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Abstract: The storage stability concern, caused by phase separation for the density difference
between polymers and asphalt fractions, has limited the widespread application of polymer modified
asphalt (PMA). Therefore, this study aims to improve the storage concern of PMA by incorporating
nano-montmorillonite. To this end, different nano-montmorillonites were incorporated to three PMAs
modified with three typical asphalt modifiers, i.e., crumb rubber (CRM), styrene–butadiene-rubber
(SBR) and styrene–butadiene-styrene (SBS). A series of laboratory tests were performed to evaluate
the storage stability and rheological properties of PMA binders with nano-montmorillonite. As a
consequence, the incorporation of nano-montmorillonite exhibited a remarkable effect on enhancing
the storage stability of the CRM modified binder, but limited positive effects for the SBR and
SBS modified binders. The layered nano-montmorillonite transformed to intercalated or exfoliated
structures after interaction with asphalt fractions, providing superior storage stability. Among selected
nano-montmorillonites, the pure montmorillonite with Hydroxyl organic ammonium performed
the best on enhancing storage stability of PMA. This paper suggests that nano-montmorillonite is a
promising modifier to alleviate the storage stability concern for asphalt with polymer modifiers.

Keywords: storage stability; rheological properties; polymer-modified asphalt; nano-montmorillonite

1. Introduction

With the extremely increasing loading and aggravation of axis load in the pavement industry,
damages such as rutting, cracking etc., are happening more frequently on highways and urban
roads [1–4]. Asphalt modification technology has been considered a practical approach to
resolve these concerns by enhancing the durability of asphalt pavements. Crumb rubber (CRM),
styrene-butadiene-rubber (SBR) and styrene-butadiene-styrene (SBS) are the three most widely applied
modifiers, which are regarded as effective adhesive and cohesive performance enhancers of asphalt [5–9].
However, the storage stability concern of modified asphalt has limited its widespread application.
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Engineers from asphalt plants have always worried about the separation of the modifier and asphalt
during the storage and transportation process in elevated temperatures.

According to Stoke’s law, the phase separation phenomenon can be governed by the following
equation [10–12]:

vt =
2a2∆ρg

9η
(1)

where vt is the settling velocity of dispersed particles, α is the radius of dispersed particles, ∆ρ is the
density difference between two different phases, g is gravitational acceleration, and η is the dynamic
viscosity of liquid medium.

Among different asphalt modifiers, CRM tends to sink in the liquid phase of modified asphalt
during the storage process due to higher density compared to virgin asphalt, while SBR and SBS
additives with lower density values tend to float in the upper part of liquid phase. The separation of
modifier and raw asphalt results in a huge difference in composition and rheological properties between
top and bottom portions of the polymer modified asphalt after storage. Previous studies indicate that
this concern can be alleviated by adjusting the liquid asphalt density using bio-modification [13,14] or
activating the crumb rubber [15]. However, the improvement effect is not very satisfactory. Therefore,
one potential method is addressed in this study by incorporating nanoclay into the polymer-modified
asphalt, which can reduce the phase separation phenomenon by decreasing the migration velocity of
insoluble additive of polymers in the liquid phase [16,17].

Nanoclay is a type of natural mineral mainly including kaolinite clay (KC), vermiculite (VMT)
and montmorillonite (MMT), which has a 2:1 layered structure with two silica tetrahedral sheets
sandwiching an alumina octahedral sheet. Nowadays, nanomaterials have been popularly applied as
modifiers for construction materials [12,18–20]. Especially, the importance of layered clay minerals, also
known as nanoclays, in terms of asphalt modification is gradually increasing. Nanoclays’ remarkable
improvement on the rheological properties of asphalt has been widely reported by previous studies.
Vargas et al., [18] discovered that Organo-nanocomposite modified-asphalt can generate an intercalated
structure using X-ray diffraction (XRD) and transmission electron microscopy (TEM). This indicates
that the enhanced rheological properties may ascribe to the interaction behavior of the polymer chains
in asphalt binder into the interlayer of clay. Yu et al., [21] enhanced the storage stability of asphalt
rubber by incorporating three types of nanoclays and improved the rheological properties through
modification. Leng et al., [22] found that clay/SBS modified bitumen composites have acceptable
storage performance. The composites also showed better resistance to aging by reducing the oxidation
of bitumen and the degradation of SBS. Galooyak et al., [23] proved the improvement of nanoclays on
the storage stability of SBS modified asphalt and confirmed the conclusion through morphological
analysis. Thus, nanoclay was expected by the asphalt industry to serve as the storage stability improver
of PMAs.

