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Abstract: Tacrine (TAC) was the first FDA approved drug for the treatment of Alzheimer’s disease,
resulting in increased memory and enhanced cognitive symptoms in patients. However, long-term
therapy presents poor patient compliance associated with undesired side effects such as nausea,
vomiting and hepatoxicity. To improve its therapeutic efficacy and decrease toxicity, the use of
nanoparticles could be applied as a possible solution to delivery TAC. In this context, a project has
been designed to develop a new nanostructured lipid carrier (NLC) as a delivery system for TAC
and conjugate TAC and model amphipathic peptide (MAP) to decrease TAC limitations. Different
formulations loaded with TAC and TAC + MAP were prepared using a combination of Compritol 888
ATO as the solid lipid and Transcutol HP as the liquid lipid component. Physical characterization was
evaluated in terms of particle size, surface charge, encapsulation efficiency and in vitro drug release
studies. Particle size distributions within the nanometer range were obtained with encapsulation
efficiencies of 72.4% for the TAC and 85.6% for the TAC + MAP conjugate. Furthermore, cytotoxicity
of all NLC formulations was determined against neuroblastoma cell line SH-SY5Y. The optimized
TAC delivery system revealed low toxicity suggesting this could be a potential carrier system to
deliver TAC. However, TAC + MAP conjugated even encapsulated in the NLC system demonstrated
toxicity against the SH-SY5Y cell line.
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1. Introduction

Tacrine (TAC) is a competitive and reversible inhibitor of both acetylcholinesterase (AChE)
and butylcholinesterase [1,2]. TAC was first unsuccessfully investigated to be an antibacterial agent,
but further studies revealed analeptic proprieties; therefore, it was used as a morphine antagonist to
manage pain in terminal cancer patients. After that, TAC also demonstrated positive effects in patients
with anticholinergic delirium so further studies were conducted to evaluate TAC interaction with the
cholinergic system [3]. In September of 1993, TAC was approved by the FDA for the treatment of
Alzheimer’s disease (AD), being the first approved treatment at the time [4,5]. AD is a progressive
neurodegenerative disease and affects almost 6% of world population. Over the years, several studies
had demonstrated that AD is a complex disease with multifactorial mechanisms involved. The main
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mechanisms are amyloid cascade hypothesis [6], hyperphosphorylation of Tau [7], excitotoxicity,
oxidative stress, astrocyte impairment and more [8–10]. The main AD pathology is associated with
widespread neuronal and synaptic loss, particularly of the cholinergic network in the cerebral cortex
and hippocampus regions resulting in memory impairment and cognitive and behavior disturbances
in patients [2]. The mechanism of action of TAC relies on inhibition of AChE, leading to increased
availability of acetylcholine associated with an enhancement on the muscarinic effect, improved
memory and cognition of AD patients [2]. However, in long-term treatments, TAC has demonstrated
some undesired effects on AD patients such as gastrointestinal effects (nausea, vomiting), shivering and
hepatoxicity with an increase of transaminases [11,12]. In addition, pharmacokinetic studies showed
that TAC has a short half-life time (around 2 h), low oral bioavailability (17%) and a high clearance
rate from systemic circulation [13,14]. Many efforts have been developed to overcome and reduce
these side effects [15]. The use of nanoparticles (NP) as a delivery vector can be a promising solution,
as they are relatively safe, enhance drug bioavailability, decrease blood protein binding and clearance
rate [16,17]. Among the most studied nanoparticulate systems, nanostructured lipid carriers (NLCs)
are attracting great scientific interest. In contrast to most polymeric nanoparticle systems, NLCs present
a lower cytotoxic risk since their preparation avoids the use of organic solvents, still some sensitivity
or irritation can arise from the amount of surfactant added [18]. Moreover, when compared to the
common solid lipid NP, NLCs are characterized by a less ordered structure which reflects on higher
drug loading capacity and retention during storage. Another great advantage of this delivery system is
the ability to functionalize through conjugation, grafting or coating with polymers and specific ligands
(aptamer, peptides, antibodies and others) [19]. Thus, the development of upgrade NPs leads to higher
stability, improves targeting, increases circulation time and reduces undesired body distribution [19].
Several studies have demonstrated the major advantages of using lipid-based nanoparticles for efficient
target and delivery of different compounds against brain diseases [20,21]. NLCs can be prepared with
a variety of lipids and surfactants in order to achieve the optimal formulation. In this paper, Compritol
888 ATO® and Transcutol® were used as lipid components and Tween 80 as a surfactant. Compritol
888 ATO® is composed of mono-, di- and triglycerides of behenic acid, is insoluble in aqueous solutions,
non-digestible, non-ionic and chemically inert with a high melting point and narrow recrystallization
behavior [22]. Transcutol® is diethylene glycol monomethyl ether, usually used as a co-surfactant
and has optimal solubilizing proprieties for drugs [23]. Tween 80 was used to stabilize the overall
formulation and when used in nanoparticle formulations has demonstrated the ability to enhance
blood-brain barrier crossing [24].

