone increased with increase of
the implantation time (from 11.89% at 4 weeks to 15.85% at

12 weeks), which was better than the Ta group.
[106]

Ti-6Al-4V EBM 710 68 \ Sheep vertebral 6M Ti cages demonstrated better osteointegration with
surrounding bone tissue than PEEK cages. [107]

Ti-6Al-4V SLM 900,
1200

84,
54 diamond lattice Sheep

tibia 2M 900 µm lattice cell size was more favorable to bone ingrowth. [108]

Ti-6Al-4V EBM 450 61.3 \ Domestic pig skull 2M The bone volume inside the implants reached almost 46%.
BIC was achieved at 5.96%. [109]

Ti-6Al-4V 3DP
300–500,
200–600,
100–700

49.53 \ Bama mini pig tibia 5W The bone volume/total volume was 12.71–3.556%,
11.99–3.581%, and 12.84–3.874%, respectively. [110]

Ti-6Al-4V EBM \ \ \ Rabbit femur 2W The implants with an EBM screw had a higher BIC ratio
(≈35%) than those with the machine-implanted screw (≈5%). [111]

Ti-6Al-4V EBM

500,
640,
800,
1000

65,
70,
67

diamond lattice Rabbit distal femur 12W Pore size of 500–800 µm showed more favorable histological
bone ingrowth than 1000 µm. [100]

Ti-6Al-4V SLM
500,
600,
700

60,
70 octahedral Rat Sprague-Dawley 12W Pore size of 500 µm and porosity of 60% had the highest

BV/TV and hence the best bone ingrowth. [112]

(a) Pore sizes were presented as designed (measured). (b) W and M mean weeks and months.
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2.1.2. Laser Surface Texturing

Nowadays, the bonding strength between bone and titanium implants can be increased using an
LST technique [60,77,113]. These LST techniques have revealed a great potential to optimize the surface
properties of biomedical implants through forming periodic textured patterns [80]. LST technology
makes good use of thermal and photonic effects. The mechanism of LST is mainly based on ablation
or vaporization. Accordingly, the effects of thermal conduction and fluid dynamics must be clarified
during the process. There is no doubt that the processing efficiency and surface performance directly
depend on the processing variables [77]. Thus, it must be pointed out that the topography and
physicochemical and biological properties can be optimized according to different implant positioning.
While some of the advantages of LST are obvious [114], for example, on the one hand, it is known as
an environmentally friendly technology, on the other hand, it can modify the implant surfaces in a
wide span range from macro-scale to nano-scale without any need for direct contact and it is free of
any contaminations. Furthermore, the material surface treatment with this method is an automated
procedure and can be used in complex shaped samples. In addition, the other advantage of the LST
approach is its flexibility; it is also a non-contact procedure with high controllability and reproducibility.
The process has a lower cost and higher efficiency compared to others, and it is suitable for automation
and on-line monitoring. Hence, it can be utilized in the industrial applications instead of the ultrafast
(femto/pico-second) laser [114]. However, some limitations and problems remain unsolved, such
as the interaction between the laser beam with the material, making it difficult to be theoretically
analyzed [77], and unfortunately, most of the previous studies focused on its empirical aspects.

To enhance the wear resistance of Ti-6Al-4V surfaces, Kümmel et al. [115] produced a linear channel
(width: 30 µm, depth: 10 µm) with a semicircular cross-section by means of LST processing. The wear
volume of the LST samples were 16 times lower than non-textured reference samples (1.6 × 107 µm3