The objective of this study was to evaluate the feasibility of alleviating the storage stability concern
of polymer-modified asphalt by incorporating nano-montmorillonite. To this end, three different
types of nano-montmorillonites and three types of modifiers, i.e., CRM, SBR and SBS, were selected to
prepare NPMAs. The rheological tests were performed to evaluate mechanical properties of NPMA
binders when applied to pavement industry, among which the Superpave rutting factor test was chosen
to control the content of these three modifiers. With the same PG82 grade, the content of modifier
applied in each PMA binder was high enough to simulate the most unfavorable situation after storing
in high temperature. In addition, the storage stability of modified binders was quantitatively analyzed
through characterizing the differences in softening point, complex moduli and absorbance ratio of
CRM/SBR/SBS in the infrared spectrum between the top and bottom portions of the sample after a
lab-simulated storage process. Finally, an X-ray diffraction (XRD) test was conducted to investigate the
layer gap distance variation of nano-montmorillonite to reveal the modification mechanism.
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2. Materials and Methods

2.1. Materials and Sample Preparation

A Pen 60/70 virgin asphalt, with a penetration grade of 60/70, was used to prepare
NPMA binders. In this study, all modified binders including polymer-modified asphalts,
nano-montmorillonite-modified asphalts (NMA) and nano-montmorillonite-polymer modified asphalts
were prepared by 10,000 rpm high shear incorporating modifiers with a certain dosage into virgin
asphalt at 180 ◦C for 1 h. The selected dosages were 20 wt %, 7 wt % and 6 wt % by virgin asphalt for
CRM (40-mesh), SBR and SBS, respectively, then a certain dosage of nano-montmorillonite (3 wt % by
virgin asphalt) was adopted to prepare NPMA binders.

Three different types of nano-montmorillonites, labelled as A, B and C, were applied for asphalt
modification. The nano-montmorillonite samples used in this study are organomodified nanoclay
particles (provided by the Zhejiang Fenghong Clay Chemical Co., Ltd., Huzhou, China). The nanoclay
samples are high-quality montmorillonite with high purity (at least 95% montmorillonite content).
Besides, the nano-montmorillonite layer was forgeable due to the large specific surface area (750 m2/g)
and the unique layered one-dimensional nanostructure and morphology. Among the three nanoclays,
A is pure montmorillonite with Na+ inorganic group, while B and C are montmorillonites having
inorganic groups exchanged with different alkyl ammonium ions. The ranking of their surface
hydrophilic properties from high to low is A, B and C. Different from other two-dimensional and
three-dimensional inorganic nanoparticles, the specific structure and morphology might lead to
excellent mechanical properties, thermal properties, functional properties and physical properties of
nano-montmorillonite-polymer modified asphalts. The morphologies of nano-montmorillonites were
presented in Figure 1, and the physical properties of different nano-montmorillonites were shown in
Table 1. Table 2 detailed the information of each test sample.
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Table 1. Properties of nano-montmorillonite additives.

ID Nanoclay A Nanoclay B Nanoclay C

Modified method Pure MT with Na+

inorganic group
Hydroxyl organic

ammonium Double alkyl ammonium

Montmorillonite content 96~98%
Specific gravity 1.8 1.8 1.7

Bulk gravity <0.3 ≤0.3 ≤0.3
Hydrophilic Medium Strong Poor
X-ray d001 2.24 nm 2.09 nm 3.73 nm

Applicable polymer PE, PP, PVC N/A PP and other thermos
plasticity polymers

Table 2. Composition of different modified asphalt samples.

Binder Type Sample ID Type of Modifier Dosage of
Modifier

Type of
Nano-Montmorillonite

Virgin asphalt Pen60/70 N/A N/A N/A

NMA

VB-A N/A N/A A

VB-B N/A N/A B

VB-C N/A N/A C

PMA

CRM-0 Crumb rubber 20 wt % N/A

SBR-0 Styrene-butadiene-rubber 7 wt % N/A

SBS-0 Styrene–butadiene-styrene 6 wt % N/A

NPMA-A

CRM-A Crumb rubber 20 wt % A

SBR-A Styrene-butadiene-rubber 7 wt % A

SBS-A Styrene–butadiene-styrene 6 wt % A

NPMA-B

CRM-B Crumb rubber 20 wt % B

SBR-B Styrene-butadiene-rubber 7 wt % B

SBS-B Styrene–butadiene-styrene 6 wt % B

NPMA-C

CRM-C Crumb rubber 20 wt % C

SBR-C Styrene-butadiene-rubber 7 wt % C

SBS-C Styrene–butadiene-styrene 6 wt % C

2.2. Testing Program

The conventional physical properties, including penetration and softening point, were selected
as the indicators for the general properties of test binders. The workability was evaluated using a
Brookfield viscometer (RVD VII+) through measuring rotational viscosities of asphalt specimen at
three different temperatures.

