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Abstract: Porphin-based carbon dots (denoted as PCDs) are prepared through a one-step hydrothermal
method by using meso-tetra (4-carboxyphenyl) porphin (TCPP), citric acid, and ethanediamine as
precursor. PCDs give rise to the optimal photoluminescence at Aex/Aem = 375/645 nm, exhibit an
excitation-independent property, excellent water solubility, and good biocompatibility, which provide
red emission and avoid the autofluorescence as an efficient fluorescent imaging probe. On the
other hand, when Eu®* is added into PCDs, the carboxylate groups located on the surface of PCDs
exhibit high affinity to Eu3", resulting in the fluorescence of PCDs turning off via static quenching.
In the presence of phosphate, owing to the strong coordination with Eu3*, the fluorescence of PCDs
turns on. Based on this performance, a novel “turn off-on” phosphate sensing system is developed.
The detection limit of this sensing system can attain 3.59 x 10=> umol L~!. This system has been
utilized for the detection of phosphate in real samples successfully, which further demonstrates
potential applications in biological diagnostic and environmental analysis.
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1. Introduction

Carbon dots (CDs), as an emerging photoluminescent nanomaterial, have attracted widespread
attention since their initial discovery in 2004 [1]. Due to their superior optical properties, outstanding
biocompatibility, excellent dispersibility, facile surface functionalization, simple, and low-cost synthesis
process [2], CDs have been demonstrated to be a future perspective fluorescence nanomaterial in various
applications including bioimaging [3-6], drug delivery [7], chemical sensing [8-12], photocatalysis [13],
and anti-counterfeiting [14].

CDs mostly show blue or green emission under the excitation of ultraviolet/blue light [15,16],
which is not suitable for biological imaging/biomedicine because of high background signal,
poor cell/tissue penetration, and damage to cell/tissue. This factor also restricts their development in
optoelectronic devices, photocatalysis, and sensing. Thus, preparing long-wavelength/red-emissive
CDs is of vital importance. According to the photoluminescent mechanism of CDs, red-emissive CDs
can be obtained through regulating particle size [17,18], shifting the excitation wavelength on the
basic of excitation-dependent emission [19,20], extending the size of isolated sp2 domains [21-24],
enhancing surface oxidation degree [25,26], or adopting heteroatomic doping [27-31]. Among these,
expanding conjugated aromatic 7t system has been approved to be an effective way to enhance
the size of isolated sp? domains [32]. Various kinds of precursors with aromatic structure,
such as p-phenylenediamine [25], 1,3-dihydroxynaphthalene [33], 2,5-diaminotoluene sulfate [34],
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polythiophene derivatives [35], trinitropyrene [36], or other IR/NIR dye molecules [37], are employed
to construct red-emissive carbon dots.

In addition, to tune the property of CDs, kinds of functionalization strategies are developed to
satisfy the specific requirement and broaden their application. For example, photosensitizer chlorin
e6 modified CDs for multimodal imaging and cancer photothermal/photodynamic therapy [38];
fluorescein conjugated CDs for ratiometric pH sensing [39]; transferrin conjugated CDs for drug
delivery [40]; nitrogen-doped MoS, and nitrogen-doped carbon dots composite developed as
electrocatalysts for electroreduction [41]. Therefore, developing effective and controllable route
to synthesize red-emissive CDs or CDs hybrid/complex/composite with other nanomaterials is still
desirable and challenging in order to broaden the application fields mainly in photothermal therapy,
fluorescence sensing, optoelectronic devices, bioimaging, and photocatalysis.

Porphin and its derivatives are a class of organic molecule with the tetra-pyrrole core decorated
with various functional groups on the peripheral, which have unique optical, electronic, and biochemical
properties [42]. Porphin-based functional nanomaterials have been widely used in photothermal
therapy [43,44], chemical sensing [45,46], light harvesting [47,48], and optoelectronic devices [49].
Meso-tetra (4-carboxyphenyl) porphin (TCPP, the molecular structure is shown in Scheme 1) is a
type of macrocyclic organic molecule with large conjugated m-electron system [50]. The exploit of
its unique structure allows the design and synthesis of red-emissive CDs via increasing the size of
isolated sp2 domains, which makes TCPP an ideal precursor/carbon source. Moreover, four carboxyl
groups on its peripheral benzene ring can increase the polarity of TCPP [51], giving rise to the excellent
water solubility of CDs. Otherwise, considering that cancer cells have a slight acidic environment, the
carboxyl groups would become electrostatically neutral, hence improving its uptake into lipophilic
cell membranes [52,53]. The structure and properties of TCPP facilitate it as a potential candidate for
preparation of CDs with long wavelength emission and application in biological fields.
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Scheme 1. Schematic representation of the procedure for the preparation of porphin-based carbon dots
(PCDs) and the sensing of phosphate.