VS. 0.1 × 107 µm3). Patel et al. [116] fabricated different densities, shapes, and directions pillars of
textures on Ti-6Al-4V using an LST method and found that the contact angle value was reduced by
increasing the size of the micro-pillars from 30 × 30 µm to 100 × 300 µm. Texture size and orientation
not only optimize the physical and chemical properties but also improve the biological performance of
the implants [117–125]. Chen and Mwenifumbo et al. [117,118] proved that cell orientation and cell
adhesion are improved when the width of the grooves is 11 µm and the depth is 10 µm. Cell adhesion
strength tests have indicated that the highest cell retention was seen on the linear textured surfaces
with 20 µm intervals. In addition, a linear pattern texture presented a higher rate of cell retention than
the waved pattern textures [119,120]. Furthermore, the interaction mechanism of the grooves and cell
proliferation was demonstrated in detail. Chen et al. [121] displayed the enhanced cell adhesion in
micro-grooved surfaces because of the interaction between the focal adhesions and extracellular matrix
(ECM) proteins. Brånemark et al. [122] showed that the micro-scale and nano-scale topography or
surface oxides formation using laser treatment increased the bone-implant biocompatibility. Soboyejo
et al. [120] reported that the MC3T3 cells maintained the contact guidance and aligned along the
microgrooves. It was further explained that reducing longitudinal groove intervals leads to an
increment in the cell contact guidance [123–125]. A previous study [126] demonstrated that the density
of MC3T3-E1 cells dropped in the textured surface, especially in dimple textured surfaces. XTT assay
showed the results of the cell viability of MC3T3-E1 fibroblast cells after 24 h. The result showed no toxic
effect and good cell viability in the LST group, as shown in Figure 3a. More cells were attached to ridges
and corners than on dimples of the textured surfaces, as shown in Figure 3d–f [126]. The same situation
was observed in MG63 cells [109], and another study [127] indicated that the average roughness on the
dimple feature (Ra = 3.5 µm) was higher than that of the linear feature of the surface (Ra = 2.7 µm). It has
been shown that LST technology evidently reduces the adhesion of Staphylococcus aureus (S. aureus)
bacteria and biofilm formation hence decreases the risk of implant-associated infections [128]. Biofilms
are multi-species communities of microbial cells located on the extracellular polymeric matrix, quorum
sensing communication, and offer nutrients for bacteria. Furthermore, an extracellular polymeric
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matrix prevents the operation of antibiotics on bacteria actually, and it acts as a biological barrier since
the biofilm receives a positive response from the immune system [129–132].

Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 27 

 

E1 fibroblast cells after 24 h. The result showed no toxic effect and good cell viability in the LST group, 

as shown in Figure 3a. More cells were attached to ridges and corners than on dimples of the textured 

surfaces, as shown in Figure 3d–f [126]. The same situation was observed in MG63 cells [109], and 

another study [127] indicated that the average roughness on the dimple feature (Ra = 3.5 μm) was 

higher than that of the linear feature of the surface (Ra = 2.7 μm). It has been shown that LST 

technology evidently reduces the adhesion of Staphylococcus aureus (S. aureus) bacteria and biofilm 

formation hence decreases the risk of implant-associated infections [128]. Biofilms are multi-species 

communities of microbial cells located on the extracellular polymeric matrix, quorum sensing 

communication, and offer nutrients for bacteria. Furthermore, an extracellular polymeric matrix 

prevents the operation of antibiotics on bacteria actually, and it acts as a biological barrier since the 

biofilm receives a positive response from the immune system [129–132]. 

 

Figure 3. (a) XTT (Dimethoxazole yellow) results of cell viability of MC3T3-E1 fibroblast cells after 24 

h in contact with the extracts in the as-received and laser textured surface; (b,c) SEM of the surface of 

linear geometry and dimple geometry; (d–f) fluorescent micrographs of the as-received, line geometry 

and dimple geometry showing the attachment of MC3T3-E1 cells. (Reproduced with permission from 

[126]. Copyright Elsevier, 2015). 

The advantage of LST technology mainly involves the capability of hierarchically controlling the 

surface texture (for instance by producing pits, grooves, pillars, ablation tracks, ripples, and 

columns), array pitch, depth, and other parameters to further change the surface roughness and 

improve the material’s abrasion resistance, contact angle, biological properties (such as cell adhesion 

and biocompatibility, reduction of S. aureus adhesion) and ultimately improving antimicrobial and 

rapid bone integration. 

2.2. Micro-Scale Treatment 

Figure 3. (a) XTT (Dimethoxazole yellow) results of cell viability of MC3T3-E1 fibroblast cells after 24 h
in contact with the extracts in the as-received and laser textured surface; (b,c) SEM of the surface of
linear geometry and dimple geometry; (d–f) fluorescent micrographs of the as-received, line geometry
and dimple geometry showing the attachment of MC3T3-E1 cells. (Reproduced with permission
from [126]. Copyright Elsevier, 2015).