The rheological properties of modified binders were characterized using a dynamic shear
rheometer (DSR, Malvern Kinexus Lab+, Malvern analytical Company, UK). The Superpave rutting
factor (G*/sin δ) test and multiple stress creep recovery (MSCR) tests were conducted to evaluate the
high temperature rutting resistance of asphalt samples, while the intermediate temperature fatigue
resistance was analyzed through the Superpave fatigue factor (G*sin δ) test and linear amplitude
sweep (LAS) test. The test binders for the MSCR test were aged by the standard rolling thin film oven
(RTFO) process, while those for the fatigue test were aged by both RTFO and pressure aging vessel
(PAV) processes. The bending beam rheometer (BBR) test was also performed to evaluate the low
temperature cracking resistance performance of the RTFO + PAV aged samples.
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The storage stability of modified binders was quantitatively analyzed through characterizing the
differences in softening point [16,17], complex moduli [24–26] and absorbance ratio of CRM/SBR/SBS
in the infrared spectrum between the top and bottom portions of the sample after storing. For FTIR
tests, the test binder with a thickness of approximately 1 mm was placed in a transmission holder and
scanned in order to obtain infrared spectroscopy ranging from 4,000 to 400 cm−1. According to ASTM
7173 [27], to simulate the high temperature storing process in the laboratory, about 70 g of hot asphalt
was poured into an aluminum tube with a diameter of 25 mm. Before cutting the tube into three equal
parts horizontally, it was being stored at 163 ◦C for 48 h followed by cooling down at −5 ◦C.

To investigate the modification mechanism of nano-montmorillonite on storage stability, X-ray
diffraction (XRD) tests were conducted to investigate the layer gap distance variation. Table 3 shows
the detailed information of conducted tests in this study.

Table 3. Details of the laboratory test.

Performance Tests Aging Level Specification/Standard Temperature

General properties
Penetration

unaged
ASTM D5 25 ◦C

Softening point ASTM D36 N/A

Workability Rotational viscosity unaged AASHTO T316 135 ◦C, 150 ◦C
and 165 ◦C

Rutting resistance
Rutting factor

(G*/sin δ) unaged AASHTO M320 64–88 ◦C

MSCR RTFO aged AASHTO MP19-10 64 ◦C

Fatigue resistance
Fatigue factor

(G*sin δ) RTFO + PAV
aged

AASHTO M320 25–13 ◦C

LAS AASHTO TP101 25 ◦C

Storage stability

Softening point

unaged

ASTM D36 N/A

Complex shear
modulus AASHTO M320 25 ◦C, 64 ◦C

and 82 ◦C

FTIR N/A 25 ◦C

Low temperature
cracking resistance BBR RTFO + PAV

aged AASHTO T313 −6 ◦C, −12 ◦C
and −18 ◦C

Internal layer distance of
nano-montmorillonite XRD unaged N/A 25 ◦C

3. Results and Discussion

3.1. Physical Properties

Figure 2 presents the penetration and softening point results of test binders. It is noted that the
polymer-modified asphalts had a higher softening point and a lower penetration, which indicates that
the incorporation of CRM/SBR/SBS led to superior performance at high temperature and higher stiffness
respectively. It is also observed that the incorporation of nano-montmorillonite further decreased the
penetration of SBS-0, while had insignificant effect on CRM-0 and SBR-0. It indicates that the stiffness
of SBS modified asphalt binder is more sensitive to nano-montmorillonite compared to the other
polymer modified asphalt binders. Different from the penetration results, adding nano-montmorillonite
increased the softening points of all modified asphalts.
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Figure 2. Physical properties of asphalt binders: (a) Penetration; (b) Softening point.

3.2. Workability

Figure 3 presents the workability results, which were evaluated by the Brookfield rotational
viscosity tests. The higher the viscosity value was, the worse workability the test binder had. According
to previous studies [28–30], poor workability is one of the most critical concerns limiting the spread of
asphalt rubber. As expected, CRM modified asphalt binders had extremely higher viscosities than other
test binders at all temperatures. Besides, the viscosities of SBR/SBS modified binders except SBS-C were
below 3000 cP at 135 ◦C, which indicates the mixtures with these binders can be compacted according
to the AASHTO (American Association of State Highway and Transportation Officials) specification.

Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 19 

 

 

(a) 

  

(b) 

Figure 2. Physical properties of asphalt binders: (a) Penetration; (b) Softening point. 

3.2. Workability 

Figure 3 presents the workability results, which were evaluated by the Brookfield rotational 

viscosity tests. The higher the viscosity value was, the worse workability the test binder had. 

According to previous studies [28–30], poor workability is one of the most critical concerns limiting 

the spread of asphalt rubber. As expected, CRM modified asphalt binders had extremely higher 

viscosities than other test binders at all temperatures. Besides, the viscosities of SBR/SBS modified 

binders except SBS-C were below 3,000 cP at 135 °C, which indicates the mixtures with these binders 

can be compacted according to the AASHTO (American Association of State Highway and 

Transportation Officials) specification. 

 

Figure 3. Rotational viscosity test results. 