Herein, by combining the excellent optical properties of CDs with the unique structure of TCPP,
porphin-based carbon dots (PCDs) were designed and prepared by exploring TCPP as aromatic
precursor, ethanediamine as nitrogen source, and citric acid as carbon source. On one hand, porphin
induces the red photoluminescence of the prepared carbon dots, providing feasibility of low-background
fluorescence imaging. On the other hand, the introduction of abundant carboxyl groups on their
surface could act as reactive sites to coordinate with Eu®>*. An off-on fluorescence-sensing system
based on the novel PCDs as a fluorescent probe was established by exploiting the interaction between
phosphate and Eu3".
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2. Experimental Section

2.1. Chemicals and Materials

Citric acid monohydrate, ethanediamine, and various kinds of compounds (Na3zPO4-12H,0,
KBI‘, NaF, NaClO, HCI, NaNO3, KI, CH3COON&'3H20, CaClz, KCI, NaCl, Na2504, Na2503,
Na2CO3, NaHCO::,, Cu(NO3)2'3H20, Cd(NO3)2'4H20, BaC12~2H20, MgC12'6H20, FeC13-6H20,
FeCl,-4H,0, Zn(NOj3),-6H,O) were bought from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). NayS-9H,0 was from Heng Xing Chemical Reagent Co. (Tianjin, China).
Tris(hydroxymethyl)aminomethane and Eu(NO3)3-6H,0O (99.99%) were from Aladdin Industrial Co.
Ltd. (Shanghai, China). Meso-tetra (4-carboxyphenyl) porphin (97%) was purchased from Zhengzhou
Alpha Chemical Co., Ltd. (Zhengzhou, China). DMEM high glucose medium and trypsin-EDTA were
from Gibco Company (Grand Island, NY, USA). Fetal bovine serum was from Bovogen Biologicals Pty
Ltd. (Melbourne, VIC, Australia). MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium
bromide) was from MedChemExpress Company (Monmouth, NJ, USA). All other chemicals and
reagents were of analytical grade and used without further purification. Tris-HCI buffer was disposed
and adjusted in advance to control the acidity. The experimental water used in this study was secondary
deionized water (18 MQ-cm).

2.2. Apparatus

The morphology and size distribution of the products were performed by JEM-1200EX transmission
electron microscopy (TEM) (JEOL, Tokyo, Japan). scanning and CSPM4000 atomic force microscope
(AFM) (Benyuan Co. Ltd., Guangzhou, China). Fourier-transform infrared (FI-IR) spectra were
performed on Nicolet iS50 instrument (Thermo Scientific, Madison, WI, USA) in the range of 5004000
cm~! wavenumbers. Kratos XSAM 800 X-ray photoelectron spectrometer (XPS) (Thermo Scientific,
Madison, WI, USA) was used to collect XPS spectra. X-ray diffraction (XRD) is detected by D/MAX
2500/PC X-ray powder diffractometer (Rigaku Corporation, Tokyo, Japan) with Cu K radiation.
Raman spectra were obtained with a laser excitation of 532 nm on DXR2 Raman Spectrometer (Thermo
Scientific, Madison, WI, USA). UV-Vis absorption spectra and fluorescence spectra were performed
on UV-2700 spectrophotometer (Shimadzu Corporation, Tokyo, Japan) and F-7000 fluorescence
spectrophotometer (Hitachi High Technologies, Tokyo, Japan), respectively. FLS 1000 fluorescence
spectrometer (Edinburgh Instruments, Livingston, UK) was used to measure fluorescence decay curves
of CDs. HeLa cells were incubated in SCO6WE thermostatic incubator (SHEL LAB, Cornelius, OR,
USA). Confocal fluorescence images of HeLa cells were performed on CTS SP8 confocal laser scanning
microscopy (Leica, Wetzlar, Germany).

