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Abstract: Design of interface-controllable magnetic composite towards the wideband microwave
absorber is greatly significance, however, it still remains challenging. Herein, we designed a
spherical-like hybrids, using the Co3O4 and amorphous carbon as the core and shell, respectively.
Then, the existed Co3O4 core could be totally reduced by the carbon shell, thus in CoxOy core
(composed by Co and Co3O4). Of particular note, the ratios of Co and Co3O4 can be linearly
tuned, suggesting the controlled interfaces, which greatly influences the interface loss behavior and
electromagnetic absorption performance. The results revealed that the minimum reflection loss value
(RLmin) of −39.4 dB could be achieved for the optimal CoxOy@C sample under a thin thickness of
1.4 mm. More importantly, the frequency region with RL < −10 dB was estimated to be 4.3 GHz,
ranging from 13.7 to 18.0 GHz. The superior wideband microwave absorption performance was
primarily attributed to the multiple interfacial polarization and matched impedance matching ability.

Keywords: controllable interfaces; magnetic CoxOy@C composite; width band EM absorption;
interfacial polarization; tunable content

1. Introduction

With the rapid development of electronic devices, e.g., radar communications, wireless and local
area network, etc., the electromagnetic (EM) pollutions are becoming serious, especially for regarding
as “health killer” and for simultaneously disturbing normal operation of other precious devices [1–3].
In case to reduce electromagnetic pollution, more attempts have been paid on exploration of functional
materials with the strong dielectric or magnetic loss ability, so that the EM waves can be converted into
heats by these materials [4,5]. Commonly, the efficiency of conversion from EM to heats is termed
as reflection loss (RL) value. As an ideal EM material, it is commonly requested to a width band
absorption (frequency region with RL < −10 dB, noted that −10 dB is regarded as the commercial
standard with a conversion efficiency of 90%) [6,7]. Meanwhile, a thin thickness is quite vital to reduce
the weight of absorption layer [8]. Nowadays, it is widely believed that EM performance is primarily
influenced by both component and nanostructure; thus the strategy of component/nanostructure has
been a general way to develop EM absorber [9]. As a desirable candidate, magnetic hybrids have been
widely investigated, because of their dual magnetic and dielectric loss ability [10,11]. E.g., Jia et al.
employed an in situ growth route to prepare Fe/ZnFe2O4 hybrids, and the frequency region (fs) was
up to 6.2 GHz under a matched thickness of 1.5 mm [12]. Zhao and coworker utilized a facile polyol
reduction approach to prepare Co/CoO composite, and reported that fs value was 4.2 GHz under a
thickness of 1.7 mm [13]. Li et al. combined magnetic FeCo with SiO2 and polypyrrole; the measured
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fs was ~6.8 GHz with a thickness of 2.5 mm [14]. For these desirable fs values, the synergistic effect
between magnetic and dielectric loss played a key role on the EM attenuation ability. Besides, the
improved complex permeability value (µr) was also benefited to the impedance matching behavior [15].
In this case, more EM waves could enter into the interior of EM absorption layer for the subsequent
attenuation. For this purpose, magnetic components are always decorated with a series of high
dielectric material, to realize improvement of impedance matching behavior. These EM absorbers, such
as included Fe/graphene, FeCo/graphene, Fe3O4/Mexnes, and so on, showed the distinct enhancement
performance as compared to the single components [16,17].

Expecting for components, absorber with various morphologies also would make a great influence
on the performance. E.g., Xu et al., taking graphene hybrid as a case, observed that loading same
component with different nanostructure (nanoparticle/nanosheet), the dielectric loss ability was
changed [18]. They explained that the changed dielectric loss ability was caused by interfacial
polarization effect, which was highly associated with nanostructure. On the basis of this finding,
Cao et al. designed a multiple-interface hybrid (namely, Co3O4@rGO/SiO2) and achieved a fs value of
4.2 GHz (covering the entire X band) [19]. Similarly, Zhang et al. reported a Fe3Si/SiC@SiO2 absorber
and got a fs value of 5.4 GHz (d~2.4 mm) [20]. All these desirable results confirmed the contribution of
interfacial polarization.

