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Abstract: A non-fullerene molecule named Y6 was incorporated into a binary blend of PBDB-T and
IT-M to further enhance photon harvesting in the near-infrared (near-IR) region. Compared with
PBDB-T/IT-M binary blend devices, PBDB-T/IT-M/Y6 ternary blend devices exhibited an improved
short-circuit current density (JSC) from 15.34 to 19.09 mA cm−2. As a result, the power conversion
efficiency (PCE) increased from 10.65% to 12.50%. With an increasing weight ratio of Y6, the external
quantum efficiency (EQE) was enhanced at around 825 nm, which is ascribed to the absorption of Y6.
At the same time, EQE was also enhanced at around 600–700 nm, which is ascribed to the absorption
of IT-M, although the optical absorption intensity of IT-M decreased with increasing weight ratio of
Y6. This is because of the efficient energy transfer from IT-M to Y6, which can collect the IT-M exciton
lost in the PBDB-T/IT-M binary blend. Interestingly, the EQE spectra of PBDB-T/IT-M/Y6 ternary
blend devices were not only increased but also red-shifted in the near-IR region with increasing
weight ratio of Y6. This finding suggests that the absorption spectrum of Y6 is dependent on the
weight ratio of Y6, which is probably due to different aggregation states depending on the weight
ratio. This aggregate property of Y6 was also studied in terms of surface energy.
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1. Introduction

Polymer solar cells have been studied widely because of their excellent advantages, such
as flexibility, being light weight, and involving simple large-scale fabrication [1–5]. Typically,
the photoactive layer of polymer solar cells is composed of one donor and one acceptor. Currently,
conjugated polymers are widely employed as a donor material, and fullerene derivatives or
non-fullerene derivatives are employed as an acceptor material in most cases. Fullerene acceptors
have been dominated in the past two decades, and offered the highest power conversion efficiencies
(PCEs) [6–10]. In 2015, Zhan et al. designed a non-fullerene acceptor named IT-IC, and fabricated the
device based on a low-bandgap polymer PCE10 and ITIC. As a result, they obtained a PCE of 6.80%,
which was higher than that of the devices based on PCE10 and PCBM [11]. Since then, much more
attention has been paid to non-fullerene acceptors [12–15], and a record PCE of 18% has been reported
very recently [16]. Among the non-fullerene acceptors, ((2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-
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diundecyl-12,13-dihydro-[1,2,5]thiadiazolo [3,4-e]thieno[2,”3′’:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno
[2′,3′:4,5]thieno[3,2-b] indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-
indene-2,1-diyliden e))dimalononitrile),Y6 has been most widely studied recently, and hence a PCE of
more than 16% has been reported by several groups [17–21]. The high PCE of devices based on Y6 is
partly ascribed to its wide light-harvesting range of up to 1000 nm. However, there is a limitation in
binary blend polymer solar cells even though non-fullerene acceptors exhibit a good light-harvesting
property. This is because the optical absorption bandwidth of organic photoactive materials is typically
limited to be about 200 nm at most. Therefore, it is still difficult even for polymer/non-fullerene binary
solar cells to effectively harvest many more photons over a wide wavelength range from the visible to
the near-IR region at the same time.

Ternary blend polymer solar cells could be a simple and effective way to expand the optical
absorption range [22–34]. Consequently, improved photovoltaic performance has been reported for
ternary blend polymer solar cells [24–34]. The photoactive layer of ternary blend polymer solar
cells is composed of one donor and two acceptors or two donors and one acceptor. In most cases,
it is desirable to keep the ratio of donor to acceptor in the ternary blend the same as that in the
optimized binary blend cell because the hole and electron transport would be balanced. In other
words, with increasing weight ratio of the third component, the photon harvesting of the original
component should decrease [35–39]. For polymer/fullerene solar cells, such a trade-off relation has
been overcome by efficient energy transfer, which improves the exciton harvesting in ternary blend
solar cells [24,25,28,40]. For example, when a low-bandgap polymer, poly[(4,4-bis(2-ethylhexyl)-
dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT), was incorporated
into binary blend devices based on poly(3-hexylthiophene) (P3HT) and a fullerene derivative (PCBM),
the photocurrent was improved not only at the PSBTBT absorption band in the near-IR region but
also at the P3HT absorption band in the visible region, although the optical absorption of P3HT rather
decreased. This is because P3HT excitons lost in P3HT/PCBM binary blends can be collected by an
efficient energy transfer from P3HT to PSBTBT, followed by an efficient charge transfer to PCBM [28].