2.3. Synthesis of PCDs

Briefly, citric acid monohydrate (0.0480 g), meso-tetra (4-carboxyphenyl) porphin (0.0395 g),
and ethylenediamine (300 nL) were mixed with 10 mL secondary deionized water. Then the prepared
homogeneous solution was transferred into PTFE-lined autoclave for further hydrothermal treatment,
which was set to 200 °C for 12 h. After that, the obtained mixture was cooled down to room
temperature naturally and filtered through 0.22 um filtration membrane to discard large particle
residues. Afterwards, the PCDs were further depurated with dialysis against deionized water with
cellulose ester membranes (Shanghai Yuanye Bio-Technology Co., Ltd., Shanghai, China, MWCO:
500-1000) for 3 days to remove the unreacted material. Carbon dots powder was obtained by rotary
steaming and freeze-drying.

2.4. Cytotoxicity Assay and Cell Imaging

Firstly, HeLa cells were inoculated into a 96-well plate and cultured at 37 °C under 5% CO,
atmosphere for 24 h. Then, PCDs with different concentrations, which were set as 0, 50, 100, 150, 200,
250 pg mL!, respectively, are added into each well and cultured for 12 h. Afterward, the medium is
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removed, 200 uL. MTT (0.5 mg'mL_l) is added into each well, and incubated for a further 4 h. Then the
medium was removed and 150 pL. DMSO was added to each well. After gently shaking for 10 min, the

k™ Hercules,

absorbance at 570 nm of each well is measured using a microplate reader (Bio-RADiMar
CA, USA).

The cellular uptake experiment was carried out as follows. HeLa cells were incubated with DMEM
high glucose medium containing 10% of fetal bovine serum, 100 units mL~! penicillin, and 100 mg mL~!
streptomycin at 37 °C with 5% CO, for 24 h. Then PCDs (50 pg-mL~! in PBS) were added into the
medium. After incubation for 12 h, the cells were rinsed twice in PBS buffer, the confocal fluorescence
images of HeLa cells were taken on a confocal laser scanning microscopy with the laser excitation

wavelength at 552 nm.

2.5. Formation of PCDs-Europium Aggregates (PCDs-Eu’*)

A total of 1 mg of PCDs powder was dissolved in 50 mL of Tris—HCI buffer solution (0.05 mol L1,
pH 7.8). A total of 0.02 mg mL~! of PCDs solution (Tris-HCI buffer, pH 7.8) was allowed to react with
different concentrations of Eu* solution (0, 5, 10, 15, 20, 25, 30, 35, 40 pmol-L~!) (Tris-HCI buffer,
pH 7.8) at room temperature for 15 min. The fluorescence of this system was recorded at Aex/Aem =
375/645 nm. By comparison, 30 pmol-L~! Eu®* was selected for further use.

2.6. The Sensing of Phosphate (PO4>~)

A total of 1.0 mmol L~! of phosphate stock solution was prepared in Tris—-HCl buffer. Different
concentrations of phosphate solutions (i.e., 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.40, 0.60, 0.80,
1.00 pmol-L™1) were added into the PCDs-Eu®* aggregates. The fluorescence intensity at Aex/Aem =
375/645 nm was measured after 15 min of mixture. The preparation of PCDs and phosphate sensing
process were illustrated as Scheme 1.

2.7. Sample and Sample Pretreatment

Artificial lake water (from Qingdao University) was used as sample and insoluble particles were
filtered by a 0.22 pm pore size membrane before using. Human whole blood samples (provided by
healthy volunteers from the Hospital of Qingdao University) were firstly injected into the Tris—HCl
buffer; after intense stirring for 5 min, the suspension was centrifuged at 5000 rpm for 10 min to remove
all cell debris, and the supernatant fluid was collected for further determination. Urine and saliva
samples (provided by healthy volunteers from the Hospital of Qingdao University) were diluted with
Tris—-HCI buffer and then filtered through a 0.22 pm pore size filter membrane for further analysis.
Finally, spiking recovery experiments were carried out by adding a certain amount of phosphate
standard solutions into the resultant real samples.

3. Results and Discussion

3.1. Characterization of PCDs

The morphological structures of PCDs were characterized by TEM and AFM. As shown in
Figure 1a, the PCDs were almost spherical, well dispersed, and displayed a 1.5-4.5 nm narrow particle
size distribution with a calculated average diameter of ca. 3.0 nm. AFM images demonstrated that the
height of PCDs was in a range of 1.0-3.5 nm, which was consistent with the TEM results. The XRD
curve in the Supplementary Materials Figure Sla showed a typical broad peak at 26 = 21.42°, revealing
that PCDs were amorphous in structure. From Figure S1b, two typical peaks at 1359 cm™! (D band)
and 1595 cm~! (G band) were observed in the Raman spectrum, representing the disordered structures
or defects (sp> carbon) of the PCDs and crystalline graphitic sp? carbon, respectively. The intensity
ratio of D band to G band (Ip/Ig) was derived to be 0.67, showing an amorphous carbon phase of PCDs.
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Figure 1. Transmission electron microscopy (TEM) image (a) and the size distribution (b) of PCDs;

Atomic force microscope (AFM) image on mica substrates (c) with the height profile along the line in

the image (d) of PCDs.