Inspired by these results, we prepared a core–shell structured EM absorber, using Co/Co3O4 as
the cores. The magnetic loss behavior can be easily tuned by adjusting the content of Co. Initial,
Co3O4 nanospheres are made by a hydrothermal route and then used as the source of magnetic Co.
Afterward, the as-obtained Co3O4 was coated by amorphous carbon to induce carbon reduction.
The temperature for carbon reduction played a key role on the final content of Co. The developed
Co/Co3O4@C presented excellent wideband EM absorption performance.

2. Experimental

2.1. Preparation of Co3O4 Nanospheres

Co3O4 nanospheres were prepared by a hydrothermal and annealing process. Typically, 0.1 g
PVP, Co(Ac)2, and urea (~20 mg) were codissolved in a mixture solvent, containing EG (20 mL) and
distilled water (20 mL) and maintain at pH = 13. The above solution was used for the hydrothermal
reaction, which was heated at 140 ◦C for 6 h. Once cooled to room temperature, the precipitate was
collected by centrifugation for two to three times with distilled water. Later, Co3O4 was obtained by
directly heating the precipitate at 300 ◦C for 0.5 h. Argon gas (Ar) was used as the protective gas.

2.2. Synthesis of Co/Co3O4@C Hybrids

Typically, 0.1 g Co(OH)2 nanosphere, 0.4 g phenolic resin, and 0.2 mL formaldehyde were added
into solution (~60 mL distilled water) and stirred for 2 h. Then, the as-obtained precipitates were
heated at 500, 600, and 700 ◦C under Ar atmosphere for 1 h with a slow ramping rate of 1 ◦C/min.
The obtained products treated at 500, 600, and 700 ◦C were denoted as C-Co-500, C-Co-600, and
C-Co-700, respectively.

2.3. Characterization

The composition and phase of samples were determined by an X-ray diffractometer (Bruker D8
ADVANCE X-ray diffractometer) in the range of 20–60◦. Field emission scanning electron microscope
(FESEM, JEOL JSM-6330F) and transmission electron microscope (TEM, JEOL 2100) were used to
observe the morphologies of these specimens. The chemical valences of Co element were evaluated
by an X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe systems). Raman spectrum
(Jobin Yvon HR 800 confocal Raman system) was employed to detect the graphitization level of the
amorphous carbon shell. The coercive force (Hc) and magnetization were recorded by a vibrating
sample magnetometer (VSM, Lakeshore, model 7400 series) at room temperature. EM characteristics
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were evaluated on basis of a coaxial-line theory. First, the composites used for the EM absorption
measurement were prepared by mixing the CoxOy@C with paraffin wax in 50 wt%. Afterwards,
a cylindrical-shaped sample (Φin = 3.04 mm, Φout = 7.0 mm) was made by hot pressing the mixture
into a mold. The electromagnetic parameters were tested by the two-port vector network analyzer
(Agilent E5071C). Finally, the reflection loss value was calculated based on following equations [21–23]:

Zin = Zo(µr/εr)1/2tanh[j(2πfd(µrεr)1/2/c)] (1)

RL(dB) = 20log|(Zin − Zo)/(Zin + Zo)| (2)

where Zin is the input impedance of absorber, f relates to the frequency of electromagnetic wave, d
represents the coating thickness of the absorber, while c is the light velocity. εr (εr = ε′ − jε”) and µr

(µr = µ′ − jµ”) are the complex permittivity and permeability of the absorption layer.

3. Results and Discussion

The formation process of Co/Co3O4@C spherical-shaped hybrids are illustrated in Figure 1. First,
the spherical-shaped Co(OH)2 samples are fabricated by a hydrothermal route. Second, Co(OH)2 is
converted to Co3O4 via annealing products at 300 ◦C for 1 h (Figure S1). The diffraction peaks intensity
of Co3O4 and Co(OH)2 are very strong, which are due to the good crystalline structure. Co(OH)2@
phenolic resin (PS: the precursor of amorphous carbon) is made by an in situ polymerization route.
By heating the Co(OH)2@PS at various temperatures (here is 500–700 ◦C), Co/Co3O4@C with various
content of Co can be obtained. Figure S2 compares the EDS and FTIR spectra of Co(OH)2@PS and
C-Co-500 sample. The EDS spectra of Co(OH)2@PS and Co/Co3O4@C samples are provided in Figure
S2a,b, where the C, Co, and O elements can be detected on both samples. Hence, it is hard to observe
the changes of component. Subsequently, the FT-IR spectra have been added to compare the changes
of chemical bonds (Figure S2c,d). Clearly, the wave number at around 575 cm−1 is assigned to the
characteristic vibrating peak of Co(OH)2 and is consistent with the XRD result. After heating at 500 ◦C,
the C-OH peak disappeared and turned to two types of Co-O bonds, known as CoO4 (550 cm−1) and
CoO6 (670 cm−1), suggesting the coexisted spinel phase of Co3O4. Additionally, due to the carbonized
reaction, the original C-H bond disappeared for the C-Co-500 sample.
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Figure 1. Schematic presentation for the preparation route of Co/Co3O4@C composites.

