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Abstract: Transparent titanium oxide thin films attract enormous attention from the scientific
community because of their prominent properties, such as low-cost, chemical stability, and optical
transparency in the visible region. In this study, we developed an easy and scalable solution-based
process for the deposition of transparent TiOx thin films on glass substrates. We showed
that the proposed method is also suitable for the fabrication of metal-doped TiOx thin films.
As proof-of-the-concept, europium Eu(III) ions were introduced into TiOx film. A photoluminescence
(PL) study revealed that Eu-doped TiOx thin films showed strong red luminescence associated with
5D0→

7Fj relaxation transitions in Eu (III). We found that prepared TiOx thin films significantly reduce
the transmittance of destructive UV radiation; a feature that can be useful for the protection of
photovoltaic devices. In addition, transparent and luminescent TiOx thin films can be utilized for
potential security labeling.

Keywords: transparent thin film; titanium oxide; europium (III) doping; security labeling;
UV screening

1. Introduction

Titanium oxides with a general formula TiOx (titanium oxide) are versatile and low-cost materials
suitable for numerous applications. For example, well-known titanium dioxide TiO2 is used as a white
pigment in sunscreen and enamels [1], as a food additive [2], and in photocatalytic reactions [3,4].
Semitransparent thin films made of TiO2 nanoparticles are used as an electron transporting material
in photovoltaic devices [5,6]. TiO2 thin films with high transparency in the visible range can be
employed as UV-protective coatings for photovoltaic devices [7,8]. To date, some sophisticated
methods, such as chemical vapor deposition [7], spray pyrolysis [8], pulsed laser deposition [9], and
RF magnetron sputtering [10] are widely employed for the deposition of titanium oxide thin films.
However, these methods either require vacuum conditions and high voltages (pulsed laser deposition,
magnetron sputtering) or high temperatures and environmental control (chemical vapor deposition,
spray pyrolysis), that are costly and energy-consuming. In this regard, spin coating method can be
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considered as a low-cost and user-friendly method. For example, TiO2 nanoparticles based thin films
are commonly reported in the literature [11,12]. However, the rough morphology, semitransparent
nature, and cracks formed in these thin films hinder their practical applications.

It is well-known that the doping process can significantly change the physicochemical properties
of titanium oxide. For example, one can easily alter the bandgap, recombination rate of electron-hole
pairs, conductivity and optical properties of prepared films [13]. Among different ions, europium
element is a well-studied activator for the preparation of red-emitting optical materials [14,15]. L. Song
and coauthors [16] showed that Eu-doped TiO2 nanotubes exhibited high photocatalytic activity under
visible light illumination compared to a commercial P25 TiO2 powder. Another report suggested that
Eu-doped TiO2 thin films can improve the performance of organic solar cells [17]. It was shown that
Eu-doping improves the electron transport properties, reduces the electron-hole recombination rate,
and lowers the bandgap values of TiO2 [16,17]. Therefore, the development of an easy and low-cost
deposition method of transparent undoped/doped titanium oxide thin films is important from scientific
and technological points of view.

In this study, we presented a novel and simple solution-based deposition of transparent TiOx thin
films on glass slides, using spin coating at ambient conditions. Fabrication simplicity and excellent
reproducibility highlight the potential applicability of the proposed method for the generation of
functional coatings for security labeling, UV screening, photovoltaic devices, etc.

2. Materials and Methods

2.1. Film Deposition

Titanium isopropoxide TIP (>97.0%), anhydrous 1-butanol (99.8%), absolute ethanol (≥99.8%),
and EuCl3 × 6H2O (99.9%) were purchased from Merck & Co. (Kenilworth, NJ, USA) and used as
received. A precursor solution for TiOx film was prepared by mixing ethanol (0.5 mL), 1-butanol
(1 mL), and 100 µL of TIP. For Eu-doped TiOx film, 10 mg of europium salt was firstly dissolved in
0.5 mL of ethanol and then mixed with 1 mL of 1-butanol and 100 µL of TIP. Later on, the precursor
solution was spin-coated on clean glass slides (20 × 15 mm) at 500 rpm (5 s), followed by 2000 rpm
(15 s). All experiments were repeated five times to ensure the reproducibility of the results. Obtained
thin films were naturally dried in ambient conditions for 2 h and then annealed at 500 ◦C (heating rate
5 ◦C/min) for 1 h. Annealed thin films were used for further testing.

2.2. Characterization

X-ray diffraction (XRD) measurements were performed using a SmartLab X-ray Diffractometer
(Rigaku Corp., Tokyo, Japan) with a Cu Kα radiation source. X-ray photoelectron spectroscopy
(XPS) was performed in an Omicron MultiProbe XPS (Scienta Omicron Inc.,Uppsala, Sweden) using a
monochromized Al Kα source (XM 1000, 1486.7 eV). The instruments’ base pressure was 5 × 10−11 mbar
and the instrumental resolution was 0.6 eV. Samples were attached to the sample holder by a copper
tape. A charge neutralizer was used during the measurements. Atomic force microscope (AFM,
SmartSPM 1000, AIST-NT Inc., Novato, CA, USA) was used to obtain topographic images of film
surfaces. UV-Vis light transmittance measurements were conducted using a Genesys 50 UV-Visible
spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). The optical properties of films
were examined using a fluorescence spectrophotometer (Agilent Cary Eclipse, Agilent Technologies
Inc., Santa Clara, CA, USA).