The advantage of LST technology mainly involves the capability of hierarchically controlling the
surface texture (for instance by producing pits, grooves, pillars, ablation tracks, ripples, and columns),
array pitch, depth, and other parameters to further change the surface roughness and improve
the material’s abrasion resistance, contact angle, biological properties (such as cell adhesion and
biocompatibility, reduction of S. aureus adhesion) and ultimately improving antimicrobial and rapid
bone integration.

2.2. Micro-Scale Treatment

2.2.1. Grit-Blasting

After the processing of titanium samples to their final shape, usually, further surface treatment is
required in order to roughen the surface, such as grit-blasting [1,11]. From long ago to the present day,
grit-blasting has been an irreplaceable technology in surface treatment in which the hard ceramic particles
are ejected by compressed air at a high velocity through a nozzle. The surface roughness mainly depends
on the size of the ceramic particles, ranging from 110 to 250 µm. The ceramic particles should have some
characterizations such as stability and biocompatibility, and they should also not affect the ingrowth
of bone cells on titanium implants. Nevertheless, some entrapped abrasive particles are always found
on the implant surfaces. These abrasive particles are usually of aluminum oxide (Al2O3), silicon oxide
(SiO2), titanium oxide (TiO2), and calcium phosphate composition [133,134]. Al2O3 is often applied as
the blasting material and it can be dissolved in acid. Blasting material particles are very hard to remove;
even after ultrasonic cleaning, acid-etching, and sterilization they can be found on the sample surface.
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Evidently, these abrasive particles release in the peri-implant region and interfere with the osseointegration
procedure. Furthermore, there is a possibility that these particles have a role in the reduction of corrosion
resistance of implant surfaces in the body fluid environment [135].

TiO2 particles with an average size of 25 µm induce a medium roughness of about 1–2 µm.
A study [136] revealed that the BIC value achieved by blasting the TiO2 particles remarkably is
higher than the machined blasting surfaces. Meanwhile, current studies [68,137] have proved the
BIC enhancement using TiO2 grit-blasting. After ten years of clinical implantation, studies [6,138]
have shown a high clinical success rate of TiO2 grit-blasted titanium implant surfaces. Clinical
studies [139,140] have reported higher marginal bone levels and survival rates after TiO2 grit-blasting
than machined implants. A study [141] has revealed that when using grit-blasting with TiO2 or Al2O3

particles, the BIC does not show any significant differences. However, a TiO2 grit-blasted implant has
increased mechanical fixation in comparison to smooth titanium surfaces. In addition, the torque force
increases with the increment of surface roughness [142].

Calcium phosphate with its excellent compatibility, bioactivity, and biodegradability is also used
as blasting media in titanium implant surfaces. Based on the crystalline type, calcium phosphates
can be divided into α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate (β-TCP). β-TCP
and HA are identified as effective blasting materials, as these materials produce a clean and uniform
texture on the titanium implant surface. The BIC value of calcium phosphate-treated surfaces is higher
than that of machined surfaces [143,144]. Experimental studies have proved the BIC of a calcium
phosphate-blasted surface was similar to other blasting materials during osseointegration.

A clinical study [145] reported the reliability of the secondary fixation by osseointegration in a
straight standard grit-blasting titanium alloy used in non-anatomical implants. One hundred and
ninety-eight Alloclassic™ total hip arthroplasties were performed in 179 patients, with a mean age
of 66 years old (22–85), including 105 with proximal HA coating and 93 with the original grit-blast
coating. The standard grit-blasted implant and HA coated standard grit-blasted implant are shown in
Figure 4a,b [145]. The HA coating reduced the possible proximal fibrous encapsulation considering that
the HA coating did not change the clinical results. Figure 4c [145] shows a straight Alloclassic™ THA
(total hip arthroplasty) without HA coating implant in a 57-year-old female patient with a fracture of
the femoral neck after removal of immediate postoperative control fixation hardware. The radiographic
results after 23 years and 3 months of follow-up at the age of 80 years old and 5 months showed
successful osseointegration, as shown in Figure 4d. These studies confirm that roughening the titanium
implant surfaces increases bone-to-implant mechanical fixation but not its biological fixation.
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and 3 months of follow-up at the age of 80 years old and 5 months. (Reproduced with permission
from [145]. Copyright Elsevier, 2014).
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2.2.2. Acid-Etching

