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Abstract: Here, we demonstrate the impact of ferromagnetic layer coating on controlling the
magneto-optical response. We found that the transverse magneto-optical Kerr effect (TMOKE)
signal and TMOKE hysteresis loops of Ni80Fe20 thin layers coated with a Cr layer show a strong
dependence on the thickness of the Cr layer and the incidence angle of the light. The transmission
and reflection spectra were measured over a range of incidence angles and with different
wavelengths so as to determine the layers’ optical parameters and to explain the TMOKE behavior.
The generalized magneto-optical and ellipsometry (GMOE) model based on modified Abeles
characteristic matrices was used to examine the agreement between the experimental and theoretical
results. A comprehensive theoretical and experimental analysis reveals the possibility to create a
TMOKE suppression/enhancement coating at specific controllable incidence angles. This has potential
for applications in optical microscopy and sensors.

Keywords: transverse magneto-optical Kerr effect (TMOKE); ferromagnetic coupling (FMC); suppression
or enhancement of magneto-optical properties; magnetic nanostructure multilayers; reflectivity

1. Introduction

Magnetic multilayered structures are of prime interest, as their properties significantly differ from
the corresponding bulk materials. Nanostructured thin films are also of great technological importance
for applications in nanoelectronics and spintronics [1,2], data storage technologies [3,4], magnetic
and biological sensors [5–7] and optical filtering [8,9]. Many practically important physical effects
have been discovered in multilayered films, including exchange coupling between ferromagnetic films
separated by a non-ferromagnetic layer.
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Giant magnetoresistance in Fe/Cr multilayers and antiferromagnetic coupling between
ferromagnetic layers assisted by the Cr-spacing generated particular interest in ferromagnetic film
systems containing Cr layers. Controlling the properties of the layers and interfaces makes it possible
to develop new concepts that would potentially result in novel applications [10–13]. In this paper,
we apply ellipsometry and the magneto-optical Kerr effect (MOKE) as effective methods to characterize
the ultra-thin bilayer films of NiFe coated with different thicknesses of Cr. It is demonstrated that the
functional Cr layer at an optimized thickness and angle of incidence behaves as an enhancement layer.

In general, MOKE is of interest for light modulation, with a magnetic field that typically
requires MOKE enhancement by interferometric [14] or resonance [2,15] methods. On the other hand,
magneto-optical effects provide a powerful nondestructive technique to investigate magnetization
behavior in magnetic nanostructures, such as measuring magnetic hysteresis loops and imaging
the magnetic domains [16,17]. The transverse magneto-optical Kerr effect (TMOKE) is a simple,
economical and sensitive method to measure thin magnetic films in comparison with superconducting
quantum interference device (SQUID) and Vibrating Sample Magnetometer (VSM) [18]. In TMOKE,
one examines the changes in the intensity of the reflected light from (or transmitted light through) a
magnetized material [19]. This effect arises because the complex refractive indices of the magnetized
material are different for left- and right-circularly polarized light.

Spectroscopic ellipsometry methods are well developed to measure the optical parameters
and thicknesses of multilayers, with low losses. It is more challenging to characterize absorbing
multilayers, as there is a correlation between the complex refractive index and the layer thickness [20].
For magnetic multilayers, it is useful to combine ellipsometry and MOKE methods [21]. In particular,
a simple analytical model can be proposed for a generalized magneto-optical and ellipsometry
(GMOE) scheme in the transverse magneto-optical configuration. GMOE allows for fitting the unique
wavelength-dependent diagonal permittivity of every layer in the multilayer films, and to identify the
off-diagonal elements responsible for the magneto-optical signals [22].