Figure 2 shows the morphology evolution from initial Co(OH)2 to ultimate Co/Co3O4@C. Co(OH)2

exhibits significant spherical-shaped structure with average size of ~400 nm (Figure 2a,b). The surface
of Co(OH)2 is very smooth and dense. As for Co3O4, it still maintains original spherical shape with the
same size, according to Figure 2c,d. But Co3O4 exhibits a tiny rough surface attributing to the loss of
phase conversion from Co(OH)2 to Co3O4. Similarly, structure can be maintained for Co/Co3O4@C
(C-Co-700), expecting for the surface (Figure 2e,f) to be rough, which was attributed to the amorphous
carbon shell.
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Figure 2. FESEM images of the products as received at different stages: (a,b) Co(OH)2, (c,d) Co3O4,
and (e,f) the representative Co/Co3O4@C as treated at 700 ◦C.

Figure 3 shows the HRTEM images of C-Co-700 sample. The lattice with the distance of 0.24 nm
corresponds to the (111) crystal plane of the Co phase. The lattice with the distance of 0.21 nm can be
ascribed to the (311) plane of Co3O4. It shows one selected area of electron diffraction pattern, which is
indexed to the (311), (440), and (400) planes of Co3O4 and (111) crystal plane of Co, respectively.
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The crystal structures for Co/Co3O4@C are characterized by X-ray pattern (XRD). As shown in
Figure 4a, the diffraction peaks at 36.2◦ and 42.7◦ are assigned to the (311) and (400) crystal planes
of Co3O4. Besides, other diffraction peaks at 44.2◦ and 51.1◦ can be ascribed to the (111) and (200)
crystal planes of Co. Furthermore, the intensity of Co signals is gradually stronger as it increases for
the product treated with a high temperature, revealing the increased content of Co. As for amorphous
carbon shell, there is no obvious signal, because of amorphous state. To confirm existence of carbon,
the Raman spectrums are employed here, as plotted in Figure 4b. Clearly, two noticeable peaks
at 1360 and 1590 cm−1, representing D and G band, respectively, are found for these Co/Co3O4@C
hybrids [24]. It is widely accepted that G band is generated by the graphitized carbon atom which
adopts sp2 hybridized form [25]. D band is induced by the crystal defects or disorders existing in
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carbon materials [26]. Commonly, the ratio of D/G band is an indicator of the graphitization degree. In
our case, the ratios are estimated to be 0.98, 0.91, and 0.88 for the C-Co-500, C-Co-600, and C-Co-700,
respectively. The increased graphitization degree is ascribed to a high carbonization temperature,
according to recent achievement [27]. The magnetization loops (M-H) curves were measured by a
vibrating sample magnetometer (VSM) (Figure 4c,d). In general, the magnetization value has a vital
correlation with permeability parameters, includes real part of permeability and magnetic loss value
(µ′/µ”), as can be expressed by the following equations [28]:

µ′ = 1 + (M/H)cosσ (3)