Acid-etching is defined as a procedure of roughening titanium implant surfaces with strong acid
solutions including hydrochloric acid (HCl), nitric acid (HNO3), sulfuric acid (H2SO4), hydrofluoric
acid (HF), and other combined acid solutions. In some cases, the purpose of acid-etching processing
is to remove the blasting residual particles remaining from the previous grit-blasting processes on
the implant surfaces. Acid-etching usually fabricates the structure of the micro-pits with pit sizes
in the range 0.5–2 µm [146,147]. The micro-pits and spike-like peaks lead to 1–2.7 µm average
roughness on the material surfaces. Specific roughness depends on acid types, acid concentration,
reaction temperature, and reaction time. A common acid-etching procedure is as follows: the implants
are immersed in an acid solution for one hour with ultrasonic vibration at 60–100 ◦C. Then, the
produced oxidized films on a titanium surface are dissolved in acid solution [61,148–150]. However,
acid-etching has a negative effect on mechanical performance. The procedure might result in hydrogen
embrittlement in the titanium implants, meanwhile cracks produced on the surface possibly weaken
the fatigue resistance of the titanium [151]. In fact, some studies confirm the absorption of hydrogen in
titanium and the release of some amount of it in the liquid body environment. In addition, hydrogen
embrittlement is related to the formation of brittle hybrid phases. This phenomenon is also associated
with the fracture mechanisms of titanium implants [151].

Surfaces treated using dual acid-etching (24% HF + HCl/H2SO4) can accelerate bone ingrowth,
keeping its long-term success rate [152]. An experimental study [153] has reported that acid-etching
surfaces have the capability to strengthen osseointegration, generally achieved by the attachment of
fibrin and osteogenic cells around the implant surface. And woven bone with thin trabeculae covering
the implant has been observed [154]. An experimental study [155] raised a presumption that dual
acid-etching surfaces could attach to the fibrin scaffold and promote the adhesion of osteogenic cells.
Studies [156,157] have demonstrated that dual acid-etching surfaces show higher BIC values and
less bone absorption than machined surfaces. In recent decades, the acid-etching approach has been
developed to enhance cell adhesion and bone formation. Another process involvess fluoride solution,
which is used to modify the titanium surface, as titanium can react with fluoride ions, while forming
soluble TiF4 species. This chemical treatment roughens the titanium surface and introduces TiF4 on
the surface, which in turn promotes rapid bone ingrowth [158]. Another study [159] has reported
that surfaces during HF treatment act in favor of osteoblastic differentiation when compared with the
control group. In addition, fluoridated rough implants sustain higher strength and torque removal
in comparison with control samples [160]. As is shown in Figure 5 [161], the morphology of an
acid-etching surface of a commercially available implant is uniform with pits of approximately 3 µm
in width [161,162]. The acid-etching method shows enormous potential in the improvement of
bone-to-implant fixation due to an increase of bioactivity on the implant surface.
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2.2.3. Sand-Blasted, Large-Grit, and Acid-Etched