3.3. Rutting Performance 

Figure 4b shows the rutting factor (G*/sin δ) values at different temperatures. The starting 

temperature was set as 64 °C, then the test temperature was automatically increased by 6 °C until the 

rutting factor was below 1.0 kPa (the critical value for unaged binders). Figure 4a presents the critical 

temperature results. The higher the critical temperature was, the superior rutting resistance the test 

binder had. As expected, all of the three polymer modifiers led to much higher critical temperatures 

than virgin asphalt. It is noted that adding nano-montmorillonite had insignificant effect on SBR-0 

and SBS-0. However, the incorporation of nano-montmorillonite further enhanced the rutting 

resistance of CRM-0, indicating that nano-montmorillonite worked much better with CRM modified 

binders than SBR/SBS modified binders in terms of rutting resistance. 

38.5
40.5

37.9
39.0

43.0

40.7

48.1
45.9

64.7

52.9

41.8

45.0
43.2

        Pen60/70 PMA NPMA-A NPMA-B NPMA-C
30

40

50

60

70

P
en

et
ra

ti
o

n
 (

0
.1

m
m

)
 CRM

 SBR

 SBS

63.3

68.1

74.7

71.773.1

76.4 77.4
75.6

47.7

76.8 80.1 81.1 78.7

        Pen60/70 PMA NPMA-A NPMA-B NPMA-C
45

55

65

75

85

S
o

ft
en

in
g

 P
o

in
t 

(o
C

)

 CRM

 SBR

 SBS

135 150 165
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

V
is

co
si

ty
 (

cP
)

Temperature (oC)

 Pen60/70

 CRM-0

 CRM-A

 CRM-B

 CRM-C

 SBR-0

 SBR-A

 SBR-B

 SBR-C

 SBS-0

 SBS-A

 SBS-B

 SBS-C

Figure 3. Rotational viscosity test results.

3.3. Rutting Performance

Figure 4b shows the rutting factor (G*/sin δ) values at different temperatures. The starting
temperature was set as 64 ◦C, then the test temperature was automatically increased by 6 ◦C until the
rutting factor was below 1.0 kPa (the critical value for unaged binders). Figure 4a presents the critical
temperature results. The higher the critical temperature was, the superior rutting resistance the test
binder had. As expected, all of the three polymer modifiers led to much higher critical temperatures
than virgin asphalt. It is noted that adding nano-montmorillonite had insignificant effect on SBR-0 and
SBS-0. However, the incorporation of nano-montmorillonite further enhanced the rutting resistance of
CRM-0, indicating that nano-montmorillonite worked much better with CRM modified binders than
SBR/SBS modified binders in terms of rutting resistance.
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δ values.

The MSCR test results were presented in Table 4. Lower Jnr values and higher % Recovery values
refers to superior pavement rutting resistance performance. It is noted that SBS modified binders
with nano-montmorillonite and all CRM modified binders did not meet the requirement of AASHTO
specification, i.e., <75%. This can be attributed to the extremely low Jnr value at 0.1 kPa. Consistent
with the G*/sin δ results, the CRM modified binders exhibited the best rutting property for its lower
Jnr3.2 value compared to asphalt binders modified with SBS or SBR.

Table 4. MSCR test results.

Binder Type
Jnr

Jnr% Diff
% Recovery

0.1 kPa (kPa−1) 3.2 kPa (kPa−1) 0.1 kPa (kPa−1) 3.2 kPa (kPa−1)

Pen60/70 3.988 4.586 15.0 2.1 −0.5
CRM-0 0.019 0.098 402.6 91.6 63.0
CRM-A 0.034 0.168 392.7 89.0 55.8
CRM-B 0.013 0.090 608.0 94.6 67.1
CRM-C 0.023 0.141 518.4 92.0 59.5
SBR-0 0.360 0.417 15.9 34.0 40.5
SBR-A 0.202 0.310 53.7 67.6 54.9
SBR-B 0.310 0.447 44.3 59.6 50.4
SBR-C 0.320 0.463 44.5 52.1 41.8
SBS-0 0.217 0.382 76.2 68.5 51.7
SBS-A 0.060 0.269 350.1 90.5 64.1
SBS-B 0.096 0.300 213.0 88.0 68.1
SBS-C 0.093 0.300 221.9 86.9 63.5

3.4. Fatigue Performance

The fatigue critical temperature results are presented in Figure 5a, while the variation of fatigue
factor (G*sin δ) with temperatures are shown in Figure 5b. Similar to the G*/sin δ test process, the
starting temperature was set as 25 ◦C, then the test temperature was automatically decreased by
3 ◦C until the fatigue factor exceeded 5,000 kPa. According to the AASHTO specification, lower
critical temperature indicates better fatigue resistance performance. It is noted that incorporating
CRM effectively decreased the failure temperatures of neat asphalt by 6.3 ◦C. What’s more, the critical
temperatures of CRM-A and CRM-B were 1.2 and 2.2 lower than that of CRM-0, which indicates that
the application of nanoclays A and B can further enhance the fatigue performance of CRM-0. However,
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the incorporation of SBR and SBS had insignificant and even limited negative effects on the fatigue
performance of base binder.
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Figure 5. Superpave fatigue factor test results: (a) Failure temperatures; (b) Logarithm of G*sin δ values.