In this work, we have investigated the effect of the interface between ferromagnetic and
antiferromagnetic materials in bilayer ultra-thin films by employing elipsometry measurements
along with TMOKE. We have compared the experimental results with a theory based on the GMOE
model of a ferromagnetic film coated with a non-magnetic layer. It has been revealed that the angular
response of TMOKE for a simple structure of NiFe coated with a Cr layer is sensitive to the thickness
of the Cr layer, which creates suppression/enhancement points. Such behavior is caused mainly by
the interferences between the layers, as the optical properties of thin Cr layers (below 20 nm) are
found to be typical of dielectric materials. This could be of interest for the development of optical
microscopy [23] and sensing [24,25].

Generalised Magneto-Optical and Ellipsometry (GMOE) Formalism

In the case of linear, with respect to the layer magnetization, MOKE, the phenomenological
description for the multi-layered system is based on the matrix-form permittivity for magnetic layers.
Considering the ellipsometry and TMOKE responses, it is convenient to use an extension of the Abeles
characteristic matrixes [26].

Assuming that the plane of incidence is the (y, z) plane and the magnetization is in the film plane
(along the x-axis for a transverse Kerr effect), as shown in Figure 1, the permittivity of an isotropic
magnetic layer has the following form:

ε̂ = εm


1 0 0
0 1 −iQγ
0 iQγ 1

 (1)

here, εm is the diagonal permittivity, Q is the magneto-optical constant and γ is the x-directional cosine
of the magnetization. In this case, the p-polarized (Hx, Ey and Ez) and s-polarized (Ex, Hy and Hz)
waves remain the eigenfunctions of the wave equations.
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The amplitudes of the corresponding fields at the zero boundary (U0, V0 ) are related to those at
the end medium (U, V) via a characteristic matrix M̂, as follows:(

U0

V0

)
= M̂

(
U
V

)
(2)

The matrix M̂ of the multi-layered film is composed of the characteristic matrices of the individual
layers:

M̂ =
∏
j=1,2

M̂ j (3)

The reflection (r) and transmission (t) coefficients are found from the following:(
1 + r

(−1 + r) cosθ0/n0

)
= M̂

(
t

−t cosθs/ns

)
(4)

here, θ0, θs are the angles of incidence and refraction, respectively, and n0, ns are the refractive indexes
of the medium of incidence and the end medium (substrate), respectively. The form of the characteristic
matrices depends on the polarization.
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Figure 1. (a) Structure of the fabricated samples and (b) the optical scheme.

This formalism can be extended to the case of linear magneto-optical (MO) effects. A simple
analytical expression is obtained for the M̂ j of the magnetic layer and the TMOKE configuration
when the permittivity tensor is given by Equation (1) [27]. In the present work, we demonstrate
that the model can be applied to describe the variations in the reflected intensity caused by the
layer re-magnetization. The presence of magnetization modifies only the characteristic matrix of the
p-polarized waves. The form of the wave equations in the magnetic layer does not change, but there is
a modification in the relation between the components of magnetic and electric fields, as follows:

dHx

dy
= ik0εm

(
iQγEy + Ez

)
(5)

dHx

dz
= −ik0εm

(
Ey − iQγEz

)
(6)

In Equations (5) and (6), k0 = 2π/λ, λ is the wavelength in a vacuum. The characteristic matrix of
the magnetic layer is of the following form:

M̂ =

(
cos(βh) − ς sin(βh) i sin(βh)/q

i q sin(βh) cos(βh) + ς sin(βh)

)
(7)
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The parameters entering Equation (7) are as follows:

β = k0nm cosθm , ς = Qγ tanθm , q =
cosθm

nm
, nm =

√
εm (8)

In Equation (8), θm is the refraction angle in the magnetic layer and h is the thickness of the
magnetic layer. In a linear approximation with respect to ς, the determinant of the characteristic matrix
is equal to 1.