In general, surface treatment by combining grit-blasting with acid-etching procedures is defined as
SLA. Experimental studies [163–167] reported that SLA treated surfaces are beneficial, with increased
biocompatibility in early bone formation stage and also in cell differentiation. The clinical success
rate of SLA has achieved about 95% [168–170]. After SLA treatment, the topography of titanium
implant surfaces provides positive effects on the activation of blood platelets and cell migration.
Several experimental studies [9,169,171–173] demonstrated that the hydrophilicity of implant surfaces
can further shorten the osseointegration process. In order to improve hydrophilicity, titanium
implants are treated using SLA, and they are immersed in isotonic solution at low pH to produce a
super-hydrophilic titanium surface. The approach is usually done by a commercial brand named
SLActive [174]. The chemical stability can be fixed by the combination of acid-etching and conditioning
it in an isotonic solution. The implant’s surface turns super-hydrophilic due to the application of
chemical surface modification. By utilization of an SLA procedure in isotonic solutions, some spike-like
nanofeatures can be produced on the surface of titanium [148,163,173]. Furthermore, it was seen [173]
that the bonding strength increased between the nanostructured surface and bone tissue, measured
by mechanical pulling out tests in rabbit tibia for eight weeks. Nanostructure features with further
acceleration of the bone healing process are able to enhance protein adsorption, platelet aggregation,
and macrophage adhesion [15,163,169,173,175–177]. An experimental study [178] revealed the
up-regulation of pro-osteogenic cell signaling pathways and osteocalcin on ultra-hydrophilic titanium
surfaces. Compared with acid-etching surfaces, the super-hydrophilic surface can increase BIC in
2–4 weeks [179–184]. The average BIC on SLA surfaces showed to be in the range of 67–81% for
6 months. A 10-year follow-up study [185] of marginal bone loss demonstrated that the clinical
success rate reached 95.1% for acid-etching implant surfaces. Other studies [10,186] of immediate
provisional restorations on implant surfaces have reported a clinical success rate of about 100% on
super-hydrophilic implant surfaces with positive aesthetic outcomes. Zhang et al. [167] demonstrated
the osteogenic performance of SLA and 3DA (3DP and acid-etching) implants in the femoral condyle
of SD rats for 3 and 6 weeks, as is shown in Figure 6 [167]. The BIC of an SLA implant as higher than
that of a 3DA implant (in Figure 6a,b) [167]), thus, SLA processing still cannot be replaced. Micro-scale
and nano-scale modification have revealed a positive effect on osteogenic cell growth because they
produce a hierarchical structure by imitating the skeleton.
Nanomaterials 2020, 10, x FOR PEER REVIEW 12 of 27 

 

 

Figure 6. (a) Representative histological images of 3D, 3DA, and SLA implants after implantation for 

3 and 6 weeks, respectively (scale bar = 200 μm); (b) quantification of BIC percentages on implant 

surfaces; (c) SEM of 3D, 3DA, and SLA surfaces; (d) cell morphology on the 3DA surface after 

culturing of bone marrow stromal cells (BMSCs) for 24 h observed using SEM. (Reproduced with 

permission from [167]. Copyright Elsevier, 2020). 

2.3. Nano-Scale Treatment 

2.3.1. Plasma-Spraying 

For several decades, plasma-spraying, as a safe and reliable nano-scale coating technology, has 

been used for roughening implant surfaces. Plasma-spraying equipment consists of a DC electrical 

power source, gas flow control, a water-cooling system, and a powder feeder. Plasma spraying 

technology is a physical method, which involves spraying melted coating material onto Ti substrate 

surfaces using a direct current arc plasma gun, producing a 30-μm thick coating. Actually, the optimal 

thickness of the film is approximately 50 μm [67] and the average roughness of the coating is 

approximately 7 μm, and it also increases the implant surface area [67].  

A study [187] has reported that a three-dimensional topography formation increased the 

mechanical interlock and tensile strength between bone and implant surfaces. The bone-to-implant 

interface was produced faster after plasma-spraying treatment compared to that of smooth surfaces. 

Nevertheless, titanium particles are observed in the peri-implant region [188]. The observed titanium 

wear particles are from the bone-to-implant interface, scattering among the organs in the minipigs 

implant experiment [188]. The released metallic ions are the product of dissolution or wear processes. 

In this regard, the local and systemic carcinogenic potential effects may attract people’s attention and 

leads to some limitations in its clinical application [189]. No clinical differences between SLA and 

plasma-spraying methods in the interface of titanium implants were reported in a study by Loughlin 

[190]. Another study [191] showed that the BIC on the plasma-sprayed surface is lower than on the 

plasma-sprayed HA coating surface.  

