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Abstract: We report on the growth of stoichiometric, single-crystal YCrO3 epitaxial thin films on (001)
SrTiO3 substrates using pulsed laser deposition. X-ray diffraction and atomic force microscopy reveal
that the films grew in a layer-by-layer fashion with excellent crystallinity and atomically smooth
surfaces. Magnetization measurements demonstrate that the material is ferromagnetic below 144 K.
The temperature dependence of dielectric permittivity shows a characteristic relaxor-ferroelectric
behavior at TC = 375–408 K. A dielectric anomaly at the magnetic transition temperature indicates
a close correlation between magnetic and electric order parameters in these multiferroic YCrO3

films. These findings provide guidance to synthesize rare-earth, chromite-based multifunctional
heterostructures and build a foundation for future studies on the understanding of magnetoelectric
effects in similar material systems.
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1. Introduction

Magnetoelectric multiferroics have emerged as an attractive material system due to their
multifunctionality for a variety of potential device applications in energy and memory technologies [1–3].
These devices are mainly based on epitaxial thin-film heterostructures with smooth surfaces and
interfaces at atomic scale [2,4–7]. Recent advances in epitaxial growth techniques have enabled the
synthesis and design of multiferroic heterostructures that give rise to a variety of multifunctional
properties [8–12]. Despite the rapidly growing interest in these materials, access to new multiferroics
and their high-quality heterostructures is still limited [2,13,14].

The perovskite rare-earth chromites, RCrO3 (R=rare-earth), are of current interest as a promising
system exhibiting multiferroicity and a broad range of other properties, such as spin reorientation
transition, multiband optical transitions, exchange bias, and strong spin–phonon interactions [15–26].
Among this family of perovskite, YCrO3 (YCO, hereafter) has been reported as an insulating
antiferromagnet, which shows intriguing functional properties [17,27–29]. Recently, YCO has
regained interest by showing a canted antiferromagnetic transition at 140 K, resulting in weak
ferromagnetism, and a ferroelectric transition at around 473 K, which renders it a multiferroic
material [30,31]. Understanding the physical properties of epitaxial YCO is thus of vital importance
to explore multifunctionalities for next-generation applications, which demand structurally and
compositionally well-defined, high-quality single-crystal thin films. Pulsed laser deposition (PLD)
has been utilized to synthesize single-phase YCO epitaxial films [32]. However, it was found to be
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rather challenging to obtain the desired stoichiometry of YCO in the as-deposited thin films, due to the
formation of the oxygen-rich secondary phase (YCrO3+x) [32]. An additional post-annealing step was
required to completely remove the secondary phases in order to stabilize phase-pure, stoichiometric
YCO epitaxial thin films [32]. Moreover, the discussion was mainly limited to the electronic properties
and authors did not reveal the multiferroic behavior of the epitaxial YCO films [32].

In this work, we report on the epitaxial growth and physical properties of stoichiometric,
multiferroic YCO films, which shows both relaxor-ferroelectric and ferromagnetic orders coexisting in
the thin film. We show that the highly crystalline, phase-pure epitaxial YCO thin films can be grown on
(001) SrTiO3 (STO) substrates using PLD, avoiding any post-synthesis annealing steps. The presence of
ferromagnetic ordering below 144 K and a relaxor-ferroelectric-like phase transition at ≈375–408 K,
indicate the multiferroic nature of our epitaxial YCO films. In addition, the observation of a dielectric
anomaly at the magnetic ordering temperature and the multiband optical absorption properties further
exhibit the excellent functionalities of epitaxial YCO films.

2. Materials and Methods

A ceramic target of stoichiometric YCO was synthesized using the conventional solid-state
reaction method. YCO thin films were then grown using PLD on 5 × 5 × 0.5 mm3 atomically flat,
TiO2-terminated STO (001). A KrF excimer laser (λ = 248 nm) operating at a repetition rate of 5 Hz with
a laser fluence of 1.25 J/cm2 was used for target ablation. The target–substrate distance was set at 5 cm.
Deposition optimization was performed, and an oxygen partial pressure of 20 mTorr at a substrate
temperature of 800 ◦C were the optimal growth conditions. It was found that the growth temperature
and oxygen partial pressure play an important role in stabilizing single-phase epitaxial YCO films.
After deposition, the films were cooled to room temperature maintaining a 20-mTorr oxygen pressure.
The growth rate was approximately 0.08 Å/pulse. For dielectric measurements, platinum (Pt) circular
top electrodes (thickness of ~50 nm and diameter of ~200 µm) were deposited on YCO/Nb:STO (001)
films using magnetron sputtering. The crystal structure and growth orientation of the films were
characterized by X-ray diffraction (XRD) using a Panalytical X’Pert Pro four-circle high resolution
X-ray diffractometer with Cu Kα1 radiation. Atomic force microscopy (Nanoscope III AFM) was used
in tapping mode to characterize the surface morphology of as-grown films. The X-ray absorption
spectroscopy (XAS) measurements were performed at beamline 4ID-C of the Advanced Photon Source
at Argonne National Laboratory. SQUID magnetometry was conducted with a Quantum Design
MPMS3. The temperature-dependence of the dielectric properties were measured using an LCR meter
(HP4284A) with a fixed applied ac voltage of 50 mV. The spectroscopic ellipsometry (M-2000, J. A.
Woollam Co., Lincoln, NE, USA) was used to obtain the optical conductivity of the film as a function of
photon energy at room temperature.