In the case of an s-polarized wave, the characteristic matrix corresponds to that of a non-magnetic
layer, that is, the diagonal components of M̂ do not contain the term proportional to Q, and in the
off-diagonal components, the parameter q is replaced by cosθmnm. Therefore, the formalism of the
characteristic matrices makes it possible to calculate both the ellipsometry and TMOKE responses.
The ellipsometry parameter ρ is defined as the ratio of the reflection parameters rp and rs of the p- and
s-polarized waves, as follows:

ρ = tan ψ exp(i∆) =
rp

rs
(9)

The TMOKE parameter δ(γ) is defined as the relative change in the intensity of the p-polarized
waves upon magnetization, as follows:

δ(γ) = 2

∣∣∣rp(γ)
∣∣∣2 − ∣∣∣rp(γ = −1)

∣∣∣2∣∣∣rp(γ = 1)
∣∣∣2 + ∣∣∣rp(γ = −1)

∣∣∣2 (10)

2. Materials and Methods

In our experimental measurements, we investigated bilayer thin films of Cr/Ni80Fe20, which
were prepared by magnetron sputtering (ATC Orion 8 Sputtering Systems, AJA International, North
Scituate, MA, USA) on glass substrates. The thicknesses of the layers varied from 2 to 20 nm, and
from 10 to 20 nm for the Cr and Ni80Fe20 layers, respectively. To obtain the permalloy layer, the
Ni80Fe20 target (from AJA International, North Scituate, MA, USA) was used. The sputtering rates
were 0.13 nm/s for Ni80Fe20 and 0.28 nm/s for Cr (99.99% purity; AJA International, North Scituate,
MA, USA). The sputtering rates were optimized for the material used. The films were prepared in the
condition of an ultrahigh vacuum and a high-purity argon atmosphere, therefore, a lower sputtering
rate did not affect the layer quality. The thickness was controlled by the quartz resonator method.
We also controlled the concentration of components in the NiFe layer after deposition by using energy
dispersive X-ray spectroscopy (EDS) (Oxford Instruments, Oxford, UK) analysis. The results show that
the deviation from the specified concentration did not exceed 0.5% for all of the samples, which was
within the accuracy of the EDS detector used.

The spectroscopic ellipsometry measures ψ and ∆ in Equation (9) both represent the elliptical
polarization output state after the reflection of linearly polarized light at an oblique incidence off

the film sample. They depend on the refractive indexes and thicknesses of the individual layers in
the film. Therefore, the method makes it possible to determine the parameters for which a model
describing the reflectance spectra of the film system must be built in order to theoretically obtain the
values of ψ and ∆. Then, the optical parameters of the individual layers are deduced from fitting the
experimental and modelled data [28]. The spectra of ψ and ∆ were measured using variable angle
spectroscopic ellipsometry (VASE; J.A. Woollam and Co., Nebraska, USA) at two incidence angles
of 65◦ and 70◦, working in rotating analyzer mode with an incident wavelength range from 300 to
1050 nm. The WVASE32 software package, containing the refractive index database for a large number
of materials, was used as a simulator of a sample to fit and analyze the measured spectra in order to
define the optical constants of the individual layers of Cr and NiFe when combined in a bilayer thin
film, and to examine if these values depend on a particular layer thickness. In addition, a bare NiFe film
with a thickness of 20 nm was inspected to accurately determine the optical constants of the individual
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layers of the films. The measured parameters were used in the GMOE model to quantitatively describe
the observed magneto-optical response.

A schematic illustration of the TMOKE setup is shown in Figure 2. The experimental measurements
were carried out at room temperature. A laser diode with a wavelength of 780 nm and a power of
5 mW was used as the light source. Subsequently, the polarizer light was focused onto the sample,
placed in alternating magnetic field with a maximum intensity of 50 mT. The reflected light beam from
the surface of the sample was collimated with a lens, and then divided by a Wollaston prism into two
beams with vertical and horizontal polarizations. A balanced photodetector was used for the signal
measurement. Simultaneously, the signals from the electromagnet and balanced photodetector were
recorded and analyzed.
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Figure 2. Schematic diagram of the transverse magneto-optical Kerr effect (TMOKE) setup.

We also measured the reflectance at a zero field and maximum TMOKE signal, which is proportional
to the relative change in the reflected light intensity at two opposite directions of the external magnetic
field (corresponds to δ(1) in Equation (10)) for a range of angles of incidence from 10 to 70◦.