In this study, a low-bandgap non-fullerene molecule named Y6 was incorporated into a binary blend
of poly[[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl
[5,7-bis(2-ethylhex-yl)-4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-1,3-diyl]] (PBDB-T) and 3,9-bis
(2-methylene-(3-(1,1-dicyanomethylene)-6/7-methyl)-indanone))-5,5,11,11-tetrakis(4-n-hexylphenyl)-
dithieno[2,3-d:2′,3′-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene (IT-M) to further improve the photon
harvesting efficiency in the near-IR range. Figure 1 shows the chemical structures and the energy-level
diagram of the three materials employed in this study. The complementary absorption also gives a
large spectral overlap between the IT-M fluorescence and the Y6 absorption, which could enhance the
exciton harvesting of IT-M by an efficient energy transfer from IT-M to Y6. Based on this strategy,
a high short-circuit current density (JSC) and a high fill factor (FF) were obtained at the same time,
resulting in an improved PCE of 12.5%, which is even higher than those of both individual binary solar
cells based on PBDB-T/IT-M and PBDB-T/Y6. We also found that PBDB-T/IT-M/Y6 ternary blends
exhibit increased and red-shifted absorption in the near-IR region with increasing weight ratio of Y6.
In order to address the origin of this spectral change, the absorption spectra of Y6 in different polymer
matrices were studied in terms of surface energy.



Nanomaterials 2020, 10, 241 3 of 12
Nanomaterials 2020, 10, 241 3 of 13 

 
Figure 1. Chemical structures of materials employed in this study: (a) PBDB-T, (b) IT-M, and (c) Y6. 
(d) Energy level diagram of photovoltaic materials used in this study [11,18]. 

2. Materials and Methods 

2.1. Materials 

A conjugated polymer PBDB-T (Number average molecular weight Mn = 29 000 g mol−1, 
polydispersity index PDI = 1.5), non-fullerene molecules IT-M (Purity: 99%) and Y6 (Purity: 99%), 
and poly[9,9-bis(3′-(N,N-dimethyl)-N-ethylammonium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctyl 
fluorine)]dibromide (PFN-Br) (Mn = 50,000 g mol−1, PDI = 2.5) were purchased from Solarmer 
Materials, Incorporated (Beijing, China). These materials were used without further purification. 

2.2. Device Fabrication 

Non-fullerene-based ternary blend polymer solar cells were fabricated as follows. Indium–tin-
oxide (ITO)-coated glass substrates (10 Ω per square) were rinsed by ultrasonication in toluene, 
acetone, and ethanol for 15 min in sequence. The cleaned substrates were dried under nitrogen gas 
and then treated with a UV–O3 cleaner for 30 min. A hole-transporting buffer layer (40 nm) of 
PEDOT:PSS (AI4083) was spin coated onto the cleaned substrates at a spin rate of 3000 rpm for 60 s 
and then dried on a hot plate at 140 °C for 10 min in air. Prior to the spin coating, the solution of 
PEDOT:PSS was filtered with a PTFE syringe filter (pore size: 0.45 μm). The blend active layer was 
prepared on the ITO/PEDOT:PSS-coated substrate by spin coating at a spin rate of 2200 rpm for 60 s, 
and subsequently annealed on a hot plate at 140 °C for 10 min in the nitrogen atmosphere. A blend 
solution of PBDB-T/IT-M/Y6 was prepared by dissolving donor polymers (PBDB-T) and acceptors 
(IT-M and Y6) (1 : 1 by weight) with a composition of 10 : x : 10 − x mg in 1 mL of chlorobenzene with 
1% volume ratio of 1,8-diiodooctane (DIO). The blend solution was stirred at 60 °C overnight. Note 
that the weight fraction of Y6 was optimized in the range 5–50 wt %. The thickness of blend films was 
~100 nm. A PFN-Br buffer layer (~5 nm) was prepared on the active layer by spin coating at a spin 
rate of 3000 rpm for 60 s from a solution of PFN-Br (0.5 mg) in 1 mL anhydrous methanol. Finally, 

Figure 1. Chemical structures of materials employed in this study: (a) PBDB-T, (b) IT-M, and (c) Y6.
(d) Energy level diagram of photovoltaic materials used in this study [11,18].