FT-IR and XPS spectra were introduced to investigate the composition and surface chemistry of
PCDs. Figure 2 shows the FT-IR spectrum of TCPP and PCDs. In TCPP, the broad peak at 2910 cm™!
was ascribed to O-H/N-H groups. The stretching vibrations located at 3457 and 1684 cm™~! were due to
O-H and C=0 groups of the carboxyl acid group, 1600 and 1392 cm~! were the characteristic absorption
of the benzene ring. For PCDs, the strong stretching vibration peak of O-H/N-H groups (3290 cm™1),
and the stretching vibrations of C=0 (1644 cm™) and C-O (1085 cm™!) indicated that the existence
of hydroxyl, amino, and carboxyl groups around the surface of PCDs. These abundant hydrophilic
groups ensure PCDs exhibit good solubility in aqueous solution. Besides, the stretching vibrations of
C=C at 1620 cm™!, C-C at 1482 cm™!, C=N at 1592 cm~!, and C-N at 1372 cm~! demonstrated the
conjugated aromatic structure and the oxygen-rich and nitrogen-rich functional groups were involved
in PCDs; TCPP as a precursor had successfully formed into PCDs with its conjugated structure and
functional groups.

The XPS measurement (Figure 3) reveals three prominent features of Ci5 peak at 285 eV, Oy
peak at 531 eV, and Ny peak at 400 eV, with the atomic percentages of 71.15%, 13.99%, and 14.86%,
respectively. The N4 spectrum in Figure 3b could be peak-differentiated to three types of nitrogen at
398.0, 400.0, and 401.5 eV, respectively, associated with C=N-C, C-N-C, and C-NH,, indicating that
pyridine nitrogen, pyrrolic nitrogen, and alkyl ammonium were involved in PCDs. The typical Cq
spectrum (Figure 3c) shows four distinct peaks at 284.7, 285.3, 287.1, and 288.5 eV, which are ascribed
to C-C/C=C, C-N/C-0O, C=N, and C=0, respectively, indicating the existence of conjugated structure.
The two resolved peaks at 531.1 and 532.6 eV in the Oy4 spectrum (Figure 3d) are attributed to C=0
and C-O bands, respectively. The XPS data agreed well with the FT-IR results, further revealing that
nitrogen-doping, functional groups, and conjugated structure were all involved in PCDs.
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Figure 2. FT-IR spectra of meso-tetra (4-carboxyphenyl) porphin (TCPP) and PCDs.
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Figure 3. (a) XPS spectra and (b) Ny, (c) Cy5, and (d) Oy peaks of the as-prepared PCDs.
3.2. Optical Properties of PCDs

The spectrum of UV-Vis absorption is shown in Figure 4a. The absorption in 200-300 nm
was attributed to the 7-7t* transition of the aromatic ring sp?> domain. While the absorption band
centered at 375 nm was attributed to n-m* transition of C=0, related to the surface adsorption of
PCDs [54]. The fluorescence emission spectra at various excitation wavelengths are described in
Figure 4b. Interestingly, PCDs exhibited an unchanged emission peak at 645 nm, although the intensity
was varied when the excitation wavelength changed from 350 to 420 nm (with an interval of 5 nm),
suggesting excitation-independence emission. When PCDs were excited at the wavelength of 375 nm,
the maximum fluorescence emission intensity at 645 nm was obtained. In comparison, the UV-Vis
absorption and PL spectrum of TCPP were also measured, whereby typical Soret bands of porphin
absorption are observed. Meanwhile, TCPP showed slight fluorescence emission compared with PCDs.
The changes of UV-Vis absorption and PL spectrum indicated that TCPP had transformed into PCDs in
the hydrothermal reaction. The quantum yield of PCDs was measured to be 2% by using Rhodamine B
as a reference (31%, in water).
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Figure 4. (a) UV-Vis absorption (A), fluorescence excitation (Aex, B) and emission (Aem, C) spectra of
PCDs in aqueous solution; UV-Vis absorption (D) and fluorescence emission (Aem, E) spectra of TCPP
in aqueous solution; The inset: The photographs of PCDs aqueous solution under daylight (left) and
UV light (right). (b) Fluorescence emission spectra of PCDs with excitation wavelengths from 350 to
420 nm in 5 nm intervals.