Figure 6a,b present the fatigue lives (Nf) of LAS tests at 2.5% and 5.0% applied strain levels,
respectively. The higher the fatigue life was, the better fatigue cracking resistance the test specimen
had. As shown in Figure 6a, it is noted that the Nf of CRM-0, SBR-0 and SBS-0 was 14.5, 2.3 and 3.5
times that of neat asphalt, respectively. This indicates a different test result from the G*sin δ test results
that all modified binders performed better than neat asphalt. According to previous studies [31,32],
LAS was proven to be a more reliable method for characterizing fatigue performance of asphalt binders.
Therefore, it is believed that CRM exhibited outstanding performance in enhancing fatigue resistance
performance, while SBR and SBS had limited positive effect on the fatigue performance of neat asphalt.
However, the conclusion of fatigue performance is recommended to be validated by mixture tests like
the indirect tensile fatigue (ITFT) test and four-point bending beam (4PB) test.Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 19 
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Figure 6. LAS test results: (a) Applied strain of 2.5%; (b) Applied strain of 5.0%.

3.5. Low Temperature Cracking Performance

Table 5 presents the stiffness and m-values of test binders determined by the BBR test. To meet
a specific requirement of AASHTO T313, the stiffness value should be less than 300 MPa, and the
m-value should be higher than 0.3. A low-temperature cracking was more likely caused by higher
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stiffness values. As expected, the incorporation of CRM/SBR/SBS succeeded in enhancing the cracking
resistance of neat asphalt by decreasing the stiffness value. Among three PMA binders, the best low
temperature cracking resistance was obtained by CRM-0 for the lowest stiffness. It can also be seen
that the incorporation of nano-montmorillonites further decreased the stiffness values of all PMA
binders. Eventually, all modified binders were compliant with the requirement at −12 ◦C. Therefore,
all three kinds of modifiers and three nano-montmorillonites can contribute to the application of
asphalt pavement in colder regions. It is worth mentioning that recent studies show that the cooling
period, temperature and medium may exhibit certain influence on the results of low temperature
performance [33]. More accurate and reliable methods for the low temperature performance evaluation
of PMA will be investigated in future studies [34].

Table 5. BBR test results.

Binder Type
−6 ◦C −12 ◦C −18 ◦C

Stiffness (MPa) m-value Stiffness (MPa) m-value Stiffness (MPa) m-value

Pen60/70 N/A N/A 280 0.280 541 0.199
CRM-0 84 0.362 172 0.355 330 0.205
CRM-A 62 0.388 117 0.332 235 0.277
CRM-B 58 0.406 103 0.347 213 0.268
CRM-C 62 0.395 109 0.339 256 0.247
SBR-0 107 0.339 203 0.308 347 0.192
SBR-A 89 0.356 188 0.322 352 0.186
SBR-B 84 0.350 180 0.310 308 0.220
SBR-C 80 0.352 173 0.324 316 0.215
SBS-0 97 0.360 175 0.317 316 0.208
SBS-A 66 0.423 143 0.342 275 0.255
SBS-B 74 0.426 155 0.359 289 0.238
SBS-C 70 0.440 140 0.336 260 0.265

3.6. Storage Stability

3.6.1. Softening Point Difference

Figure 7a shows the storage stability results of nano-montmorillonite-modified asphalt based on
softening point difference. Smaller difference value (D-value) of softening points indicates superior
storage stability. According to Stoke’s law, the nano-montmorillonites tended to sink for its higher
gravity (1.7–1.8) compared to virgin asphalt, regardless of its nanostructure, while the D-values of
all NMAs met the requirement of AASHTO D5892, i.e., <2.5 ◦C. Additionally, the softening point
difference values of VB-B and VB-C, which were smaller than 0.7 ◦C, exhibited an extremely stable
dispersion of nano-montmorillonite in liquid asphalt. One possible reason may be that the colloidal
size and the intercalated layer structure of nano-montmorillonite stopped the process of sinking.
The colloidal size with adequate surface area can make the solid particles (nano-montmorillonite)
move randomly in asphalt fractions rather than directly ascend (or descend) in vertical direction [35].
What’s more, the stable disperse of nano-montmorillonites in virgin asphalt can also be attributed
to the penetration of the asphalt fractions into the nano-montmorillonite layers, which modified the
original structure to intercalated or exfoliated structure within asphalt components [17,21].
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Figure 7. Softening point difference results: (a) Nano-montmorillonite modified asphalt; (b) D-values
of NPMAs; (c) Softening points of top sections; (d) Softening points of bottom sections.

Figure 7b shows the D-values of modified binders, and Figure 7c,d present the softening point
results of top and bottom sections after high-temperature storing, respectively. It is noted that the
softening point difference value of SBR-0 was 16.3 ◦C higher than CRM-0, but 19.2 ◦C lower than
SBS-0. According to the softening point results, this may be caused by the different modification
effect of modifiers on the softening point, thus it is believed that all selected PMA binders had poor
storage stability. For CRM and SBS modified binders, all three nano-montmorillonites decreased such
differences. However, only Nanoclays A and B enhanced the storage stability of SBS-0. Comprehensively
considering all test results, Nanoclay B seemed to work best on enhancing the storage stability of
polymer-modified asphalt for the lowest D-values for SBR and SBS modified asphalt and the acceptable
result for CRM-modified asphalt.