µ” = (M/H) sinσ (4)

where M represents the magnetization, H means the external magnetic field, and σ refers to the
phase lag angle of magnetization behind external magnetic field. From Equations (3) and (4), a high
magnetization value is related to a bigger µ′ and µ” values, thus benefiting to the impedance matching
and magnetic loss ability. In Figure 4c, the magnetization values are estimated to be 9.0, 33, and
75 emus/g for C-Co-500, C-Co-600, and C-Co-700 samples. The increased magnetization value confirms
the enhancement of Co content [29]. The X-ray photoelectron spectrum (XPS) is also performed to
analyze the valances of Co. The binding energy values of Co 2p3/2 are located at 782.1 and 778.2 eV,
which can be corresponded to Co3O4 and Co, respectively (Figure 4e–g) [30]. The surface area ratio of
SCo/SCo3O4 are 0.23, 0.43, and 0.81 for C-Co-500, C-Co-600, and C-Co-700, respectively, representing the
molar ratio.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 13 
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Figure 4. (a) XRD patterns, (b) Raman spectrum, (c,d) M-H curves of Co/Co3O4@C samples treated at
various temperatures, and (e,f) XPS spectrums for the Co 3/2 p.

Figure 5 plots the frequency dependence of two-dimensional reflection loss (RL) curves.
Considering the transmission line theory, the reflection loss values are calculated using the measured
data of relative permittivity and permeability at a given frequency region (2–18 GHz) and thickness
layer (1–5 mm). Obviously, the absorption layer filled with Co3O4 exhibits the poor EM performance,
due to the unqualified RL values (<−10 dB) [31]. But significant improvement can be found for these
Co/Co3O4@C sample. In fact, a desirable EM absorber is requested to a broadband absorption for the
thickness < 2.0 mm. To clarify it, the reflection loss curves at 1.0–2.0 mm are given in Figure 6. In such
a thickness region, RLmin values of Co3O4 are all higher than −2.0 dB, thus cannot be used as absorber.
For C-Co-500 product, the minimum RLmin value of −10.8 dB is achieved under a thickness of 1.8 mm.
In other thickness, there is no frequency region with RL < −10 dB. As the content of Co is increased,
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the absorption intensity becomes distinctly stronger. The minimum RLmin value can up to −39.4 dB for
C-Co-600, while the thickness in only 1.4 mm (Figure 6c). Meanwhile, the qualified frequency region
covers 4.3 GHz, ranging from 13.8 to 18.0 GHz. While for C-Co-700 (Figure 6d), the lowest RLmin
value can be gained is −38.6 dB under a matched thickness of 1.6 mm. The corresponding fs value is
4.9 GHz. For comparison, the EM performance of Co or C containing hybrids are listed in Table 1,
demonstrating that the Co/Co3O4@C hybrids shows improvement of EM absorption ability [32–39].
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Table 1. Electromagnetic (EM) performances of Co- or C-based hybrids as reported by recent literatures.

Samples RLmin (dB) Effective Absorption
Region (GHz)

Thickness
(mm) Ref.

Co@C ~−10 <3.0 1.5 [32]
Porous carbon −23.8 ~3.8 2.0 [33]

CoO@Co/ZnO/graphene −51.5 4.7 2.6 [34]
CoNi@C −24.03 4.32 2.5 [35]

Co/ZnO/C −52.6 4.9 3.0 [36]
Co3O4/graphene −31.88 3.4 2.0 [37]

Co3O4@PANI −37.39 ~4.2 4.0 [38]
Co/CoO −50 dB 4.2 2.0 [39]

C-Co-600 −39.4 dB 4.3 1.4 mm This work

It should be noted that EM absorption performance is always determined by the impedance
matching and EM attenuation ability. The key factor for the impedance matching ability can be
estimated by the ratio of complex permeability/permittivity (µr/εr) [40]. Figure 7 plots the curves of µr,
εr, and their ratios of µr/εr. Due to the nonmagnetic characteristic, µr of Co3O4 is almost a constant
of 1.0, according to Figure 7a. εr decreases from 4.6 to 4.2. As compared to Co3O4, µr of C-Co-500
is only a little higher than Co3O4, attributing to the low content of Co (Figure 7b). But significant
enhancement can be found for εr ranging in 7.2~9.9. By further increasing the content of Co, both µr

and εr increase, e.g., µr values are ~1.1 and 1.2 for C-Co-600 and C-Co-700, respectively (Figure 7c,d).
Meanwhile, εr of C-Co-700 is highest and distributed in the region 15.9~12. The ratios of µr/εr values
are then applied to estimate the impedance matching ability (Figure 7e). The ratio of Co3O4 is distinct
larger than these Co/Co3O4@C samples, revealing the good impedance matching behavior. In this case,
it can be deduced that the poor EM performance of Co3O4 is primarily due to the weaken attenuation
ability. For these Co/Co3O4@C hybrids, the ratios of C-Co-600 is much closer to C-Co-700, and all are
smaller than C-Co-500.

Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 13 

attenuation ability. For these Co/Co3O4@C hybrids, the ratios of C-Co-600 is much closer to C-Co-700, 

and all are smaller than C-Co-500. 

 

Figure 7. Frequency dependence of μr/εr curves for the Co/Co3O4@C and Co3O4 samples: (a) Co3O4, 

(b) C-Co-500, (c) C-Co-600, (d) C-Co-700, and (e) the ratios of μr/εr for the Co/Co3O4@C and Co3O4 

sample. 

 

Figure 8. Frequency dependence of dielectric loss curves for the Co/Co3O4@C and Co3O4 samples: the 

schematic illustration of proposed interface (b) and (c) dipole polarization mechanism; noted the 

inserted images in Figure 8 (a) represents the Cole–Cole curves. 

Commonly, the mechanism for EM attenuation results from dielectric and magnetic loss. Figure 

8a plots the ε''-f curves for these products. It can be clearly seen that Co3O4 achieves the lowest ε'' 

value (~0.35), representing the worst dielectric loss ability. For Co/Co3O4@C samples, the ε'' slowly 

decreases first as the frequency increases. Then, multiple dielectric loss peaks are observed in high-

frequency region (f > 6.5 GHz), revealing polarization relaxation behavior. In such a frequency region 

(f > GHz), polarization forms primarily included are interfacial and dipole polarization, according to 

recent discussions on mechanism [41,42]. In general, either dipole or interfacial polarization 

relaxation effect can be revealed by the Cole–Cole semicircle. In detail, the relative complex 

permittivity can be described by the following equations [43–46]:  

'''
21





 j

fj

s

r −=
+

−
+=



  (5) 

Figure 7. Frequency dependence of µr/εr curves for the Co/Co3O4@C and Co3O4 samples: (a) Co3O4,
(b) C-Co-500, (c) C-Co-600, (d) C-Co-700, and (e) the ratios of µr/εr for the Co/Co3O4@C and
Co3O4 sample.

Commonly, the mechanism for EM attenuation results from dielectric and magnetic loss. Figure 8a
plots the ε”-f curves for these products. It can be clearly seen that Co3O4 achieves the lowest ε” value
(~0.35), representing the worst dielectric loss ability. For Co/Co3O4@C samples, the ε” slowly decreases
first as the frequency increases. Then, multiple dielectric loss peaks are observed in high-frequency
region (f > 6.5 GHz), revealing polarization relaxation behavior. In such a frequency region (f > GHz),
polarization forms primarily included are interfacial and dipole polarization, according to recent
discussions on mechanism [41,42]. In general, either dipole or interfacial polarization relaxation
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effect can be revealed by the Cole–Cole semicircle. In detail, the relative complex permittivity can be
described by the following equations [43–46]:

εr = ε∞ +
εs − ε∞

1 + j2π fτ
= ε′ − jε′′ (5)

where εs, ε∞, and τ are static permittivity, relative dielectric permittivity at high-frequency limit,
and polarization relaxation time, respectively, whereas, ε′ and ε” can be calculated based on the
following equations.

ε′ = ε∞ +
εs − ε∞

1 + (2π f )2τ2
(6)

ε′′ =
2π fτ(εs − ε∞)

1 + (2π f )2τ2
(7)
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Figure 8. Frequency dependence of dielectric loss curves for the Co/Co3O4@C and Co3O4 samples: the
schematic illustration of proposed interface (b,c) dipole polarization mechanism; noted the inserted
images in Figure 8 (a) represents the Cole–Cole curves.