A large number of studies [81,192–196] have reported composite materials coatings modification 

using plasma-spraying treatment on titanium implant surfaces. Li et al. [192] fabricated nano-

TiO2/Ag and nano-TiO2 coatings using a plasma-spraying technique on titanium substrates to 

improve the bioactive and antibacterial properties. From water contact angle and MG-63 cell 

adhesion and proliferation tests, there were no significant differences between nano-TiO2/Ag and 

nano-TiO2 samples. However, in the samples containing Ag particles, the percent reduction of 

Escherichia coli reached approximately 100% after 24 h, and the loaded Ag particles did not show 

obvious osteo-toxicity. Ke et al. [194] produced the HA layer using laser engineered net shaping 

(LENSTM) on Ti-6Al-4V substrates, and then prepared HA/MgO/Ag2O coating using plasma-

spraying in order to enhance the strength of the adhesive bond between the coating and substrates, 

Figure 6. (a) Representative histological images of 3D, 3DA, and SLA implants after implantation for
3 and 6 weeks, respectively (scale bar = 200 µm); (b) quantification of BIC percentages on implant
surfaces; (c) SEM of 3D, 3DA, and SLA surfaces; (d) cell morphology on the 3DA surface after culturing
of bone marrow stromal cells (BMSCs) for 24 h observed using SEM. (Reproduced with permission
from [167]. Copyright Elsevier, 2020).
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2.3. Nano-Scale Treatment

2.3.1. Plasma-Spraying

For several decades, plasma-spraying, as a safe and reliable nano-scale coating technology, has been
used for roughening implant surfaces. Plasma-spraying equipment consists of a DC electrical power
source, gas flow control, a water-cooling system, and a powder feeder. Plasma spraying technology is
a physical method, which involves spraying melted coating material onto Ti substrate surfaces using a
direct current arc plasma gun, producing a 30-µm thick coating. Actually, the optimal thickness of
the film is approximately 50 µm [67] and the average roughness of the coating is approximately 7 µm,
and it also increases the implant surface area [67].

A study [187] has reported that a three-dimensional topography formation increased the
mechanical interlock and tensile strength between bone and implant surfaces. The bone-to-implant
interface was produced faster after plasma-spraying treatment compared to that of smooth surfaces.
Nevertheless, titanium particles are observed in the peri-implant region [188]. The observed titanium
wear particles are from the bone-to-implant interface, scattering among the organs in the minipigs
implant experiment [188]. The released metallic ions are the product of dissolution or wear processes.
In this regard, the local and systemic carcinogenic potential effects may attract people’s attention
and leads to some limitations in its clinical application [189]. No clinical differences between SLA
and plasma-spraying methods in the interface of titanium implants were reported in a study by
Loughlin [190]. Another study [191] showed that the BIC on the plasma-sprayed surface is lower than
on the plasma-sprayed HA coating surface.

A large number of studies [81,192–196] have reported composite materials coatings modification
using plasma-spraying treatment on titanium implant surfaces. Li et al. [192] fabricated nano-TiO2/Ag
and nano-TiO2 coatings using a plasma-spraying technique on titanium substrates to improve the
bioactive and antibacterial properties. From water contact angle and MG-63 cell adhesion and
proliferation tests, there were no significant differences between nano-TiO2/Ag and nano-TiO2 samples.
However, in the samples containing Ag particles, the percent reduction of Escherichia coli reached
approximately 100% after 24 h, and the loaded Ag particles did not show obvious osteo-toxicity.
Ke et al. [194] produced the HA layer using laser engineered net shaping (LENSTM) on Ti-6Al-4V
substrates, and then prepared HA/MgO/Ag2O coating using plasma-spraying in order to enhance
the strength of the adhesive bond between the coating and substrates, as shown in Figure 7 [194].
Compared with just plasma-spraying coating condition, LENSTM and plasma-spraying procedures
increased the bond strength from 26 ± 2 MPa to 39 ± 4 MPa. Additionally, the Ag ions release
amount reduced to 70% due to crystallization enhancement by the LENSTM HA layer. In vitro
human osteoblast cell culture assays indicated that Ag2O (2 wt%) was a quite safe coating since an
antibacterial characteristic was observed against E. coli and S. aureus in Ag2O coatings. Another
investigation [195] has reported improved wettability after plasma-spraying treatment. The results
revealed that unheated treated HA-ZrO2 and HA-TiO2 coating modified by plasma-spraying showed
better hydrophilicity than the heat-treated condition, and the water contact angle was 25◦ and 35◦,
respectively. It is worth mentioning that both ZrO2 and heat treatment can enhance the hardness
of material surfaces [196]. In a Sprague-Dawley rats model experiment for five weeks, the rate of
bone mineralization of plasma-spraying ZnO(0.25 wt%)/SiO2 (0.5 wt%)/Ag2O(2.0 wt%)-HA composite
coating was 32%, while it was about 11% in the plasma-spraying HA coating group [197]. Utilization
of TiO2, Ag2O, ZrO2, ZnO, and SiO2 in a suitable content is beneficial for the antibacterial property,
hardness, osteo-conduction, and early bone formation [193].
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Figure 7. (a) Schematics during laser engineered net shaping (LENSTM) and plasma-spraying treatments;
(b) bond strength between HA and HA/LENS coatings and substrates; (c) accumulative Ag+ release in
MgO-Ag2O-HA/Ti-6Al-4V and MgO-Ag2O-HA/LENS/Ti-6Al-4V group. (Reproduced with permission
from [194]. Copyright Elsevier, 2019).