3. Results and Discussion

Spectroscopic Ellipsometry Characterization
Figure 3 shows an example of the measured ellipsometry parameter spectra for the bilayer Cr/NiFe

film, along with the modelled spectra. The calculations are based on a two-layer model. There is an
obvious consistency between the measured and the calculated angles of ψ and ∆ within the fitting
model. The difference is lower than 1%, which ensures the reliability of the data for the optical
parameters of thin layers used.

Figure 4 shows the complex-valued permittivity spectra ε = ε′ + iε′′ for the individual layers
constituting the film system, which were deduced by fitting the experimental ellipsometry angles
and theoretical angles calculated within the two-layer model. For comparison, the data for the bulk
materials (in the form of thicker films) are given. The permittivity data deduced from fitting for
different layer thicknesses are consistent. However, there might be a significant difference between the
obtained permittivity values of the thin layers and those known for the bulk materials [29,30]. In the
case of the Cr thin film, the permittivity shows a “less” metallic behavior. In particular, the real part of
the permittivity for the Cr layer shows positive values. This is consistent with the increase in resistivity
with decreasing the Cr layer thickness [10]. We will further demonstrate that the obtained permittivity
spectra accurately describe the observed optical and magneto-optical behaviors.
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Figure 3. Experimental and calculated ellipsometry angles (a) for ψ and (b) for ∆; were obtained for
Cr (2 nm)/NiFe (20 nm) films with a 70◦ incidence angle at room temperature. The measured and
modelled values are represented with solid and dashed lines, respectively.
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Figure 4. Real (ε′) and imaginary (ε”) parts of permittivity for (a) NiFe and (b) Cr layers obtained from
fitting the ellipsometry measurement of a two-layer film system. For comparison, the data for bulk
materials (in the form of thicker films) are given [29,30].

The obtained optical parameters ε′ and ε′′ from the ellipsometry measurements of the individual
Cr and NiFe thin layers will be used in the GMOE model to obtain the theoretical angular dependence
of light reflectance vs. NiFe magnetization and the maximal TMOKE signal of δmax within a range of
incidence angles.

The angular dependence of reflectance for the p-polarized laser light at a range of incidence
angles from 10 to 70◦ is presented in Figure 5. We simulated the reflectance by using the permittivity
values obtained from the ellipsometry data. The experimental and calculated data agree well (with an
accuracy of less than 10%), which demonstrates that the obtained permittivity spectra for thin layers
quantitatively characterize the optical behavior of the multilayered thin films. The difference may
be related to a weak dependence of the layer permittivity on the thickness, as seen in Figure 4.
The reflectance shows a reverse dependence on the incidence angle, and it increases alongside the Cr
layer thickness.
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Figure 6. Maximal TMOKE signal 𝛿𝑚𝑎𝑥 vs. incidence angle 𝜃0 for the Cr/NiFe films with different 
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Figure 5. Reflectance parameters of p-polarized light vs. incidence angle θ0 for Cr/NiFe films with
different thicknesses of the Cr layer and with the thickness of NiFe fixed to 10 nm: (a) experimental
plots and (b) the theoretical plots calculated with the layer optical parameters deduced from the
ellipsometry measurements.

Figure 6 shows the maximal TMOKE signals δmax = δ(1) measured and calculated for the Cr/NiFe
thin films as a function of the incidence angle for different thicknesses of the Cr layer. For modelling,
the magneto-optical constant for NiFe was taken as Q = 0.0177 − i 0.0063 [31], and the optical constants
of the Cr and NiFe layers were taken from our ellipsometry measurements. When increasing the
incidence angle θ0, the value of δmax changed value, but the angle of the zero signal strongly depended
on the thickness of the Cr layer, as follows: θ0 changed from 40 to 60◦ when the thickness increased
from 5 to 20 nm. At a fixed θ0 within this range of angles, it was possible to observe a changing
TMOKE response as the Cr layer thickness increases, as follows: firstly, δmax decreased going through
zero, and then increased manifold. In particular, a strong increase of four to five times was observed for
θ0 = 45− 50