To explain the possible photoluminescence mechanism of red-emissive CDs, several explanations
were concluded as follows. In the visible region, the fluorescence excitation spectrum of PCDs (Aem:
645 nm) were well overlapped with the UV-Vis absorption spectrum, illustrating that the red shift of
emission was resulted from the surface structures and states [55]. Consequently, the photoluminescence
mechanism can be attributed to the surface molecular state-related fluorescence [56]. It was speculated
that the excitation-independent fluorescence emission phenomenon could be attributed to the relative
narrow size distribution, the uniform emissive traps at the surface [57], and the direct recombination of
excitons of PCDs because of N atom doping [58]. The abundant hydroxyl, carboxyl, and amino groups
on the surface of PCDs tended to form a conjugated 7t domains structure, and finally resulted in the
surface state-related emissive trap states, reducing the energy band gap of 7-7* transition, changing
the electronic structure of PCDs [59,60]. So the relatively uniform surface state emissive traps give
rise to the excitation independent emission behavior [61]. Thus, the photoluminescence of PCDs was
believed to be dominated by the surface molecular state emission mechanism.

As a conclusion, employing polyaromatic chemicals as precursors or the enlargement of the sp?
domain size of CDs is an active approach to red-shift the emissive photoluminescence [15]. TCPP with
conjugated aromatic structure would, consequently, lower the energy gap by increasing the size of
sp? domains [16]. It is well known that heteroatomic doping is confirmed to be capable of regulating
the photoluminescent property of CDs. Herein, as an electron donor, nitrogen atom could bond with
carbon atom, thus disordering the structure of carbon rings and creating a new energy gap between
the excited state and the ground state through the radiative recombination. Therefore, nitrogen doping
can narrow the bandgap, generating the emission of strong red fluorescence [62,63].

The photoluminescent decay profiles of PCDs are displayed in Figure S2. The decay curves
of PCDs were well fitted to a single-exponential model for luminescence decay with fluorescence
lifetimes of 8.93 ns. On one hand, this value is larger than those in literature [4,64], thus the
as-prepared PCDs have potential applications in lifetime-based bioimaging and biosensing. On the
other hand, as reported, the single-exponential model for luminescence decay of CDs is in accord
with the excitation-independent emission property, implying relatively uniform fluorescence radiative
processes [58,65].

The aqueous solution of prepared PCDs was lavender, transparent under day light, and it
exhibited strong red luminescence on exposure of UV light at 365 nm, as shown in the inset of
Figure 4a. As illustrated in Figure S3, fluorescence intensity of PCDs remained almost constant even
after continuous excitation for 8000 s and storage for 90 days, which demonstrated the outstanding
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stability and anti-photo-blenching of PCDs. This ensured PCDs as a fluorescent probe that was feasible
and stable in aqueous solutions.

3.3. Cytotoxicity Assay and Cell Imaging

Herein, HeLa cells were chosen as a model. Standard MTT assay was carried out to test the
cytotoxicity and biocompatibility of PCDs. From Figure S4a, over 80% cell viability was obtained after
12 h incubation of HeLa cells with PCDs in concentrations under 100 ug-mL~!. This confirmed the low
cytotoxicity and excellent biocompatibility of the prepared PCDs, suggesting that it could be safely
used for in vitro cell imaging.

To evaluate the cell imaging ability of PCDs, the cellular uptake experiment was performed. After
incubation with PCDs (50 ug-mL!) for 12 h, confocal fluorescence microscopy images (Figure 5) of
HelLa cells were taken under excitation at 552 nm and bright red emission from the intracellular region
was observed, which could be obviously distinguished from the control cells (Figure S4c). In this work,
the high quality and high resolution red-emissive images were obtained, verifying that the PCDs can
penetrate cells and efficiently avoid the autofluorescence interference of the biological matrix and the
damage to biological samples; indicating that PCDs can be used as a direct and efficient cell labelling
probe. These above results showed that PCDs had great potential in biological applications.

Figure 5. Confocal fluorescence microscopy images of HeLa cells incubated with PCDs under bright
field (a) and the excitation wavelength of 552 nm (b).