Cell-penetrating peptides (CPPs) are mostly used in combination with NPs as targeting
ligands, and are facilitating drug delivery through endocytosis or passive transport. One example
of efficient drug delivery is the model amphipathic peptide (MAP), presenting 72 h half-life in
human serum [25,26] and an enhanced capability to deliver a wide range of compounds such as
peptides, siRNA and oligonucleotides [27–29]. MAP is a cell penetrating peptide with 18 amino
acid residues (KLALKLALKALKAALKLA), presenting repetitive blocks of cationic residue (lysine)
and two hydrophobic residues (alanine and leucine), which confer an amphipathic a-helix structure
crucial to interact with membrane surfaces and facilitate endocytosis [30]. In this context, CPP can
also be used to act as an active compound in different cellular mechanisms. In a previous study,
our group demonstrated that, upon conjugation with Rasagiline, MAP could somehow interact with
alpha-synuclein aggregates decreasing its formation in a Parkinson’s disease model [31]. Therefore,
in multifactorial and complex disorders, such as neurodegenerative diseases, it is important to develop
a compound with broad effect and multiple targets. AD is characterized not only by the loss of
cholinergic neurons and synapses, but also by the progressive accumulation of protein aggregates
in the brain (diffuse and extracellular beta-amyloid plaques and intracellular neurofibrillary tangles
accompanied by reactive microgliosis and dystrophic neurites), which causes neuronal destabilization
and induces membrane damage and inflammatory response [32–34].
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In this work, we developed a stable and safe dual delivery to improve TAC delivery by combining
NLC with TAC or its conjugate with MAP (TAC-MAP) and evaluating their toxicity in vitro, using
SH-SY5Y cells to determine its safety for use in future studies of AD models.

2. Materials and Methods

2.1. Materials

Tacrine hydrochloride (9-amino-1,2,3,4-tetrahydroacridine hydrochloride hydrate) (TAC) was
acquired from Sigma Aldrich (Algés, Portugal). Glyceryl dibehenate (Compritol® 888 ATO) and
diethylene glycol monoethyl ether (Transcutol HP®) was a kind gift from Gattefossé (France).
Polysorbate 80 (Tween 80®) was obtained from J. Vaz Pereira S.A. (Benavente, Portugal).
The 3-(4,5-dimethyl-2-thiazolyl)-2,5-dipheny-2H-tetrazolium bromide (MTT), sulfarhodamine B sodium
(SRB) and phosphate buffer solution (PBS—pH 7.4) were purchased from Sigma-Aldrich (St Louis, MO,
USA). Caprylic/capric triglycerides (Miglyol® 812) were a gift from Sasol Olefins & Surfactants GmbH
(Hamburg, Germany). Dimethyl sulfoxide (DMSO) was obtained from Merck (Algés, Portugal). For
the viability studies, neuroblastoma cell line (SH-SY5Y, ATCC® CRL-2266TM) was used. The culture
medium, penicillin-streptomycin was acquired from Sigma-Aldrich and the rest of the supplies were
purchased from Millipore Sigma.