3. Results and Discussion

It is interesting to note that this methodology can be used to fabricate metal-doped TiOx thin
films. Herein, we introduced europium salt to achieve a red-emitting luminescent thin film. AFM
was utilized to examine the surface topography and surface roughness of the prepared films. Figure 1
shows corresponding 2D images of the control sample (bare glass slide), undoped TiOx film, and
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Eu-doped TiOx film captured on an area of 5 × 5 µm. One can easily observe that the surface of the
control sample (Figure 1a) becomes less rough after the deposition of TiOx thin films (Figure 1b,c).
The average surface roughnesses (Ra) estimated by AFM were found to be 96.1, 54.7, and 66.3 nm for
control, undoped and Eu-doped TiOx, respectively. An X-ray reflectivity (XRR) analysis revealed that
the thickness of undoped TiOx and Eu-doped TiOx thin films were ~33 nm and ~37 nm respectively.
Figure 2 shows XRD patterns of undoped and Eu-doped TiOx thin films. In both cases, one can observe
the formation of amorphous TiOx phase.
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Figure 2. XRD patterns of undoped and Eu-doped TiOx thin films.

Figure 3 presents the wide-scan XPS survey spectra of TiOx and Eu-doped TiOx thin films.
The survey indicates the presence of titanium, oxygen, and carbon in both films. The presence of
C 1s can be attributed to the carbon contamination caused by exposure of the film surface to the
atmosphere [18]. All energetic positions are corrected with respect to C1s (284.8 eV). Casa XPS software
was employed to quantify measured regions. Components for fitting were selected from the elemental
library according to peak position, with Gaussian/Lorentzian line-shapes and Shirley background.
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Figure 4 shows the narrow scan spectra of Ti 2p for both undoped and doped films. One can see
that the Ti 2p spectrum of undoped film is composed of spin-orbit split peaks at binding energies
of 457.75 eV (Ti 2p3/2) and 463.46 eV (Ti 2p1/2). These binding energies are consistent with the Ti3+

state [19]. In addition, there was a small shoulder at the binding energy around 456 eV, indicating
the presence of Ti2+ oxidation state. These results suggest that the experimental conditions yielded
the TiOx film with the mixed oxidation states of titanium (Ti3+/Ti2+). The incorporation of Eu ions
into a TiOx matrix led to a chemical shift in the Ti 2p3/2 and Ti 2p1/2 peaks to 457.4 eV and 463.16 eV,
respectively. This shift in binding energies indicates an influence of Eu ion addition on the electronic
state of titanium. However, these binding energies of the shifted Ti 2p peaks in Eu-doped TiOx film
could still be assigned to the Ti3+ state [20]. Figure 5 demonstrates the narrow scan of O 1s, for both
undoped and doped samples. It is clear that an additional oxygen state is present in the undoped
sample (apart from main lattice oxygen peak and peak related to surface contamination), advocating
the presence of the additional Ti state, as mentioned before.
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Furthermore, careful examination of the wide XPS survey spectrum of the Eu-doped TiOx thin film
(Figure 3) revealed that the sample contains Eu 3d and Eu 4d peaks. As shown in Figure 6, the narrow
scan of Eu 3d spectrum recorded from the Eu-doped TiOx thin film is composed of spin-orbit split
peaks at binding energies of 1136.7 eV (Eu 3d5/2) and 1165.7 eV (Eu 3d3/2). In addition, the narrow
scan Eu 4d spectrum is composed of spin−orbit peaks at binding energies of 142.8 eV (Eu 4d3/2) and
137.7 eV (Eu 4d5/2). These binding energies are highly consistent with Eu3+ state [21]. According to
XPS analysis, the elemental concentration was found to be 24.3% (Ti), 75.06% (O) and 0.54% (Eu).
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Figure 7 shows the energy dispersive X-ray (EDX) elemental mapping of the Eu-doped TiOx
film. One can easily observe that Eu ions are uniformly detected in the selected area. However, the
distribution uniformity of other metal dopants should be verified separately.
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Figure 8 shows the transmittance of undoped and Eu-doped TiOx films deposited on glass
substrates. The transmittance of a bare glass slide was also provided for reference. One can see that
the transmittance of undoped TiOx and Eu-doped TiOx films were similar and slightly decreased
compared to a bare glass slide. In particular, the transmittance in the visible range (fixed at 550 nm)
was 91.7% (bare glass slide), 83.5% (undoped film), and 83.3% (Eu-doped film). However, a significant
decrease of transmittance in the UV region suggested the potential applicability of prepared TiOx films
for UV screening [7,8]. Figure 8, inset, shows that Eu-doped TiOx film is visually transparent.
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Figure 9 shows a PL emission of Eu-doped TiOx films (λexc. = 310 nm), measured at room
temperature RT in the range of 550–700 nm. A well-resolved broad emission peak, with an emission
maximum at 633 nm, was detected. This emission is associated with radiative 5D0→

7Fj (j = 0, 1, 2,
and 3) transitions within Eu3+ ions [14,22]. However, at RT, these transitions are overlapped and
detected as one broad peak in the red region. Inset of Figure 9 shows digital images of undoped
and Eu-doped TiOx films under the excitation of a commercially available UV lamp (λexc. = 302 nm).
Red emission from a transparent Eu-doped TiOx film can be visually observed by a naked eye, making
it suitable for the potential security labeling of valuable goods and photovoltaic applications [17].Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 7 
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7Fj radiative transitions was observed for Eu-doped TiOx film. Fabrication simplicity, chemical
stability, and excellent luminescent properties make Eu-doped TiOx films promising for UV screening,
security labeling, and photovoltaic applications.
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