3.4. Fluorescence Quenching Behavior of PCDs to Eu’*

As one kind of important rare earth element, Eu®* shows a certain affinity with the oxygen atom
donors, which can coordinate with carboxylate groups on the surface of PCDs [10,66]. Here, when Eu*
was titrated into the PCDs solution, a sharp decrease of fluorescence intensity could be seen. As shown
in Figure 6, adding increasing concentrations of Eudt (0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 umol L_l)
into the PCDs solution resulted in gradually decreasing fluorescence of PCDs at Aex/Aem = 375/645 nm,
and the fluorescence intensity reached a plateau at a Eu®* concentration > 40 umol-L~!. At the same
time, an obvious red color fading could be seen from Figure 6a inset on the exposure of UV lamp (365
nm). The fluorescence change would be observed by visual fluorescence color change. Nearly 100% of
the fluorescence was quenched by 40 umol-L~! Eu3*, which resulted in the turn-off of fluorescence
through the aggregation. A total of 40 umol-L~! Eu®** was chosen for the following experiments. As
seen from Figure S5, the aggregation were observed clearly, which was much larger than the size of
PCDs, verifying that PCDs-Eu’* aggregates were formed. Consequently, the fluorescence of PCDs
turned off.
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Figure 6. (a) Fluorescence of the PCDs quenched by different concentrations of Eu3* (0, 5, 10, 15, 20,
25, 30, 35, 40, 45, 50 pumol-L~1); inset: The photographs of PCDs (left) and PCDs in the presence of
15, 30, 40 umol-L~! Eu?* (from left to right) on the exposure of UV light. (b) Modified Stern—Volmer
representation of PCDs after titration with Eu’+.

To gain a deep look into the photoluminescent quenching mechanism, the time-resolved
photoluminescent spectra of PCDs-Eu®* aggregates was also measured. The fluorescence lifetimes
of PCDs and PCDs-Eu3* were displayed in Figure S2, which showed the lifetime of 8.93 and 9.07 ns,
respectively. In theory, in the static quenching process, whether in the absence (Tg) or presence (T)
of Eu®* as quencher, the fluorescence lifetimes equal to a constant T value (tp/T = 1). Herein the
same fluorescent lifetime further confirmed that the quenching of PCDs by Eu®* acted up to the static
quenching mechanism. According to the report, the quenching can be depicted by the Stern—Volmer
equation (Fo/F — 1 = Ksy*[C]) or a modified Stern—Volmer equation (Fy/AF = 1/(faKsy-[C] + 1/fa), where
AF = (Fy — F), Fy, and F are the fluorescence intensity of PCDs in the absence and presence of Eu®*; [C]
represents the concentration of Eu®*; K,y is the Stern—Volmer quenching constant; f, is the fraction of
original fluorescence that interacts with the quencher [9,67]. As shown in Figure S6, the quenching
behavior didn’t fit well with the typical Stern-Volmer curve. This upward curvature suggested that
the fluorophores present in the PCDs were not all equally coordinated with the Eu** and only parts
of them were affected by Eu3* and exhibited quenching of the fluorescence. In order to consult
whether this effect results in the curvature of the typical Stern—Volmer plot, a modified Stern—Volmer
model was used (Figure 6b). In the range of 1040 umol-L7!, a linear relationship was observed,
which fitted well with the modified Stern-Volmer equations (Fo/AF = 8.9427 X 1075/[C] — 1.4208,
R? = 0.9876). The Ky, value was derived to be ~15,900 mol~!-L, corresponding to kq value of 1.8 x
102 mol-L!-s™1, which is considerably bigger than the maximum of kq for the diffusion-controlled
quenching process (ca. 10'%-mol-L~"'s71), verifying that the dominative quenching mechanism is due
to the static quenching [68]. The above results indicated that the quenching was suggested to be static
quenching and an aggregate was formed between PCDs and Eu®*.

3.5. Mechanism of Fluorescent Response to Phosphate

Phosphate plays pivotal roles in living organisms and the environment. On one hand, phosphate
is a vital constituent of biosystems, which is an essential constituent of nucleic acid. The abnormal
concentrations of phosphate in biological fluids (e.g., blood, saliva, urine) will cause physiological
dysfunction, such as hyperparathyroidism and cardiovascular complications [69,70]. On the other hand,
ecosystems are sensitive to the levels of available phosphate; as an indicator of organic pollution [71],
excessive concentration of phosphates in natural water will result in eutrophication. Therefore, the
quantitative determination of phosphate is of vital importance.