2.2. TAC-MAP Synthesis

MAP and TAC-MAP were previously developed by our research group. Briefly, MAP was
synthetized through Fmoc/tBu solid-phase peptide synthesis (SPPS) methodologies assisted with
microwave (MW) energy, using a Liberty Microwave Peptide Synthesizer in conjugation with TAC
through “click chemistry”—a classical copper-catalyzed azide−alkyne cycloaddition (CuAAC) reaction.

2.3. THA Solubility Studies

The solubility of TAC was first determined in Compritol 888 ATO, Transcutol HP and Mglyol.
Briefly, the solid lipid Compritol 888 ATO was melted at a temperature 10 ◦C above its melting point
(80 ◦C), in a controlled temperature water bath, while the liquid lipids Miglyol and Transcutol HP
were ready to use. Increasing amounts of TAC were successively added, with stirring, until saturation
of the lipid was achieved. This occurred when excess of solid TAC persisted for more than 8 h. Each
determination was carried out in triplicate (n = 3).

2.4. Preparation of NLC

TAC-loaded NLCs were prepared using a modification of a hot high shear homogenization (HSH)
method previously described [35]. Briefly, the solid lipid consisting of 300 mg of Compritol 888 ATO
was melted at a temperature 10 ◦C above its melting point. TAC was dissolved in the liquid lipid
Transcutol HP (at theoretical concentrations of 20%, 25% and 30%, w/w), which was added to the molten
solid lipid. A hot aqueous phase consisting of 3% Tween 80 in 10 mL ultra-purified water was added
to the lipid phase under high-shear homogenization at 12,3000 rpm for 10 min (Silverson SL2, UK),
in a water bath to maintain the temperature. The NLC dispersion was finally allowed to cool in an ice
bath with gentle stirring for 5 min. Each formulation was carried out in duplicates (n = 2). The final
dispersion was sealed and stored at 4 ◦C until further use.

2.5. Characterization of NLC

2.5.1. Particle Size and Surface Change

Particle size distribution was analyzed by photon correlation spectroscopy using Zetasizer Nano
S (Malvern instruments, UK). For this, samples were placed in a specific cuvette and measurements
were made at 25 ◦C. Results were expressed as average particle size and polydispersity index (PI).
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Zeta potential was calculated through nanoparticle electrophoretic mobility (previously diluted with
filtered purified water and placed in an appropriate), using a Zetasizer Nano Z (Malvern instruments,
UK). For all measurements, at least three replicate samples were determined.

2.5.2. Encapsulation Efficiency

The entrapment efficiency (EE) and drug loading (DL) in the NLC formulations were determined
using an indirect method. The free drug, i.e., unassociated to the NLC, was separated from the particles
using centrifugation (Amicon ultra centrifugal filter units; ultra-15, MWCO 100 Kda, Sigma-Aldrich,
Algés, Portugal). Briefly, 1 mL of the sample was kept in the upper chamber compartment of the
ultra-centrifuge tube and centrifugated at 12,000 rpm for 15 min. The collected sample in the lower
chamber was quantified using high-pressure liquid chromatography (HPLC). Entrapment efficiency
and drug loading were determined using the following equations:

Encapsulation efficiency (%w/w) =
w1−w2

w1
× 100 (1)

Drug loading (%w/w) =
w1−w2

w3
× 100 (2)

where w1 corresponds to amount of drug added in the NLCs, w2 is the amount of free drug and w3 is
the amount of lipid.

2.6. In Vitro Drug Release

2.6.1. TAC and TAC + MAP Release from pH 7.4

Before release studies were performed, NLCs were desalted on Sephadex G-25 medium pre-filled
PD-10 columns (GE Healthcare life Science, UK). The release of TAC and TAC-MAP was determined by
incubating the nanoparticles in PBS (pH 7.4) with horizontal shaking at 37 ◦C. At suitable time intervals,
each individual sample was centrifuged at 30,000× g for 30 min at 4 ◦C. The amount of TAC and
TAC + MAP release was evaluated in the supernatants by HPLC, at 243 nm and 220 nm, respectively.