Based on Equations (6) and (7), the ε′-ε” can be expressed as above:

(ε′ − ε∞)
2 + (ε′′ )2 = (εs − ε∞)

2 (8)

If the plot of ε′-ε” is a semicircle, it represents one Debye polarization relaxation process which
make a contribution for ε”. Commonly, such a semicircle is termed as Cole–Cole semicircle. The
inserted images in Figure 8a show the Cole–Cole curves of these products. It can be revealed that
only Co/Co3O4@C products exhibit Cole–Cole semicircles, indicating the polarization behavior. The
proposed mechanisms for polarization are illustrated in Figure 8b,c. In our case, the developed
Co/Co3O4@C exhibits multiple interfaces, including Co/Co3O4, Co/C, and Co3O4/C. When an external
EM field is provided, the electrons from the Co will be attracted by Co3O4 or groups of amorphous
carbon, because of difference in electronegativity. Consequently, the interfacial relaxation process
occurs, favoring the dielectric loss. In addition to interfacial polarization, dipole polarization may also
attribute to the dielectric loss value.

Amorphous carbon shell always contains various forms of defects, such as crystal defects, presence
of C-containing groups, e.g., –COOH, –C=O, –COH, etc. (Figure 8c). These defects can act as the
dipole center and induce dipole polarization. Such a dipole process has a contribution for ε” [47].

Magnetic loss ability is discussed in Figure 9. Because of the biggest content of Co, C-Co-700 has a
largest µ” value, equaling to 0.24. Meanwhile, µ” versus frequency exhibits multiple peaks. As we
know, µ” mainly comes from hysteresis loss, domain wall resonance, natural resonance, exchange
resonance, and eddy current effect [45]. The hysteresis loss arising from irreversible magnetization
is negligible in a weakly applied field, and the domain wall resonance occurs only in multidomain
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materials and usually in 1–100 MHz region, and thus, the contributions from hysteresis loss and
domain wall resonance to magnetic loss can be excluded in our material system. If the magnetic loss
originates from eddy current effect, the values of C0(C0 = µ′′ (µ′)−2 f−1 = 2πµ0σd2/3) should be a
constant when the frequency increases [48,49]. The C0 values of all samples fluctuate at full frequency
region (Figure 9b). Hence, we can deduce that the magnetic loss mainly results from natural resonance
and exchange resonances.
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Figure 9. (a) Frequency dependence of magnetic loss curves for the Co/Co3O4@C and Co3O4 samples
and (b) the Co-f curves of the four products.

The attenuation constant α represents the integral loss ability, including magnetic or dielectric
loss, which can be calculated by following equation [50]:

α =

√
2π f
c
×

√
(µ′′ ε′′ − µ′ε′) +

√
(µ′′ ε′′ − µ′ε′)2+(µ′ε′′ + µ′′ ε′ )2 (9)

From Figures 8 and 9, we can find that C-Co-700 sample has the highest dielectric and magnetic
losses, thus leading to a biggest attenuation constant α (Figure 10). The content of Co plays a key role
on tuning the dielectric and magnetic loss ability. It also has proven that Co3O4 has a quite lower
attenuation constant α. Overall, C-Co-600 achieves the best EM performance which attributes to the
several factors. First, the Co/Co3O4 as the core has efficiently prevented the eddy current effect. Second,
the suitable component of Co ensures the strong interfacial polarization, which is beneficial to dielectric
loss. In addition, a suitable content of Co also maintains a moderately εr value, hence enabling to
balance the impedance matching ability.
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4. Conclusions

In this work, a Co/Co3O4@C product was developed by a facile hydrothermal and annealing
method. First, the spherical-shaped Co3O4 with an average size of ~400 nm was prepared and
then coated by carbon. The as-obtained Co3O4@C was heated at various temperatures, resulting in
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Co/Co3O4@C hybrids. The content of Co was tunable by only controlling the temperatures. The EM
performance were studied, based on the transmission line theory. The minimum reflection loss value
(RLmin) of −39.4 dB could be achieved for the Co/Co3O4@C sample. The corresponding thickness
was only 1.4 mm. Furthermore, the frequency region with RL < −10 dB, was up to 4.3 GHz, covering
13.7~18.0 GHz. The excellent electromagnetic absorption mechanism was discussed in depth, which
was attributed to the multi-interface-induced interface polarization. Meanwhile, the existed magnetic
Co enabled balancing the impedance matching behavior.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/5/902/s1,
Figure S1: XRD patterns of Co(OH)2 and Co3O4, Figure S2: (a,b) EDS and (c,d) FR-IR spectral of Co(OH)2@PS
and C-Co-500.
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