2. Materials and Methods

2.1. Materials

A conjugated polymer PBDB-T (Number average molecular weight Mn = 29 000 g mol−1,
polydispersity index PDI = 1.5), non-fullerene molecules IT-M (Purity: 99%) and Y6 (Purity: 99%), and
poly[9,9-bis(3′-(N,N-dimethyl)-N-ethylammonium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctyl fluorine)]
dibromide (PFN-Br) (Mn = 50,000 g mol−1, PDI = 2.5) were purchased from Solarmer Materials,
Incorporated (Beijing, China). These materials were used without further purification.

2.2. Device Fabrication

Non-fullerene-based ternary blend polymer solar cells were fabricated as follows. Indium–
tin-oxide (ITO)-coated glass substrates (10 Ω per square) were rinsed by ultrasonication in toluene,
acetone, and ethanol for 15 min in sequence. The cleaned substrates were dried under nitrogen
gas and then treated with a UV–O3 cleaner for 30 min. A hole-transporting buffer layer (40 nm) of
PEDOT:PSS (AI4083) was spin coated onto the cleaned substrates at a spin rate of 3000 rpm for 60 s
and then dried on a hot plate at 140 ◦C for 10 min in air. Prior to the spin coating, the solution of
PEDOT:PSS was filtered with a PTFE syringe filter (pore size: 0.45 µm). The blend active layer was
prepared on the ITO/PEDOT:PSS-coated substrate by spin coating at a spin rate of 2200 rpm for 60 s,
and subsequently annealed on a hot plate at 140 ◦C for 10 min in the nitrogen atmosphere. A blend
solution of PBDB-T/IT-M/Y6 was prepared by dissolving donor polymers (PBDB-T) and acceptors
(IT-M and Y6) (1 : 1 by weight) with a composition of 10 : x : 10 − x mg in 1 mL of chlorobenzene
with 1% volume ratio of 1,8-diiodooctane (DIO). The blend solution was stirred at 60 ◦C overnight.
Note that the weight fraction of Y6 was optimized in the range 5–50 wt %. The thickness of blend
films was ~100 nm. A PFN-Br buffer layer (~5 nm) was prepared on the active layer by spin coating
at a spin rate of 3000 rpm for 60 s from a solution of PFN-Br (0.5 mg) in 1 mL anhydrous methanol.
Finally, 100 nm of aluminum top electrode was thermally evaporated on top of the PFN-Br layer
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under vacuum at 2.5 × 10−4 Pa. Consequently, the device layered structure obtained was as follows:
ITO/PEDOT:PSS/PBDB-T : IT-M : Y6/PFN-Br/Al. The effective area of the device was 0.07 cm2.

2.3. Measurements

J–V characteristics were measured with a direct-current (DC) voltage and current source/monitor
(Keithley, 2611B, Cleveland, USA) in the dark and under illumination with an AM 1.5G simulated
solar light with 100 mW cm−2. The light intensity was corrected with a calibrated silicon photodiode
reference cell (Bunkou Keiki, BS-520, Tokyo, Japan). External quantum efficiency (EQE) spectra were
measured with a spectral response measurement system (Bunkou Keiki, ECT-250D). The power of the
incident monochromatic light was kept under 0.05 mW cm−2, which was measured with a calibrated
silicon reference cell (Bunkou Keiki, BS-520BK, Tokyo, Japan).

The ionization potential of PBDB-T, IT-M, and Y6 films was measured with a photoelectron yield
spectrometer (Riken Keiki, AC-3, Tokyo, Japan). All the neat films were fabricated by spin coating
from each chlorobenzene solution on the ITO substrate. The threshold energy for the photoelectron
emission was estimated on the basis of the cubic root of the photoelectron yield plotted against the
incident photon energy, as reported previously [24].

Absorption and photoluminescence (PL) spectra were measured at room temperature with a
spectrophotometer (Hitachi, U-4100, Tokyo, Japan) and a spectrofluorometer (Horiba Jobin Yvon,
NanoLog, Kyoto, Japna) equipped with a photomultiplier tube (Hamamatsu Photonics, R928P,
Hamamatsu, Japan) and a liquid-nitrogen-cooled InGaAs near-IR array detector (Horiba Jobin Yvon,
Symphony II, Kyoto, Japan), respectively.