2.6.2. TAC Release in Human Plasma

The purified NLCs were incubated in a solution of 80% human plasma with horizontal shaking for
48 h at 37 ◦C. At suitable time intervals, each individual sample was centrifuged 4 times at 13,000× g
for 10 min at 10 ◦C. The amount of TAC and TAC-MAP release was evaluated in the supernatants by
HPLC at 243 nm and 220 nm, respectively.

2.7. In Vitro Cell Viability Studies

The cytotoxicity of all NLC formulations against SH-SY5Y was assessed by 3-(4,5-dimethyl-2
-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, Sulforhodamine B (SRB) assay,
microscope visualization and cell count.

2.7.1. MTT Assay

For viability determination by the MTT assay, the cells were maintained in culture DMEM
supplemented with 10% heat-inactivated fetal bovine serum (FBS) and 1% penicillin and streptomycin
at 37 ◦C with controlled atmosphere of 5% CO2. The day before the experiment, the cells were seeded
in a sterile flat bottom 96-well plate at the density of 18,000 cells per well and incubated for 24 h.
The medium was then replaced with increasing concentrations of free TAC, free TAC-MAP and drug
loaded NLC. Cells were incubated for 24 h, in negative control cells incubated with culture media and
sterilized water (5:1) and in positive control, DMSO 10% was added to promote the cell lyses.

After incubation, all media was removed and replaced with 100 µL of MTT solution (0.5 mg/mL).
The cells were further incubated for 3 h. After incubation, 100 µL DMSO was added to dissolve the
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formazan crystals and the absorbance was measured at 570 nm in a microplate reader (Synergy HT,
Biotech Instruments inc., USA). All experiments were performed in quadruplicates and the relative
cell viability (%) was compared to control cells and was calculated using the following equation:

Cell viability (% o f sample) =
Abs sample
Abs control

× 100 (3)

2.7.2. SRB Assay

Cytotoxicity of all formulations was also determined by SRB assay. Using the same conditions
and methods described above for MTT assay, after treatment with all NLC formulations, the cells were
fixed with 100 µL of ice cold 10% trichloroacetic acid (TCA) per well for 1 h at 4 ◦C. Then TCA was
removed and allowed to dry before adding 100 µL of 0.4% SRB solution. After 1 h, the plates were then
washed with running tap water and air dried. The incorporation dye was solubilized by the addition
of 200 µL of 10 mM tris buffer per well. The absorbance was measured at 510 nm in a microplate reader.
All experiments were performed in quadruplicates using the same equation mentioned above.

2.7.3. Cell Morphology Visualization

After the treatments, cell morphology, growth and cell count were assessed by contrast phase
microscope Lionheart FX (Biotech, USA) with use of Gen5 software (Biotech, USA).

2.8. Statistical Analysis

Statistical analysis of the experimental data was performed using a one-way analysis of variance
(one-way ANOVA) and differences between groups were tested by a one-way ANOVA with GraphPad
Prism version 8.0 (GraphPad Software, San Diego, CA). Data were expressed as mean SEM or 95%
confidence interval. A p < 0.05 value was considered significant. All data are shown as mean SEM.

3. Results and Discussion

3.1. NLC Characterization

The ability to delivery TAC through nanoparticles presents several advantages over the free drug,
with enhanced bioavailability, stability, therapeutic effect and lower toxicity [36–40]. In this context,
three different NLC formulations loaded with TAC or TAC-MAP were prepared using Compritol 888
ATO, different amounts of Transcutol HP as liquid lipid, and Tween 80 as the surfactant. Particle size
of the NP is crucial to avoid extensive uptake by the mononuclear phagocytic system (MPS), renal
elimination rate if too small (less 50 nm) and to allow overcoming the blood–brain barrier. The NLC
presented a particle size distribution below 200 nm and polydispersity index (PI) below 0.4 for all
cases (see Table 1). Overall, particle size analysis showed that incorporation of TAC and TAC + MAP
did not contribute to a significant increase on NLC size when compared with blank NLCs (Figure 1;
Table 1). The zeta potential analysis demonstrated negative values of −12.02 to −16.02 mV for Blank
NLC and NLC-loaded TAC, whereas, NLC loaded with TAC + MAP, presented a slight increase in
ZP, from −4.91 to +9.77 mV possibly due to the presence of the cationic molecules (TAC, MAP and
TAC + MAP conjugate).