3.6.2. Complex Shear Modulus

According to previous studies [36,37], the complex shear modulus seemed to be a more reliable
parameter to investigate the component variation of test binders. Therefore, the separation index (SI,
Equation (2)) was proposed based on the complex modulus results by strategic highway research
program (SHRP).

SI =

Max(G∗Top, G∗Bottom) −G∗Avg

G∗Avg

× 100, (2)
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where G∗Top and G∗Bottom are the complex shear modulus at 25 ◦C at a frequency of 10 rad/s of the bottom
and top parts after storage, and G∗Avg is the average of G∗Top and G∗Bottom.

Table 6 presents the SI values at 25 ◦C (a typical intermediate temperature), 64 ◦C (a typical high
temperature) and 82 ◦C (the rutting failure temperature for all PMA binders). It is noted that the SI
value of SBR-0 was higher than CRM-0 but lower than SBS-0 at both intermediate and rutting failure
temperatures, which is consistent with the results of softening point difference. After mixing with
nano-montmorillonite, the SI value of CRM-0 at 25 ◦C and SBR-0 at 82 ◦C was significantly decreased,
while there were no similar findings with SBS-modified binders. Therefore, a more efficient parameter
was recommended. A best linear fit was firstly applied to obtain the temperature sensitivity parameter
k (the slope of Equation (3)). Equation (2) was then used to calculate the separation index of k, i.e., SIk.
As shown in Table 7, it is noted that the storage stability of CRM-0 can be effectively enhanced by all
selected nano-montmorillonites. Besides, the Nanoclay B worked well on all PMA binders, which was
consistent with the softening point difference tests.

log G∗ = kT + b (3)

Table 6. Complex shear modulus results.

Binder Type
25 ◦C 64 ◦C 82 ◦C

Top
(kPa)

Bottom
(kPa) SI (%) Top

(kPa)
Bottom
(kPa) SI (%) Top

(kPa)
Bottom
(kPa) SI (%)

CRM-0 1458.138 718.015 34.0 10.888 10.838 0.2 2.576 2.715 2.6
CRM-A 1065.133 1008.977 2.7 10.690 10.710 0.1 2.905 2.895 0.2
CRM-B 1062.840 961.900 5.0 14.545 15.166 2.1 4.143 4.242 1.2
CRM-C 886.238 970.832 4.6 11.611 12.159 2.3 3.102 3.370 4.1
SBR-0 464.028 3409.039 76.0 4.869 9.142 30.5 1.846 1.076 26.4
SBR-A 395.050 3039.114 77.0 4.456 9.686 37.0 1.731 1.489 7.5
SBR-B 366.635 2631.595 75.5 3.928 7.516 31.4 1.366 1.125 9.7
SBR-C 328.371 5072.979 87.8 5.790 12.139 35.4 2.477 1.516 24.1
SBS-0 160.889 1905.294 84.4 4.393 4.106 3.4 2.557 0.592 62.4
SBS-A 190.650 2231.642 84.3 7.319 5.218 16.8 4.791 0.882 68.9
SBS-B 145.732 2441.973 88.7 1.494 7.015 64.9 0.534 1.089 34.2
SBS-C 185.006 2945.014 88.2 8.393 7.067 8.6 5.774 0.972 71.2

Table 7. Temperature sensitivity evaluation results.

Modifiers
CRM SBR SBS

kTop kBottom SIk kTop kBottom SIk kTop kBottom SIk

N/A −0.0493 −0.0432 6.6 −0.0435 −0.0621 17.6 −0.0329 −0.0626 31.1
Nanoclay A −0.0460 −0.0456 0.5 −0.0428 −0.0590 16.0 −0.0294 −0.0610 34.9
Nanoclay B −0.0432 −0.0421 1.2 −0.0439 −0.0601 15.6 −0.0441 −0.0598 15.2
Nanoclay C −0.0439 −0.0441 0.2 −0.0385 −0.0627 23.9 −0.0277 −0.0621 38.3

3.6.3. Fourier Transform Infrared Spectroscopy

According to previous studies [38,39], the Fourier transform infrared (FTIR) tests can be used to
evaluate the polymer content in modified asphalt. Infrared spectroscopy ranging from 4000 to 400 cm−1

was obtained by scanning using an FTIR spectrometer. In this study, the specific peak at 966 cm−1