The surface energy γX of the material X was evaluated from a contact angle θX, as reported
previously [27,32,41]. The contact angle θX was measured for an ultrapure water droplet on the material
film at room temperature. The interfacial energy γAB between materials A and B was evaluated from
γA and γB by the Neumann’s Equation.

3. Results

3.1. Optoelectronic Properties

As shown in Figure 2a, the donor polymer PBDB-T exhibits absorption bands in the visible region
from 450 to 710 nm, the non-fullerene acceptor IT-M exhibits an absorption band in the visible to
near-IR region from 500 to 800 nm, and the non-fullerene acceptor Y6 exhibits absorption bands mainly
in the near-IR region with an absorption tail extending up to 1000 nm. In other words, these three
photovoltaic materials show a complementary absorption from the visible to the near-IR range. On the
other hand, as shown in Figure 2b, PBDB-T exhibits a PL peak at around 690 nm, IT-M exhibits a PL
peak at around 770 nm and a shoulder peak at around 830 nm, and Y6 exhibits a PL peak at around
940 nm. Obviously, the PL peaks of PBDB-T and IT-M were located in the absorption range of IT-M
and Y6, respectively. In other words, there is a good spectral overlap between the PL of PBDB-T and
the absorption of IT-M, and between the PL of IT-M and the absorption of Y6, respectively, suggesting
that the energy transfer from PBDB-T to IT-M and from IT-M to Y6 could occur. On the other hand,
as shown in Figure 1d, cascade energy structures would be formed in PBDB-T/IT-M/Y6 blend films,
which are beneficial for the charge transfer among the three materials. In other words, there is a
competition of energy transfer with charge transfer at the interfaces of PBDB-T/IT-M and of IT-M/Y6.

Figure 3 shows the PL spectra of neat and blend films with different compositions upon
photoexcitation of IT-M mainly at 710 nm. For the IT-M/Y6 binary blend film, the PL from IT-M was
strongly quenched, and instead the PL from Y6 was clearly observed, indicating an efficient energy
transfer from IT-M to Y6. For the PBDB-T/IT-M binary blend film, on the other hand, the PL from
IT-M was quenched to ~10% relative to that of the IT-M neat film, suggesting that about 10% of IT-M
excitons are radiatively deactivated to the ground state before arriving at the PBDB-T/IT-M interface.
For the PBDB-T/IT-M/Y6 ternary blend film, no PL was observed by the addition of only 10 wt % of Y6
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molecules into the PBDB-T/IT-M binary blends. In other words, the PL from IT-M was completely
quenched and no PL from Y6 was observed. This is most probably because the 10% of IT-M excitons
that would be lost in the absence of Y6 are collected to the Y6 domains by an energy transfer followed
by a charge transfer to IT-M or PBDB-T.Nanomaterials 2020, 10, 241 5 of 13 
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binary blend was corrected by subtracting the PL intensity due to the direct excitation of Y6 at 710 nm.
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3.2. J–V Characteristics

In order to discuss the sensitization effect of Y6, we fabricated binary and ternary blend polymer
solar cells with a structure of ITO/PEDOT:PSS/active layers/PFN-Br/Al under the same conditions.
The device parameters are summarized in Table 1. The overall donor to acceptor ratio was maintained
at 1 : 1 in this study. As shown in Figure 4, the PBDB-T/IT-M binary control device gave a short-circuit
current density (JSC) of 15.34 mA cm–2, an open-circuit voltage (VOC) of 0.946 V, a fill factor (FF) of
0.734, and a power conversion efficiency (PCE) of 10.65%, which are comparable to those reported
previously [26,42]. With the incorporation of 10 wt % Y6 into the binary blend, the JSC was obviously
enhanced up to 19.09 mA cm–2, which is much higher than that of the PBDB-T/IT-M binary control
device and is approaching that of the PBDB-T/Y6 binary device. The FF was slightly decreased
compared with that of the PBDB-T/IT-M binary control device, but it is much higher than that of
the PBDB-T/Y6 binary device. VOC was decreased compared with that of the PBDB-T/IT-M binary
control device, but it is much higher than that of the PBDB-T/Y6 binary device. This is because
the lowest unoccupied molecular orbital energy level of Y6 is much deeper than that of IT-M. As a
result, the PCE was improved from 10.65% for the PBDB-T/IT-M binary control devices to 12.50% for
the PBDB-T/IT-M/Y6 ternary blend devices, which is also much higher than that of the PBDB-T/Y6
binary blend devices. Further addition of Y6 rather decreased the photocurrent generation and hence
degraded the overall photovoltaic performance.