Preliminary solubility studies demonstrated that TAC had a maximum solubility level in liquid
lipid Transcutol HP when compared to the other lipid tested, which clearly affects encapsulation
efficiency (EE) and drug loading (DL) [41]. The former (EE) is also a crucial part in developed a delivery
system, since higher levels of encapsulation are recommended and reflect on efficacy. For instance, the
DL reflects on the amount of drug load per unit weight of the NLC. The EE determined for NLC-loaded
with TAC was 72.4%, 56.4% and 58.5% for CT20 formulation, CT25 formulation and CT30 formulation,
respectively. The drug loading for these formulations for CT20TAC was 1.60%, CT25TAC was 1.96%
and CT30TAC was 3%. Although DL was low, this parameter is not necessarily related to the delivery
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rate in vivo, as shown by Chu and his team, who demonstrated that nanoparticles with 9% of drug
loading were more efficient to deliver higher doses of docetaxel in vivo than nanoparticles containing
20% of drug [42]. For TAC-MAP formulations, EE results demonstrated over 85.0% encapsulation
with a drug loading of around 1.46% (see Table 1). The liquid lipid:drug ratio did not affect overall
the TAC-NLC particle size and, furthermore, TAC was efficiently encapsulated in all formulations.
Additional cytotoxicity experiments were conducted to further optimize the formulations (see below).

Table 1. Physicochemical properties of: empty nanostructured lipid carrier (NLC), tacrine (TAC)-loaded
NLC, TAC-model amphipathic peptide (MAP)-loaded NLC freshly (mean SD, n = 2).

NLC NLC composition PS (nm) PI ZP (mV) EE% DL%

CT20 B Lipids: 80% C and 20% TE
Surfactant: 3% T80 96.995 ± 15 0.2947 ± 0.068 −13.589 ± 1.1 – –

CT25 B Lipids: 75% C and 25% TE
Surfactant: 3% T80 111.78 ± 35 0.2547 ± 0.003 −12.017 ± 0.5 – –

CT30 B Lipids: 70% C and 30% TE
Surfactant: 3% T80 71.465 ± 5 0.3535 ± 0.017 −14.633 ± 0.4 – –

CT20TAC Lipids: 80% C and 20% TE
Surfactant: 3% T80 80.415 ± 9 0.410 ± 0.023 −16.021 ± 1.0 72.4 ± 10.3 1.60 ± 0.29

CT25TAC Lipids: 75% C and 25% TE
Surfactant: 3% T80 71.857 ± 12 0.365 ± 0.884 −13.484 ± 0.02 56.4 ± 7.8 1.96 ± 0.11

CT30TAC Lipids: 70% C and 30% TE
Surfactant: 3% T80 123.733 ± 24 0.290 ± 0.013 −12.250 ± 1.0 58.5 ± 7.0 3.00 ± 0.43

CT20TAC +MAP Lipids: 80% C and 20% TE
Surfactant: 3% T80 281.634 ± 206 0.290 ± 0.093 −9.774 ± 5.8 >85.2 >1.23

CT25TAC +MAP Lipids: 75% C and 25% TE
Surfactant: 3% T80 101.029 ± 13 0.280 ± 0.021 −8.194 ± 3.4 >85.2 >1.33

CT30TAC +MAP Lipids: 70% C and 30% TE
Surfactant: 3% T80 189.284 ± 207 0.252 ± 0.004 −4.908 ± 0.4 >85.2 >1.81

PS: Mean particle size; PI: polydispersity index; EE: encapsulation efficiency; DL: drug loading; C: Compritol ATO
888; TE: Transcutol HP; T80: Tween 80; B: Blank.
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Figure 1. Particle size distribution of NLC after incorporation of TAC and TAC + MAP. (A) CT20 V
(blank-1) vs. CT20 TAC (2); (B) CT20 V (blank-1) vs. CT20 TAC + MAP (2); (C) CT25 V (blank-1) vs.
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3.2. In Vitro TAC Release from NLC