(caused by out-of-plane bending γCH3 vibration of trans-butadiene) was selected as a typical peak
of CRM/SBR/SBS, while the peak at 1376 cm−1 (caused by in-plane bending vibration of δCH3) was
selected for virgin asphalt. Figure 8 shows the area of specific peak (Abs. 966 cm−1 and Abs.1376 cm−1)
under the FTIR curve. Then, the absorbance ratio (RA = Abs. 966 cm−1/ Abs.1376 cm−1) was calculated
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to present the CRM/SBR/SBS content. A larger absorbance ratio indicates a higher polymer content in
the test sample.Nanomaterials 2020, 10, x FOR PEER REVIEW 14 of 19 
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Table 8 present the FTIR results of the original binders and their corresponding top and bottom
sections after storing. It is noted that the difference in RA values between top and bottom sections
of CRM-0 was the largest among three PMA binders, which may indicate that the CRM-0 had the
worst storage stability. Different from the other two tests, all types of nano-montmorillonites led
to enhanced storage stability of the PMA binders. It can also be seen that nano-montmorillonites
worked best on rubber-modified asphalt among three polymer modifiers, which was consistent with
the softening point difference and complex shear modulus tests. What’s more, Nanoclay B exhibited
the best modification on storage stability among three nano-montmorillonites.

Table 8. FTIR test results.

Sample
ID

Abs. 966 cm−1 Abs.1376 cm−1 Absorbance Ratio (%)

Original
Binder Top Bottom Original

Binder Top Bottom Original
Binder Top Bottom

CRM-0 0.554 10.406 1.084 0.021 0.044 0.100 3.746 0.424 9.226
CRM-A 0.731 1.377 0.428 0.047 0.077 0.012 6.384 5.595 2.870
CRM-B 0.815 1.687 1.238 0.042 0.072 0.061 5.199 4.273 4.909
CRM-C 0.541 0.733 1.316 0.032 0.037 0.065 5.869 5.110 4.971
SBR-0 6.415 2.625 2.690 0.496 0.360 0.095 7.739 13.701 3.530
SBR-A 4.597 4.921 3.350 0.307 0.492 0.176 6.675 9.990 5.265
SBR-B 3.729 6.747 5.551 0.326 0.674 0.319 8.745 9.988 5.747
SBR-C 6.189 7.049 2.572 0.596 1.065 0.317 9.625 15.109 12.318
SBS-0 2.392 4.730 9.357 0.381 1.949 0.716 15.938 41.201 7.650
SBS-A 3.377 3.740 6.663 0.566 1.478 0.529 16.773 39.522 7.939
SBS-B 3.907 3.656 8.985 0.518 1.323 1.341 17.231 36.193 14.926
SBS-C 1.506 4.512 8.391 0.300 1.929 1.102 20.327 42.762 13.132

3.7. Mechanism Investigation

The XRD tests were used to investigate the modification mechanism of nano-montmorillonites by
determining their corresponding variation of layer distance when incorporated into polymer-modified
asphalt. Based on the XRD analysis, the basal interlayer spacing (d) can be calculated from the first
strong peak in the XRD spectra by means of the following equation:

2d sinθ = λ (4)
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Figure 9a shows d value of virgin asphalt, while the XRD results of nano-montmorillonites were
presented in Figure 9b. It is noted that the d001 of virgin asphalt was quite small in the selected angle
ranging from 1◦ to 10◦. Among three nano-montmorillonites, Nanoclays A and B have only one peak
while Nanoclay C has two peaks at different positions. The gap distance of Nanoclay C was the largest,
while that of Nanoclay B was smallest. In mixed asphalt, the role of the nano-montmorillonite can be
characterized according to the distance between the clay plates [23]. Specially, if the distance between
the clay plates remain the same, the nano-montmorillonite act like regular particular fillers. In that
case, the polymer cannot enter the layer structure of nano-montmorillonites. Conversely, an increased
distance indicates the establishment of intercalated structures due to the penetration of polymer chains
into the nano-montmorillonites.
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Figure 9. XRD test results: (a) Virgin asphalt; (b) Nano-montmorillonites; (c) Polymer-modified asphalt;
(d) Nano-montmorillonite-polymer modified asphalt.

Figure 9c,d present the XRD results of PMA binders and NPMA results, respectively. It is noted that
the clay interlayer diffraction peak can be observed at about 1◦–2◦ in the results of NPMA binders, which
shifted towards lower angles compared to the results of their corresponding nano-montmorillonites [24].
Nevertheless, there were no peaks noticed in the XRD spectra of PMA binders. Table 9 summarizes the
d value results of nano-montmorillonite before and after being incorporated into modified asphalt. It is
noted that the layer distance of nano-montmorillonite in the SBR-modified asphalt was the largest,
while that in CRM-modified asphalt was the smallest regardless of the nano-montmorillonite type.
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Table 9. Layer distance of nano-montmorillonite before and after mixed with asphalt.