In fact, the corresponding standards about the plasma-spraying treatment on titanium implants
in clinical applications are briefly reported in this review paper. However, this technology still has
enormous potential to develop in the future.

2.3.2. Anodization

Anodization technology is a mature technology to change the roughness and topographic features
on the surface of titanium with many influencing variables, for instance, oxidation duration, oxidation
voltage, electrolyte solution type, electrolyte solution concentration, and the subsequent heat treatment
process. Nanopores and nanotubes can be induced by constant potential anodization in different
acid solutions (e.g., H2SO4, HF, H3PO4, HNO3) for various time spans [11,198]. A uniform oxide
layer forms on the titanium surface with a thickness of about a few hundred nanometers up to a
few microns [199]. The anodic oxide film is formed by the charging of the double electric layer at
the metal-electrolyte interface. The mechanism is dissolution of oxide film assisted by the electric
field and it is enhanced by temperature, involving the formation of a soluble salt containing the
metal cation and an anion in the electrolytic bath. After establishing a stable potential, the current
gradually decreases due to either a decrease in Ti3+ in the membrane layer or an increase in the
integrity of the membrane layer, which can lead to a significant increase in resistance, resulting in
a reduced current [200]. Compared with machined surfaces, anodized surfaces enhanced the bone
response in biomechanical and histomorphometric experiments [201]. The anodized preparation
process and TiO2 nanotubes array are shown in Figure 8a,b. In Figure 8c, CaO is observed on the
surface of NT-RP-Ca/P. The potentiodynamic polarization curves observed in Figure 8d show that
samples containing nanotube (NT and NT-RP-Ca) exhibited a passive region extending over a wide
potential range when compared to Ti surfaces. Bone-like structured TiO2 nanotubes displayed superior
corrosion resistance ability. In addition, bone-like structured TiO2 nanotubes enriched with calcium and
phosphorous have enhanced osteoblastic cell functions with MG-63 cells, as is shown in Figure 8e [198].
In another study [202], the clinical success rate of anodized implants are reported to be higher than that
of machined titanium surfaces. There are two mechanisms to explain the osseointegration: mechanical
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interlocking and biochemical bonding observed between implant material and bone [66,203]. Among
the many metal and salt ions (Ti, Mg, P, Ca, S) [204,205], the incorporation of Mg ions is the best way to
remove the torque value [66].
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Figure 8. (a) Schematics during anodization; (b) FESEM micrographs showing the morphology of the
highly ordered TiO2 nanotubes present on NT-Ca/P; (c) high resolution XPS spectra of deconvoluted Ca
2p; (d) potentiodynamic polarization curves of Ti, NT, NT-Ca/P, and NT-RP-Ca/P samples immersed
at 37 ◦C; (e) FESEM micrographs of MG-63 cells cultured on NT-RP-Ca/P surfaces after one day of
incubation. (Reproduced with permission from [198]. Copyright Elsevier, 2016).