◦

. The mechanism of TMOKE is related to the dependence of the boundary conditions for
fields (Hx, Ey) on the x-magnetization of the ferromagnetic layer. The boundary condition also includes
the magnitudes of the reflected/transmitted waves. Then, the interference effect of the Cr layer, which
is characterized by a relatively large and positive real part of the permittivity, considerably influences
the TMOKE signal. The theoretical results describe well the experimental data within the all-optical
model. Some discrepancies may be related to the definition of the magneto-optical constant Q and
the possible impact of ferromagnetic/antiferromagnetic coupling causing spin diffusion. Figure 6 also
reveals the possibility of analyzing an in-depth profile of the ultra-thin bilayer films by the TMOKE
technique, as the signal angular spectra demonstrate different depth sensitivities.
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Figure 6. Maximal TMOKE signal 𝛿𝑚𝑎𝑥 vs. incidence angle 𝜃0 for the Cr/NiFe films with different 
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Figure 6. Maximal TMOKE signal δmax vs. incidence angle θ0 for the Cr/NiFe films with different
thicknesses of the Cr layer and with the thickness of the NiFe layer fixed to 10 nm: (a) experimental
plots and (b) theoretical plots. The theoretical curves are obtained using the deduced results of optical
parameters from the ellipsometry experiment.
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The investigated thin films were mounted in the TMOKE configuration, as shown in Figure 2.
The TMOKE signal is represented by the relative change in intensity δ(γ) in Equation (10), when the
directional cosine γ varies in the presence of the external field. This constitutes the transverse hysteresis
loops, which were measured at two different incidence angles of 30 and 50◦ in the presence of an
in-plane magnetic field and are given in Figure 7.

The maximal TMOKE signal δmax = δ(1), which should correspond to the film magnetization Ms

aligned along the magnetic field, is strongly affected by increasing the thickness of the Cr layer and the
angle of incidence. For θ0 = 30

◦

, δmax and the apparent Ms gradually increase with increasing the Cr
layer thickness. Increasing θ0 to 50

◦

results in a transformation in the hysteresis loops; the loop shrinks
in a vertical direction, increasing the Cr layer thickness as Ms decreases. With a further increase in the
Cr layer thickness, the loops reverse and the value of δmax starts to increase. This behavior reflects the
change in the TMOKE sign, as the signal increases six times when the Cr layer thickness increases
from 5 to 20 nm. Such an unusual behavior could be quantitatively explained within the all-optical
model, with the layer optical parameters found from the ellipsometry measurements, as demonstrated
in Figure 6b. The coercivity does not change, with the Cr layer thickness confirming that the quality of
the interface is not affected by the increase in Cr layer thickness.
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Figure 7. TMOKE hysteresis loops with an in-plane applied magnetic field at two different incidence
angle Cr/NiFe films, with different thicknesses of the Cr film and the thickness of NiFe fixed to 10 nm:
(a) at 30◦ and (b) at 50◦.

4. Conclusions

In summary, this work examined the influence of a top layer of Cr on the optical and
magneto-optical properties of the bilayer films based on NiFe, demonstrating that the use of a
functional Cr layer may enhance the magneto-optical response. A generalized model for ellipsometry
and transverse MOKE analysis based on the extension of the Abeles characteristic matrixes was
demonstrated to quantitatively describe the magneto-optical response. To fit the experimental and
theoretical data, it was important to determine the optical parameters of the thin layers of Cr and NiFe,
which could differ substantially from those of the bulk counterparts. The optical parameters of the
individual layers were extracted from the ellipsometry measurements. Some additional contributions
to the enhancement of the transverse MOKE response could also be due to the coupling between NiFe
and antiferromagnetic Cr.
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