Table 1. Photovoltaic parameters of PBDB-T/IT-M/Y6 ternary blend polymer solar cells with different
compositions.

PBDB-T/IT-M/Y6 JSC/mA cm–2 VOC/V FF PCE a/%

1 : 1 : 0 15.34 (15.02 ± 0.32) 0.946 (0.944 ± 0.002) 0.734 (0.718 ± 0.016) 10.65 (10.28 ± 0.27)
1 : 0.9 : 0.1 17.68 (17.24 ± 0.44) 0.917 (0.916 ± 0.001) 0.728 (0.701 ± 0.027) 11.72 (11.34 ± 0.38)
1 : 0.8 : 0.2 19.09 (18.72 ± 0.37) 0.902 (0.901 ± 0.001) 0.726 (0.713 ± 0.023) 12.50 (12.25 ± 0.22)
1 : 0.7 : 0.3 18.80 (18.37 ± 0.43) 0.872 (0.870 ± 0.001) 0.711 (0.693 ± 0.018) 11.65 (11.62 ± 0.33)

1 : 0 : 1 19.27 (19.05 ± 0.22) 0.689 (0.687 ± 0.002) 0.647 (0.625 ± 0.022) 8.60 (8.34 ± 0.26)
a The average values were obtained from 10 devices.Nanomaterials 2020, 10, 241 7 of 13 
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and 1 : 0 : 1 (green line).

3.3. External Quantum Efficiency (EQE) Spectra

In order to address the origin of enhancement in JSC, we measured the absorption and EQE spectra
of PBDB-T/IT-M/Y6 ternary blend solar cells with different compositions. As shown in Figure 5a,
the absorption was increased at around 790 nm by the addition of Y6 into the binary blend of
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PBDB-T/IT-M. Correspondingly, as shown in Figure 5b, EQE was enhanced near the Y6 absorption
region. Instead, the absorption was decreased at around 700 nm, which is ascribed to the decrease of
IT-M in the ternary blend. Interestingly, the EQE ascribed to IT-M was rather increased even though
the absorption was decreased. More specifically, the EQE was increased at 700 nm from 72% to 82% by
the incorporation of 10 wt % of Y6 into PBDB-T/IT-M binary blends, although the absorption efficiency
was decreased at 700 nm from 92% to 87%. This is because there is efficient energy transfer from IT-M
to Y6, as will be discussed detail later. Interestingly, as shown in Figure 5a,b, the absorption range
was red-shifted with increasing weight ratio of Y6 in the ternary blend. Correspondingly, the EQE
range was also red-shifted. This spectral change is probably due to the aggregation of Y6 in the ternary
blend, which is dependent upon the weight fraction of Y6, as will be discussed later.Nanomaterials 2020, 10, 241 8 of 13 

 
Figure 5. (a) UV-visible absorption and (b) EQE spectra of PBDB-T/IT-M/Y6 ternary blend films with 
different blend ratios: 1 : 1 : 0 (black line), 1 : 0.9 : 0.1 (red line), 1 : 0.8 : 0.2 (blue line), 1 : 0.7 : 0.3 (purple 
line), and 1 : 0 : 1 (green line). 