Release studies were performed using PBS pH 7.4 and human plasma to take into consideration
some parameters that should simulate in vivo conditions, such as pH and plasma components. In terms
of pharmacokinetics, TAC presents some drawbacks, such as low bioavailability (17%) and a low
half-life (2–3 h) [13]. Therefore, incorporation in NLC can help to overcome these limitations, while
providing a slow rate of delivery. Release profiles were obtained for incubation in PBS pH 7.4 for
up to 72 h, using sink conditions. After 24 h, almost 50.8% of TAC was released, 56.0% in 48 h and
60.7% in 72 h. The rapid initial release of TAC is possible due to the molecules of TAC present at
the surface of the NLC. We can also observe that in the first 30 min there was an initial burst effect
followed by a steady release up to 72 h, which can be attributed to the diffusion of TAC from the core
of the NLC (Figure 2B). In the case of TAC-MAP formulations, incubations in PBS for 24 h did not
show any release of content. One possible explanation is the aggregation capacity of MAP to form a
β-sheet when interacting with lipid bilayers in order to fulfill its penetrating function efficiently [43].
The hydrophobic residues of MAP interact with lipid acyl chains through Van der Walls interactions
and can form H-bonds of β-sheet structure, all of these factors could stabilize the overall system [44,45].
The results obtained with incubation in plasma were a release of 42.30% in 24 h incubation (Figure 2B).
The formulations with TAC-MAP showed that no release occurs.
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Figure 2. (A) Stability of encapsulated TAC in the formulations after 144 days in storage 4 ◦C. (B) Release
profiles of TAC from Compritol 888 ATO NLC in PBS, pH 7.4 and 37 ◦C.

3.3. In Vitro Cell Viability Studies of TAC and TAC-MAP

In vitro cytotoxicity studies are important to validate the safety of the delivery system. With this
purpose, toxicity was assessed by measuring the cell viability of the neuroblastoma cell line (SH- SY5Y),
based on its ability to differentiate in a model of cholinergic neurons, treated with all formulations
developed using the MTT and SRB assays.

3.3.1. MTT Assay

The MTT assay provides information about cell metabolism activity and is frequently used.
The reduction of cellular metabolic activity has been used as an indicator of compromised cells. In this
work, all formulations were tested for a period of 24 h in a concentration range of 1 µM to 25 µM.
Results show that in CT25 formulations up to 20 µM, with or without TAC, no evidence of acute
cytotoxicity was observed with an 80% of cell viability (Figure 3). The formulation of CT30 was
relatively safe at 10 µM with a decrease in 20% of cell viability (Figure 3).
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Figure 3. Relative cell viability of SH-SY5Y cell line measured by the MTT reduction after 24 h
incubation. Treatment with free TAC, blank NLC and NLC loaded with TAC (1–25 µM). Results are
expressed as mean SEM (n = 4). Statistical analysis between the control group and other groups was
performed using one-way ANOVA with Dunnet’s post hoc test (* p < 0.05).

On the other hand, CT20 formulations presented a high level of cytotoxicity in SH-SY5Y cells.
One possible explanation for this result can be the higher PI, which may lead to a tendency to aggregate
and increase toxicity. The slight decrease of 20% of cell viability was expected due to the use of Tween
80 which is a surfactant considered to present some toxicity [35]. The CT20 formulation showed to
affect cell viability (Figure 3).

The TAC + MAP control demonstrated substantial toxicity, while TAC-MAP alone showed
toxic activity at 2.5 µM with 50% viability reduction (Figure 4). MAP was incorporated in the NLC
formulation to further increase TAC delivery. In fact, MAP incorporation increased delivery efficiency
of overall formulations, with a slight increase of toxicity when compared with free TAC + MAP
(Figure 4). Still, at 2.5 µM, CT25 demonstrated lower toxicity levels and CT20 presented higher toxicity
levels when compared with other formulations.
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Figure 4. Relative cell viability of SH-SY5Y cell line measured by the MTT reduction after 24 h
incubation. Treatment with free TAC-MAP and NLC loaded with TAC-MAP (1–10 µM). Results are
expressed as mean SEM (n = 4). Statistical analysis between the control group and other groups was
performed using one-way ANOVA with Dunnet’s post hoc test (* p < 0.05).
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3.3.2. SRB Assay