Nano-Montmorillonite
Type

Original Layer
Distance (Å)

Measured Layer Distance in PMA (Increment) (Å)

CRM SBR SBS

Nanoclay A 22.33 46.49 (24.16) 73.28 (50.95) 53.48 (31.15)
Nanoclay B 20.09 48.42 (28.33) 65.41 (45.32) 53.90 (33.81)
Nanoclay C 37.32 48.33 (11.01) 71.71 (34.39) 50.29 (12.97)

By incorporating the colloid theory and the experimental results, the enhancement mechanism of
nano-montmorillonites on storage stability can be explained as follows. Virgin asphalt is considered a
dynamic colloidal system within which high molecular weight asphaltene micelles suspended in the
lower molecular weight oily medium (maltenes) [40]. Since the layer distance of nano-montmorillonite
did increase in the interaction process with polymers, the polymer chains penetrated the nanolayers
were believed to belong to maltenes (in CRM-modified binders), SBR and SBS, respectively.
The nano-montmorillonite structure became an intercalated structure rather than an exfoliated structure
(Figure 10). With nano sizes and layer structures, the nano-montmorillonites do not settle down
easily in hot asphalt even though their densities are larger than that of virgin asphalt. Additionally,
with smaller layer distance change, the bonds between polymers and nano-montmorillonite were
considered stronger due to Van der Waals forces between nano-montmorillonite layers. Eventually,
the existence of nano-layers slowed down the precipitation of polymer modifiers, which results in
a more stable disperse of the modifier in virgin asphalt, therefore improving the storage stability of
PMA binders.

Nanomaterials 2020, 10, x FOR PEER REVIEW 16 of 19 

 

(c) (d) 

Figure 9. XRD test results: (a) Virgin asphalt; (b) Nano-montmorillonites; (c) Polymer-modified 

asphalt; (d) Nano-montmorillonite-polymer modified asphalt. 

By incorporating the colloid theory and the experimental results, the enhancement mechanism 

of nano-montmorillonites on storage stability can be explained as follows. Virgin asphalt is 

considered a dynamic colloidal system within which high molecular weight asphaltene micelles 

suspended in the lower molecular weight oily medium (maltenes) [40]. Since the layer distance of 

nano-montmorillonite did increase in the interaction process with polymers, the polymer chains 

penetrated the nanolayers were believed to belong to maltenes (in CRM-modified binders), SBR and 

SBS, respectively. The nano-montmorillonite structure became an intercalated structure rather than 

an exfoliated structure (Figure 10). With nano sizes and layer structures, the nano-montmorillonites 

do not settle down easily in hot asphalt even though their densities are larger than that of virgin 

asphalt. Additionally, with smaller layer distance change, the bonds between polymers and nano-

montmorillonite were considered stronger due to Van der Waals forces between nano-

montmorillonite layers. Eventually, the existence of nano-layers slowed down the precipitation of 

polymer modifiers, which results in a more stable disperse of the modifier in virgin asphalt, therefore 

improving the storage stability of PMA binders. 

 

Figure 10. Schematic illustration of intercalated and exfoliated structure. 

Table 9. Layer distance of nano-montmorillonite before and after mixed with asphalt. 

Nano-montmorillonite 

Type 

Original Layer 

Distance (Å) 

Measured Layer Distance in PMA 

(Increment) (Å) 

CRM SBR SBS 

Nanoclay A 22.33 46.49 (24.16) 73.28 (50.95) 53.48 (31.15) 

Nanoclay B 20.09 48.42 (28.33) 65.41 (45.32) 53.90 (33.81) 

Nanoclay C 37.32 48.33 (11.01) 71.71 (34.39) 50.29 (12.97) 

4. Conclusions 

This study evaluated the effect of nano-montmorillonite on the properties of modified asphalt 

with different polymers including CRM, SBR and SBS. Rheological and chemical tests were 

conducted to characterize the rheological properties of obtained NPMA binders and reveal the 

modification mechanism of nano-montmorillonite on the storing performance. According to test 

results, the findings are obtained as follows. 

Figure 10. Schematic illustration of intercalated and exfoliated structure.

4. Conclusions

This study evaluated the effect of nano-montmorillonite on the properties of modified asphalt
with different polymers including CRM, SBR and SBS. Rheological and chemical tests were conducted
to characterize the rheological properties of obtained NPMA binders and reveal the modification
mechanism of nano-montmorillonite on the storing performance. According to test results, the findings
are obtained as follows.

• Adding nano-montmorillonite slightly improved the viscosity of PMA binders, and had
insignificant effects on their rheological properties.

• The incorporation of all three types of nano-montmorillonites effectively alleviates the storage
stability concern of CRM-0, while having a limited positive effect on SBR-0 and SBS-0.

• Nanoclay B, pure montmorillonite with Hydroxyl organic ammonium, exhibited the most obvious
effect in improving the storage stability of the three selected PMA binders.
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This study suggests that nano-montmorillonite is a promising modifier to alleviate the storage
stability concern for asphalt with polymer modifiers. Future studies will focus on investigating the
interaction mechanism among nano-montmorillonite, virgin asphalt and different modifiers, as well as
the effects of nano-montmorillonites on the engineering performance of asphalt mixture.
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