In order to discuss the origin of such a spectral shift, we measured the absorption spectra of Y6 
doped in different polymer films. As shown in Figure 6, the absorption spectra were different even 
though the Y6 weight fraction was the same (5 wt %), suggesting different aggregation states of Y6. 
In the chlorobenzene solution, Y6 isolated molecules exhibit an absorption band at around 730 nm. 
On the other hand, Y6 neat films exhibit absorption at around 843 nm, which is red-shifted by more 
than 100 nm compared to the absorption of Y6 in a chlorobenzene solution. In regiorandom poly(3-
hexylthiophene) (RRa-P3HT) films, Y6 exhibits an absorption band at around 765 nm, which is 
similar to that of Y6 in a chlorobenzene solution, suggesting that Y6 are likely to be relatively 
homogeneously distributed in RRa-P3HT films. In polystyrene (PS) films, on the other hand, Y6 
exhibits an absorption band at around 828 nm, which is rather similar to that in Y6 neat films, 
suggesting that Y6 molecules form aggregates similar to those in Y6 neat films. These findings suggest 
that Y6 molecules are more aggregated in these polymer films in the increasing order of PS, PBDB-T, 
and RRa-P3HT. These different aggregates will be discussed in terms of surface energy. 

 
Figure 6. Normalized UV-visible absorption spectra of Y6 in a chlorobenzene solution (black line), Y6 
neat film (green line), Y6 doped in RRa-P3HT (red line), PBDB-T (blue line), and polystyrene (PS) 
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In order to discuss the origin of such a spectral shift, we measured the absorption spectra of
Y6 doped in different polymer films. As shown in Figure 6, the absorption spectra were different
even though the Y6 weight fraction was the same (5 wt %), suggesting different aggregation states
of Y6. In the chlorobenzene solution, Y6 isolated molecules exhibit an absorption band at around
730 nm. On the other hand, Y6 neat films exhibit absorption at around 843 nm, which is red-shifted
by more than 100 nm compared to the absorption of Y6 in a chlorobenzene solution. In regiorandom
poly(3-hexylthiophene) (RRa-P3HT) films, Y6 exhibits an absorption band at around 765 nm, which
is similar to that of Y6 in a chlorobenzene solution, suggesting that Y6 are likely to be relatively
homogeneously distributed in RRa-P3HT films. In polystyrene (PS) films, on the other hand, Y6
exhibits an absorption band at around 828 nm, which is rather similar to that in Y6 neat films, suggesting
that Y6 molecules form aggregates similar to those in Y6 neat films. These findings suggest that
Y6 molecules are more aggregated in these polymer films in the increasing order of PS, PBDB-T,
and RRa-P3HT. These different aggregates will be discussed in terms of surface energy.
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Figure 6. Normalized UV-visible absorption spectra of Y6 in a chlorobenzene solution (black line),
Y6 neat film (green line), Y6 doped in RRa-P3HT (red line), PBDB-T (blue line), and polystyrene (PS)
(purple line) films with a weight fraction of 5 wt %. The absorption spectra of Y6 in different polymer
films were corrected by subtracting the absorption of polymer neat films.

4. Discussion

As mentioned above, PBDB-T/IT-M/Y6 ternary blend polymer solar cells exhibited the improved
PCE compared to binary blend control cells. This is mainly due to the improved photocurrent by the
addition of a near-IR non-fullerene molecule (Y6). Here, we discuss two mechanisms for the improved
photocurrent: one is the improved exciton-harvesting of IT-M due to energy transfer and the other is
the improved photon-harvesting by the addition of Y6.

Firstly, we focus on the energy transfer from IT-M to Y6. As shown in Figure 5, EQE was increased
at around 700 nm while the absorption was rather decreased at around 700 nm, which is mainly ascribed
to IT-M absorption. Thus, the internal quantum efficiency should be improved at the IT-M absorption.
As shown in Figure 2, there is a good spectral overlap between the absorption of Y6 and the PL of
IT-M, suggesting an efficient energy transfer from IT-M to Y6. Indeed, as shown in Figure 3, PL was
observed from Y6 in the IT-M/Y6 binary blend even though IT-M was selectively excited, indicating an
efficient energy transfer from IT-M to Y6. On the other hand, the PL of IT-M was quenched to 10% for
the PBDB-T/IT-M binary blend, while it was completely quenched for the PBDB-T/IT-M/Y6 ternary
blend, suggesting that the 10% IT-M excitons that would be lost in the PBDB-T/IT-M binary blend are
efficiently collected to Y6 by energy transfer, as observed for the PL spectra of the IT-M/Y6 ternary
blend. Subsequently, an efficient charge transfer occurs from Y6 to IT-M or PBDB-T. The improved
exciton quenching efficiency reasonably explains the change of EQE and absorption.