In addition, SRB assay was used to corroborate the MTT results, being a good indicator of
cell density determination based on protein content. Unlike MTT, the SRB method does not allow
distinguishing between viable and dead cells, but it can be used to detect cytotoxic effects of a
drug [46,47]. The SRB assay results obtained corroborate those from the MTT. Formulations CT25
and CT30 were not significantly cytotoxic in the same concentration range and CT20 formulations,
either blank or TAC-loaded, were more toxic when compared to control (Figure 5). The TAC + MAP
treatment and TAC + MAP encapsulated NLC demonstrated strong toxicity against SH-S5Y5 at 2.5 µM
with significant cell viability reduction similar to the results obtain with MTT assay.
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Figure 5. Relative cell viability of SH-SY5Y cell line measured by the SRB assay after 24 h incubation.
Treatment with free TAC, blank NLC and NLC loaded with TAC at 10 µM. Results are expressed as
mean SEM (n = 4). Statistical analysis between the control group and other groups was performed
using one-way ANOVA with Dunnet’s post hoc test (* p < 0.05).

3.4. Cell Morphology Visualization

The morphology of neuroblastoma SH-SY5Y cell line was evaluated after 24 h incubation with all
formulations (Figures 5 and 6). This microscope cellular visualization was performed by Lionheart
FX and its crucial to corroborate the data obtained with MTT and SRB assays. In the treatment with
tacrine, CT25 B, CT30 B, CT25TAC and CT30 TAC (10 µM), we can observe a small decrease of cell
viability but no substantial cell morphology differences, thus supporting the in vitro cytotoxicity data
(Figure 6). For instance, in the treatment with CT20 B and CT20TAC we observed an increase in cell
number and small morphology differences which supports the in vitro cytotoxicity data (Figure 6).
The cell count analysis corroborated with cell visualization and demonstrated that treatment with
tacrine and all NLC formulations did not affect the number of cells in culture up to 5 µM (Figure 7).
Over 10 µM, the treatment with CT20 B, CT30 B, CT20TAC and CT30TAC resulted in a decrease of cell
count (Figure 7).
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Figure 6. Microscope cellular visualization through Lionheart FX of NLCs blank and with TAC for a
concentration of 10 µM.
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Figure 7. Cell count through Lionheart FX treatment with free TAC, blank NLC and NLC loaded with
TAC (1–25 µM) for 24 h incubation.

Treatment with the CPP MAP conjugated with TAC and NLCs encapsulated with TAC + MAP
had a loss of cellular conformation with the reduction of the prolongations and rounding of the cells,
indicating cell death for the concentration of 2.5 µM, as expected (Figure 8). For the lower concentration,
1 µM treatment with CT25TAC + MAP and CT30TAC + MAP resulted in a slight decrease in cell
viability and no SH-SY5Y cell morphology differences, thus supporting the in vitro cytotoxicity assays
(Figure 8). The cell count analysis corroborated with cell visualization and demonstrated that NLCs
loaded with TAC-MAP affect the number of cells in culture at low concentration (2.5 µM) (Figure 9).
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4. Conclusions

Stable NLC formulations were prepared revealing well-determined size distribution and
high encapsulation efficiency for TAC and TAC-MAP. Moreover, cell viability studies conducted
demonstrated that NLC encapsulated with TAC were well tolerated and safe against SH-SY5Y cells.
In case of TAC-MAP-loaded NLCs, we observed for the concentrations tested high toxicity and
accentuated decrease of cell viability. TAC-MAP in previous studies demonstrated high toxicity in
high concentration. In the future, it will be interesting to evaluate toxicity and elucidate biodistribution
profiles of TAC-loaded NLCs in an in vivo model of AD, particularly to determine protein aggregation
levels of ß-amyloid after administration of low concentration TAC-MAP-loaded NLC.
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