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In this supplementary material we discuss the technical details to evaluate the differential conductance. We give a closed formula to
evaluate the differential conductance defined on the normal lead. We implemented our theoretical framework in the Eötvös Quantum
Utilities (EQuUs)1 software package.

S1 Theoretical background to calculate the differential conductance
In this section we give the technical details to calculate and analyze the differential conductance on the normal lead connected to an
Andreev interferometer. The aim of this section is twofold. Firstly we obtain a closed formula which can be evaluated numerically.
Secondly, we answer the questions raised in the discussion of the results in Fig.3 of the main text. Namely, the reported unconventional
interference effect is manifested only above a certain bias voltage applied on the normal lead. Secondly, the amplitude of the interfering
path N → mol→ S2→ mol→ S1→ mol→ S2→ mol→ N depicted in Fig. 3. of the main text is expected to be much smaller than
the amplitude of the interfering path N→mol→ S2→mol→ N, yet the resulting interference pattern in the Andreev current seem to
be quite robust (see Fig. 4 in the main text). (The interfering path N → mol→ S2→ mol→ S1→ mol→ S2→ mol→ N depicted in
Fig. 3. of the main text involves four extra tunnelings between the leads and the central molecule compared to the interfering path
N→mol→ S2→mol→ N.)

The Andreev current can be evaluated using Eq. (4) of the main text. In this equation the lesser Green’s function G< can be
calculated within the Keldysh non-equilibrium framework using the Keldysh equation2–6:

G< = GR
Σ
<GA, (S1)

where GR(E) [GA(E)] is the retarded [advanced] Green’s function and Σ<(E) = Σ
<
S1(E) + Σ

<
S2(E) + Σ

<
N (E,V ) contains the lesser self

energies of the leads.
The differential conductance can be derived from Eq. (4) of the main text utilizing the relation given by Eq. (S1):
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This expression can be further simplified by applying the derivation with respect to the bias voltage V on the integrand. Notice that
only the self energy of the normal lead depends on eV . Hence
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Furthermore, the lesser self energy Σ
<
N (E,eV ) depends on the bias voltage via the thermal occupation number. In the electron-hole

space the lesser self energy can be given as4
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where fe = f (E − eV ) [ fh = f (E + eV )] is the thermal occupation number for the electrons [holes] given by the Fermi-distribution
function and ΣR

N,e [ΣA
N,e] and ΣR

N,h [ΣA
N,h] are the retarded [advanced] self energies of the electron-like and hole-like particles in the

normal lead, uncoupled from the rest of the system. Similarly, gR
N,e/h and gA

N,e/h stand for the retarded and advanced Green’s functions
of the electron/hole-like particles in the normal lead. To calculate the retarded and advanced self energies and Green’s functions we
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followed the numerical procedure described in Ref.7. Also, we assume the uncoupled leads to be in thermal equilibrium.
For simplicity we will consider the zero temperature limit in our calculations. Consequently, the derivative of the Fermi distribution

function is the Dirac delta function and the integral in Eq. (S3) simplifies to

dIN

dV
=−2e

h
Re

Tr

τ3WNGR(eV )

(gA
N,e(eV )

)−1
−
(

gR
N,e(eV )

)−1
0

0 0

GA(eV )


+

2e
h

Re

Tr

τ3WNGR(−eV )

0 0

0
(

gA
N,h(−eV )

)−1
−
(

gR
N,h(−eV )

)−1

GA(−eV )


. (S6)

As we can see from Eq. (S6), the key element to calculate the differential conductance is the retarded and advanced Green’s functions
GR and GA. Eq. (S6) then can be directly used to calculate numerically the differential conductance in the studied three-terminal
junctions.

To get further insight into the physics of the transport process we follow the logic of Ref.8 to evaluate these Green’s functions in
terms of the Dyson’s equation. Let us denote the retarded Green’s function of the unified system of the two superconducting contacts
and the central molecular core by gR

mol. Then the retarded Green’s function of the whole Andreev interferometer can be evaluated in
terms of the Dyson’s equation:
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is the Green’s function of the normal lead containing both the electron and hole-like components. Equation (S7) yields for the individual
components of the Green’s function:
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Considering the rules of the matrix multiplication, and that the only non-zero elements of the lesser self energy of Eq. (S5) are the block
diagonal parts related to the leads, in order to evaluate the differential conductance (S6) it is enough to consider the GR

mol,N block of

the retarded Green’s function and the GA
N,N part of the advanced Green’s function. According to the structure of Eq. (S9) one finds:

GR
N,N = gR

N

∞

∑
n=0

(
WNgR

molW
†
NgR

N

)n
= gR

N +gR
NWNgR

mol

∞

∑
n=0

(
WNgR

molW
†
NgR

N

)n
W †

NgR
N

= gR
N +gR

NWNgR
mol

(
1−W †

NgR
NWNgR

mol

)−1
W †

NgR
N = gR

N +gR
NWNGR

mol,molW
†
NgR

N ,

(S10)
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We now return to the evaluation of the differential conductance given by Eq. (S6). For simplicity we continue our calculations focusing
on the first (electron-like) part of Eq. (S6). (Due to the electron-hole symmetry of the Bogoliubov-de Gennes equations, the hole-like
part would give the same result.) Inserting Eqs. (S10) and (S11) into Eq. (S6) yields:
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In Eq. (S12) we applied the identity gR
N,e−gA

N,e = 2i Im
(

gR
N,e

)
. For simplicity let’s suppose we have only one Andreev bound state (ABS)

formed in the superconductor – molecular core – superconductor (S-mol-S) junction described by the Green’s function gR
mol. In the

presence of the normal lead, the ABS’s starts to leak out via the normal lead resulting in the broadening of the ABS energy levels. Since
our main interest are the transport properties close to the mid of the HOMO-LUMO gap, in the relevant energy regime we do not expect
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any further bound states in GR
mol,mol besides the ones corresponding to the ABS’s. Thus, we might approximate GR

mol,mol as:
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. (S13)

Here the state |ABS〉 represents the wave function of the ABS in the molecule of energy EABS, and ΓABS =
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is the level broadening originating from the escape rate of the particles through the normal lead.8 The mathematical expression for
ΓABS calculates the overlap between the ABS wave function and the self energy of the normal lead. Thus, ΓABS can be divided into two
distinct terms, one related to the escape rate of the electron-like and the second one to the escape rate of the hole-like particles. Namely,
ΓABS = ΓABS,e +ΓABS,h, where:
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Using the (S13) expression of GR
mol,mol and the invariance of the Tr(. . .) function against the cyclic permutation of its arguments one

obtains for the differential conductance:
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Now making use of the definition of the broadening parameters ΓABS,e and ΓABS,h we end up with the following expression for the
differential conductance:
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In the above expression we neglected the energy dependence of the Green’s function of the normal lead in a ΓABS wide vicinity of the
energy EABS. Accounting also for the hole-like part of the differential conductance (S6) gives an additional factor of two in the final
result due to the electron-hole symmetry. Thus, the total differential conductance would be given by Eq. (7) of the main text. In case we
have more than one ABS in the junction, the first term of Eq. (S16) would turn into a sum of Lorentzian resonances, while the second
term evolves into a more complex mathematical expression:
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where |q〉, Eq and Γq represents the wave function, the energy and the broadening of the qth ABS, and the quantities Γqp,e and Γqp,h

are defined similarly to Eqs. (S14) and (S15), but the scalar product is taken between wave functions corresponding to different ABS’s.
Besides regular Lorentzian resonances [p = q terms of Eq. (S18)] we see that the differential conductance is heavily influenced by the
cross-talk of the individual ABS’s. Mathematically the product of two fractions on the right hand side of Eq. (S18) can be rewritten to a
sum
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δ
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where λ and δ are in general complex numbers. (Individually both of them have singularity at eV = (ΓppEq +ΓqqEp)/(Γpp +Γqq),
but these singularities cancel each other in the sum of the two fractions.) Consequently, the imaginary part of these fractions would
differ from the regular Lorentzian function and the total differential conductance in the presence of multiple ABS’s would be the sum
of asymmetric Lorentzian resonances centered to the energies of the ABS’s. The asymmetry in the resonances is a signature of the
cross-talk between the ABS’s.
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S1.1 Resonant oscillation
As discussed in the main text, we try to explain the unconventional interference pattern by the interplay of the two paths depicted in
Fig. 2 of the main text. However the amplitude t9,22 (defined by Eq. (1) of the main text) might be expected to be much larger than the
amplitude t9

6,22 (defined by Eq. (5) of the main text) which would suppress the interference effect between these two interfering paths.
The physical picture behind the small magnitude of t9

6,22 relative to t9,22 is associated to the particle transfer between the two
superconducting banks. The four tunneling processes between the molecular core and the superconducting electrodes significantly
decreases the magnitude of the interfering amplitude t9

6,22. On the other hand, a resonant oscillation realized by the ABSs overwrites
this physical picture. In this case the charge transport between the superconducting banks becomes resonantly amplified via the ABS and
thus the amplitudes t9

6,22 and t9,22 becomes comparable. In summary, for energies close enough to the energy of an ABS the differential
conductance shows an interference effect due to the resonant amplification of the interfering amplitude t9

6,22, while for other energies
the interference would be suppressed.