As mentioned above, when phosphate is introduced, Eu®* has a stronger affinity for phosphate
than carboxylate groups [62,72]. The addition of phosphate to PCDs-Eu* aggregates can recover
the fluorescence intensity with a five-fold enhancement of this system, due to the desorption of Eu®*
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from the surface of the PCDs, by utilizing the competition between the oxygen atom donors from
the phosphate groups and those from the carboxylate groups on the surface of PCDs for Eu**. PCDs
redispersed in the aqueous solution, as seen from Figure S5b, further confirmed the above conclusion.

In theory, Eu®* exhibits a considerable affinity to the oxygen atom donors; the fluorescence
response of other oxygen-containing groups including CH3COO~, HCO;~, ClO~, SO32~, CO32~, 50,27,
and NO;~ were also investigated under the same experimental conditions. Otherwise, the fluorescence
response of PCDs-Eu’* towards other cations (Mg?*, Ba?*, Na*, Ca?*, K*) and anions (F~, S*>~, Br~,
Cl7, I") were also studied (Figure S7). As expected, no apparent fluorescence variation occured with
the addition of these groups, indicating that other ions cannot recover the fluorescence of PCDs-Eu®*.
Only phosphate could selectively bind with the PCDs-Eu®* system.

As shown in Figure S8, the fluorescence spectra of PCDs-Eu®", by titrating with different
concentrations of phosphate, were recorded under the optimized experimental conditions.
The fluorescence intensity of PCDs-Eu®* was gradually increased with the increasing concentration.
As the concentration increased up to 60.0 umol-L~}, a total 100% fluorescence restore could be obtained.
Moreover, to some extent, this fluorescence recovery process could be visually observed by naked eyes
under the illumination of UV light, as shown in the Figure S8 inset.

In the range from 0.02 to 0.20 pmol-L~}, a linear relationship with a correlation coefficient of
0.984, by plotting F-Fy (F, Fy are the fluorescence intensities of the PCDs-Eu®* at Aex/Aem = 375/645
nm in the absence and presence of phosphate) versus the concentration of phosphate (C, umol-L™1),
was obtained as: F-Fy = 2267.485[C] — 17.293 (Figure 7). The detection limit of 3.59 x 1073 umol L1
was evaluated with a signal-to-noise ratio of 3. The relative standard deviation (RSD) was 1.42%
(phosphate concentration: 0.1 umol-L™!, n = 11). As illustrated in Table 1, compared with currently
reported fluorescence methods in the literature [10,73-77], the linear range and detection limit were
superior to other reports.

500

[F-F,]=2267.485x[C
R’=0.984

-17.293

P04‘]

400

300

200

F-F, (a.u)

100

T T T T T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
-1
C,op (pmol L)

Figure 7. The linear relationship of F-Fj versus the concentration of phosphate (0.02-0.20 pmol-L~1).
PCDs, 0.02 mg-mL~!; Eu®*, 30.0 umol-L~1; Tris-HCl buffer, pH 7.8.
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Table 1. A comparison of different systems for phosphate determination.

Method Linear Range/umol L1 LOD/umol-L-1 Ref.

Amino derivative of UiO-66 5-150 1.25 73

Europium-based metal-organic framework 3-30 6.62 74

Single-layered graphene quantum dots 0.2-30 0.1 75

Metal- organic frameworks—based 80400 2 76
nanocomposite

Graphene quantum dot.s combined with 0.5-190 01 7
europium ions

Europium-adjusted carbon dots 0.4-15 5.1 x 1072 10

PCDs 0.02-0.2 3.59 x 1072 This work

3.6. Selectivity Study for Phosphate Detection

The selectivity of this sensing platform was carried out before application in real sample analysis;
the control experiments about the fluorescence responses towards potential interferences from various
coexisting ions were investigated. The results were illustrated in Figure S9; no obvious interference
was seen on the fluorescence of the PCDs-Eu®*-PO,3~ system in the presence of a 100-fold excess of
Br—, SO3%2~, %, ClO~, NO5;~, HCO;~, Cl-, AC~, SO,2~,K*, Na*, CO3%~, and I, and a 60-fold excess
of F~, Zn?*, Mg2+, FeZ*, Fe3*, Ba2*, CaZ*, Cu2*, and Cd%*, confirming that this system was effective
for the selective detection of phosphate, with good anti-interference ability to coexisting ions.