Next, we focus on the improved photon harvesting by the addition of Y6. As shown in Figure 5,
an additional EQE signal was observed at around 790 nm, which is consistent with an additional
absorption due to the incorporation of Y6 into the PBDB-T/IT-M binary blend. This finding suggests
that Y6 molecules contribute to the photocurrent generation in the ternary blend solar cell. Furthermore,
the additional absorption was increased in intensity and also red-shifted in the absorption tail with
increasing weight ratio of Y6. This is probable due to different aggregate states of Y6 depending on the
weight fraction of Y6 in PBDB-T/IT-M/Y6 ternary blends.

In order to study this spectral property, the absorption spectra of Y6 were measured for different
polymer matrices. As mentioned before, with the addition of 5 wt % of Y6 into RRa-P3HT, PBDB-T,
and PS polymer matrices, the absorption peaks of Y6 were estimated to be 765 nm for Y6 in RRa-P3HT,
796 nm for Y6 in PBDB-T, and 828 nm for Y6 in PS films. This result suggests that the dispersed
states in these three materials are different. With increasing weight ratio of Y6, as shown in Figure 7,
the absorption peaks of Y6 in these three binary blends were red-shifted and finally saturated to a neat
film state. In more detail, the peak shift was saturated at around 70 wt % for Y6 in RRa-P3HT, at around
50 wt % for Y6 in PBDB-T, and at around 20 wt % for Y6 in PS films. These results, again, indicate that
Y6 molecules are likely to form aggregates more easily in the order of PS, PBDB-T, and RRa-P3HT films.
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We therefore discuss the spectral property of Y6 molecules in terms of surface energy. Table 2
summarizes the surface energy of the materials used in this study. The compatibility of two different
materials can be predicted on the basis of their surface energy: a similar surface energy indicates good
compatibility, while a largely different surface energy indicates poor compatibility [43,44]. As shown
in Table 2, the difference in surface energy ∆γ is as small as 2.6 mJ m–2 for Y6 and RRa-P3HT, which is
the smallest, and the ∆γ is as large as 8.3 mJ m–2 for Y6 and PS, which is the largest. The trend in ∆γ is
consistent with the absorption peak shift observed for Y6 in these polymer films. We thus conclude
that dye aggregation can be controlled by the careful selection of material combinations.

Table 2. Surface energy (γ) of materials used in this study.

Materials Y6 RRa-P3HT PBDB-T PS

γ/mJ m–2 17.3 19.9 22.9 25.6

Finally, we consider the future direction for highly efficient non-fullerene polymer solar cells
based on Y6. As shown in Figure 2, Y6 molecules exhibit a good optical absorption in the near-IR region
up to 1000 nm, which is beneficial as a near-IR sensitizer for wide- and middle-bandgap photoactive
materials. On the other hand, Y6 molecules also exhibit a large spectral change depending on the
matrix material. In particular, the absorption of Y6 was most red-shifted in PS films with a large
surface energy, resulting in the extension of the absorption tail up to 1000 nm. As shown in Figure 5a,
the absorption peak of Y6 is 790 nm in PBDB-T/IT-M/Y6 ternary blend films with a Y6 fraction of 10 wt
%. If we select a conjugated polymer with a higher surface energy like PS, Y6 molecules would exhibit
a more red-shifted absorption band, resulting in a higher JSC. We therefore believe that this finding
is generally applicable to other photoactive materials with a large spectral change depending on the
aggregation state.

5. Conclusions

In summary, PBDB-T/IT-M/Y6 ternary blend polymer solar cells exhibited JSC increased from
15.34 to 19.09 mA cm−2, and hence PCE improved from 10.65% to 12.5% compared to PBDB-T/IT-M
binary blend polymer solar cells. The increased JSC is partly due to the improved light harvesting by
the additional absorption of Y6 in the near-IR region as well as the improved exciton harvesting by
efficient energy transfer from IT-M to Y6. Interestingly, the absorption and EQE spectra due to Y6
were red-shifted with increasing weight ratio of Y6. We found that this special shift in absorption is
dependent on the Y6 aggregation state, which is sensitive to the surface energy of component materials.
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The absorption of Y6 was more red-shifted in polymer films with a surface energy more different from
Y6, resulting in more efficient light harvesting up to 1000 nm. We thus believe that this finding is
generally applicable to other photoactive materials with a large spectral change depending on the
aggregation state.
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