S1.2 Density of states
In this subsection we give the technical details to calculate the density of states of the three-terminal molecular junction, which can be
used to physically interpret the numerical results obtained by Eqs. (4) of the main text and by Eq. (S6). We calculate the density of
statesρ from the equilibrium Green’s function of the three-terminal molecular junction labeled by GR

mol,mol in the calculations above. To
be precise, GR

mol,mol labels only that block of the whole Green’s function which contains only the molecular degrees of freedom. Then
the density of states can be defined as:

ρ(E) =− 1
π

Tr
[
Im
(

GR
mol,mol(E)

)]
. (S20)

As for the differential conductance, GR
mol,mol can be calculated via the Dyson’s equation (S7) which is evaluated using the Eötvös

Quantum Utilities (EQuUs)1 software package.

S2 The tight-binding model of the molecular junctions
To describe the electrical transport processes in the studied molecular junctions we use a nearest neighbor tight binding model catching
the dynamics of the pz electrons of the molecular core.
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Fig. 1 The tight binding model of the Anthanthrene molecule attached to two superconductive and one normal lead. The sites in the molecular core
are labeled by primed and unprimed numbers, while the hopping amplitude between the sites are characterized by a single number. The normal and
superconducting contacts are modeled by a one-dimensional conductive channels.

The tight binding parameters describing the molecular core are chosen following the philosophy in Refs.9,10, where the aim is to
highlight the role of connectivity in determining the transport properties of these molecular cores. For this reason, the hopping integrals
γii′ = γ0 are set to unity and the on-site energies εi are set to zero. With other words, the unit of energy is the hopping integral and
the site energy is the energy origin. This means that the Hamiltonian of the molecule is simply a connectivity matrix and therefore
all predicted effects are a result of connectivity alone. The normal and superconducting contacts are modeled by a one-dimensional
tight-binding chain. The transport properties of the junction have a weak dependence on the actual physical parameters of the leads
as far as the leads remains metallic in the studied energy regime. Thus, we chose the physical parameters of the leads to increase the
density of states in the leads and have the bandwidth of the conductive larger than the studied energy regime. In particular, we set
the hopping amplitude in the contacts to 0.05γ0 and the on-site energy parameter to 0. The superconducting contacts are modeled by
an s-type superconducting pair potential ∆ = 0.001γ0. (The pairing potential is zero anywhere else in the system.) In the particular
case the tight binding model of the Anthanthrene molecule connected to the superconducting and normal electrodes is shown in Fig. 1.
Remarkably, as demonstrated in Refs.9,10, this approach yields the experimentally-measured conductance ratios of a range of PAHs.

Finally, as we explained in the main text, we tuned the transport properties of the molecular core by an inserting a substitutional
heteroatom into the molecular core. According to Ref.11, the presence of the heteroatom have a strong influence on the inner quantum
interference effects in the molecular core, even new conductive channels may open up in the molecular core. In our theoretical model
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we account for the presence of a substitutional heteroatom by a modified on-site energy on a specific site in the molecule.

S3 Comparison of the local density of states on two molecular sites
As shown in Fig.8(c) and (d) of the the main text, which is reproduced below in Fig. 2, the local density of states (LDOS) is suppressed
for electron-like quasiparticles and enhanced for hole-like quasiparticles on molecular site 22 (for the numbering of the molecular sites,
see Fig. 1). We have calculated the LDOS for the other sites of the molecular core as well and found that due to QI the LDOS of the
electron and hole quasiparticles is different on each site. In particular, it can happen that, in contrast to Fig. 2, the electron LDOS is
larger than the hole LDOS. An example shown in Fig. 3, where this asymmetry of LDOS can be clearly seen.

Fig. 2 The LDOS for electron (a) and hole (b) quasiparticles as a function of δΦ on molecular site 22 of the Andreev interferometer shown in Fig.6(c)
of the main text and in Fig. 1. In these calculations ε3 =−0.50γ0.

Fig. 3 The LDOS for electron (a) and hole (b) quasiparticles as a function of δΦ on molecular site 8 of the Andreev interferometer shown in Fig.6(c) of
the main text and in Fig. 1. In these calculations we used ε3 =−0.50γ0.

As mentioned in the “Conclusions and Outlook” section of the main text, by attaching normal leads N1 and N2 to molecular sites 8
and 22 and may enhance the non-local Andreev reflection N1→ N2 with respect to the local Andreev reflection N1→ N1.
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