To demonstrate the practical usefulness of the proposed method, real samples including artificial
lake, saliva, urine, and blood serum were completed, and the results are listed in Table 2. In practice,
the concentration of phosphate ion human serum is in the range of 0.81-1.45 mmol-L ! [78]. The blood
serum sample determined was 0.98 + 0.30 mmol-L~!, which was at the normal level. The phosphate
in saliva estimated by this method was 4.02 + 0.66 mmol-L~!, which fitted well with the literature
report of 3.22-5.90 mmol-L~! [79]. Compared with the traditional biological fluid (e.g., serum),
saliva determination has the advantages of being noninvasive, cheap, and patient friendly, offering a
promising diagnostics technique. To further evaluate the feasibility of this sensing system, spiking
recoveries were performed for the real samples. As illustrated in Table 2, different concentrations of
phosphate were spiked into these samples; the results obtained were satisfactory over the range of
96.36-102.85%, further proving the practical feasibility of this sensing platform.

Table 2. The determination results of phosphate for four kinds of sample matrixes (1 = 3, 95% confidence

level).
. Original Spiked -1 o

Practical Samples (mmol-L-1) (mmol-L-1) Found (mmol-L-1) Recovery (%)
0.25 x 1073 (0.75 + 0.02) x 1073 96.47 + 5.82

Artificial lake (0.51 £ 0.02) x 1073 0.40 x 1073 (0.90 + 0.01) x 1073 98.86 + 2.75
0.60 x 1073 (1.09 + 0.04) x 1073 96.36 + 6.20

2.00 6.01 + 0.05 100.12 + 2.75

Saliva 4.02 + 0.66 4.00 7.95 + 0.07 98.60 + 1.66
6.00 10.16 = 0.25 102.46 + 3.90

12.50 39.17 + 0.58 101.94 + 4.78

Urine 26.40 + 2.86 30.00 56.65 + 1.61 100.85 + 3.08
40.00 65.35 + 0.66 97.37 +1.61

0.50 1.49 +0.10 102.85 + 2.26

Blood serum 0.98 +0.30 1.50 2.50 + 0.05 101.72 + 3.22

2.00 2.94 +0.04 98.18 +2.03
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4. Conclusions

In conclusion, porphin-based carbon dots were prepared by using meso-tetra (4-carboxypheny]l)
porphin with a conjugated aromatic structure as carbon precursor, which offers a promising candidate
for the development of a fluorescence labelling probe in biological imaging. By europium ion regulation,
a simple phosphate detection “turn off-on” method was established, with PCDs as the fluorescence
sensing probe. It was applied for the quantitative detection of phosphate with high sensitivity, high
selectivity, and excellent stability in biological fluids, such as human whole blood, serum, urine,
saliva samples, and environmental water samples. This work provided not only a novel strategy for
fabrication of CDs with red emission, but also a promising platform for diagnostic and environmental
monitoring, and it also showed great potential in biomedical fields.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/2/326/s1,
Figure S1: The XRD (a) and Raman spectra (b) of PCDs, Figure S2: The photoluminescent decay profiles and

lifetimes of PCDs and PCDs-Eu>*, Figure S3: The variation of fluorescence intensity for PCDs with irradiation time
(Aex/Aem = 375/645 nm), Figure S4: Cell viability of HeLa cells at different concentrations of PCDs (a); Confocal
fluorescence microscopy images of HeLa cells without labeling under bright field (b) and the excitation wavelength

of 552 nm (c), Figure S5: TEM images of PCDs-Eu®* (a) and PCDs-Eu3+-PO,43~ (b), Figure S6: The relationship
between Fy/F-1 and the concentration of Eudt, Figure S7: Fluorescence variations of PCDs-Eu?* to different kinds
of anions and cations, Figure S8: The emission spectra of PCDs-Eu3* upon the addition of various amounts of

phosphate (0.1-60.0 pmol-L~1); Inset: the photographs of PCDs-Eu®t in the presence of 0, 4, 10, 20, 40, 60 pmol-L~!
phosphate and the original PCDs(from left to right) under the illumination of daylight and UV light, Figure S9:

Fluorescence response of PCDs—Eu3+-PO43_ under the co-existing of other ions (PO43_, 50 umol L1 Br, 8032_,
$?=,ClO~,NO;~, HCO3 ™, Cl-, AC~,S0O427, K*, Na*, CO3%~, 1~, 5000 umol L~1; F~, Zn?*, Mg?*, Fe?*, Fe3*, Ba?*,
Ca%*, Cu?*, Cd%*, 300 pmol L1)).
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