The anodized studies in references [198,206] possess nano-scale surfaces, enabling them to load
and deliver multifunctional molecules and growth factors to accelerate early bone integration. The wall
thickness, diameter, and length of nanotubes directly depend on the anodization parameters such as
oxide temperature, voltage, time, and electrolyte concentration [199]. Nanotubes increase the contact
surface area resulting in an increase in wettability and adsorption of proteins and ions [198,207–209].
Loading antibacterial ions on nanotubes can prevent biofilm formation and reduce the bacteria in
the peri-implant region to avoid early failure of the implant [210–212]. The length range of anodized
nanotube array lies between 7 and 10 µm. The inner diameter range and the external diameter
range are 20–100 nm and 30–110 nm, respectively [198,206]. The nanotube spacing is suitable for the
transformation of waste and nutrients [213]. The TiO2 nanotube size can be adjusted by changing the
anodization parameters in order to achieve a similar size as the skeleton. The diameter of cortical
bone is reported to be in the range of 10–500 µm, while the diameter of the cancellous bone is
0.2–1 mm [14,199,214]. In addition, nanotube arrays try to simulate the size and arrangement of
collagen fibrils in the bone tissue [215]. Several experimental studies [216,217] indicated that the
length of TiO2 nanotubes has an influence on biocompatibility, while their diameter has a critical
effect on cell adhesion and proliferation. The best osteoconductivity was reported in for 70 nm
diameter nanotubes, meanwhile, 80 nm diameter nanotubes also showed improved proliferation
and differentiation behavior [199,218,219]. Additionally, the extra annealing (600 ◦C 3 h) in the heat
treatment stage seems to be beneficial for the best wettability behavior with a 62◦ water contact angle
for improved cellular response [220]. There are three crystalline phases of TiO2 including anatase,
rutile, and brookite. Anatase forms with annealing at 400–600 ◦C for 2–3 h [221]. Rutile begins to
form with annealing at more than 700 ◦C for 2–3 h [222]. Furthermore, the anatase crystallization of
TiO2 nanotubes enhances the hydrophilicity of the annealed surfaces resulting in a rise in protein
adsorption [223].
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In brief, nano-scale feature formation on titanium can improve protein adsorption, osteoblastic
cell adhesion and proliferation, and the healing rate of the implant periphery zone. The anodization
procedure produces a uniform and regular topography; in particular, TiO2 nanotube arrays are also
developed as a drug loading system to deliver corresponding drugs. The advantage of this system is
that the delivered multifunctional drugs can be released in the predetermined time span and then can
be released into the interface of titanium implants [224]. TiO2 nanotubes are beneficial for utilization
in drug delivery systems. The tube length, diameter, and phase are adjustable according to the
desired demands. In view of common electrochemical approaches to fabricate micro/nanopores and
nanotubes on implant surfaces in electrolyte solutions with a settled voltage and time, the production
of standard implants seems to be feasible from an industrial perspective. Considering the present
studies about nanotube fabrication on titanium implants, the special design and identification of the
modern nanotube-modified implants depend on their clinical benefits, the demands of patients, and the
interests of the producers.

3. Conclusions

There are a large number of surface treatment approaches commercially available for producing
titanium implant surfaces. Nowadays, surface modification techniques (for instance, 3DP, grit-blasting,
acid-etching, plasma-spraying, and anodization) have proven clinical efficacy. Reaching to a favorable
surface morphology after surface modification plays a vital role in enhancing early osseointegration.
In particular, multi-scale combined topography (such as macro-scale, micro-scale, and nano-scale) can
shorten the phase of bone ingrowth. Blood platelet activation, protein adsorption, three-dimensional
fibrin clot cross-linking, osteogenic cell migration, collagen deposition, and bone matrix formation
are the main factors affecting the osseointegration process. Wettability, roughness, and chemical
composition are the bridges connecting the physicochemical properties and biological properties of
titanium alloy surfaces. It’s worth noting that there are still no strict requirements and qualified
standards for implant surface morphology design. In addition, a large amount of pre-clinical and
clinical experiments need to be done to further ensure the security and reliability of implants using
new technologies. In addition, the high cost is another limitation that creates a lot of difficulties in the
clinical validation stage of implant design. The future modern implants should satisfy the following
characteristics: biomimetic and standardized properties, slow rate of material release into the body
environment, and low cost. Multi-scale surface treated implants show considerable potential in order
to design modern implant materials with enhanced properties.
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