3. Results and Discussions

Figure 1a,b show θ-2θ XRD scans for a YCO film deposited at optimized growth conditions
on an STO substrate. XRD scans show that the as-grown film is c-axis-oriented epitaxial film with
no evidence of secondary phases. The well-defined Laue oscillations around the YCO (002) Bragg
peak (Figure 1b) and the periodic oscillations arising from the interfacial interference in the X-ray
reflectivity measurement (not shown), indicate high crystallinity with homogeneous, atomically flat
surfaces and interfaces of the as-grown 32-nm epitaxial thin film. The AFM image shows the surface
morphologies of the film to present a step-and-terrace structure with an atomically smooth surface,
indicating the layer-by-layer growth of YCO on STO (inset of Figure 1a). Further evidence of the
crystallographic quality was seen as a narrow peak in the 002 rocking curve with a full width at half
maximum (FWHM) of 0.042◦, as shown in Figure 1c. The FWHM of the substrate (STO) 002 peak was
0.010◦ (not shown). In the bulk, perovskite YCO exhibits an orthorhombic structure (space group Pbnm)
with lattice parameters a = 5.255 Å, b = 5.520 Å, and c = 7.536 Å [33]. The pseudocubic unit-cell within
the orthorhombic structure yields apc = 3.786 Å [31], and the lattice mismatch between YCO and cubic
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STO (c = 3.905) is around −3.05%. The in-plane epitaxial orientation relationship of pseudocubic YCO
on STO is confirmed with the φ-scans: (001) YCO || (001) STO and [100] YCO || [100] STO (Figure 1d).
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(STO) (001) substrate. Inset shows the atomic force microscopy (AFM) image of the same sample.
(b) The θ–2θ local scan around the substrate (002) peak. (c) A rocking curve of the YCO (002) peak
with a full width at half maximum (FWHM) of 0.042◦ for the 32-nm YCO film. (d) φ-scans of the {222}
reflections of film and substrate.

To inspect the strain state of the YCO film, reciprocal space mapping (RSM) measurements were
performed around the asymmetric (103) Bragg’s reflection of the film and substrate (Figure 2a). The lack
of vertical alignment of (103) film with respect to the substrate peak indicates that the film is partially
relaxed from the substrate. By calculating lattice parameters from RSM, the in-plane and out-of-plane
lattice constants are determined as a‖ = 3.801 Å and a⊥ = 3.778 Å for the 32-nm YCO film. The in-plane
strain εxx = 0.396% and the out-of-plane strain εzz = −0.211%, were calculated using εxx = (a‖ − apc)/apc

and εzz = (a⊥ − apc)/apc [34]. The Poisson ratio [ν = εzz/(εzz − 2εxx)] of the YCO film was calculated to
be 0.21, which is close to the value of 0.23, reported for LaCrO3 (LCO) films grown by molecular beam
epitaxy (MBE) [35].Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 9 
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It has been reported that the Cr3+ ions can be oxidized to a higher charge state in the near-surface
region of chromites thin films [32,35]. In order to examine the stoichiometry of YCO films, Cr L2,3-edge
XAS measurements were performed in surface-sensitive total electron yield (TEY) detection mode.
Figure 2 shows XAS around the Cr L-edges for the YCO film measured at room temperature. A room
temperature XAS spectrum of bulk Cr2O3 single crystal is shown for reference [36]. A direct comparison
between the spectral shapes of Cr in both film and standard bulk Cr2O3 spectra confirms that there is
no obvious deviation from Cr3+ which means oxygen stoichiometry is nominal. This is a significant
point as previous reports showed oxygen-rich secondary phases of YCrO3+δ [32].

After demonstrating the synthesis of phase-pure epitaxial YCO films, the magnetic properties
were examined. In bulk YCO crystals, the Cr3+ sublattice orders antiferromagnetically at TN = 142
K with the moments aligned along the c-axis and a slight spin-canting toward the a-axis resulting
in a net magnetic moment [24]. Figure 3a shows the temperature-dependent magnetization M(T)
curves of the YCO film measured from 10 to 300 K at a magnetic field of 100 Oe applied along the
in-plane direction. The M(T) curves measured in both the zero-field-cooled (ZFC) and field-cooled (FC)
protocols demonstrate a divergence of the ZFC and FC moments at T = 144 K, thus indicating the onset
of Cr magnetic ordering from the paramagnetic to the canted antiferromagnetic phase. In comparison
to bulk ceramics, the epitaxial YCO film shows a slight increase in the magnetic transition temperature,
which may result from epitaxial strain. We believe that a drastic increase in magnetic moment at
lower temperature (<20 K) and a slightly negative magnetic moment above 144 K, are due to the STO
substrate contribution, dominating the magnetic contribution of YCO which is comparatively much
smaller in volume [37]. The in-plane magnetic field dependence of magnetization (M(H)) reveals a
ferromagnetic hysteresis loop, as shown in Figure 3b, which could be a consequence of the net magnetic
moment induced by canted-antiferromagnetic ordering of spins.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 9 
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Figure 3. (a) The temperature-dependent magnetization M(T) curves measured in both the
zero-field-cooled (ZFC) and field-cooled (FC) protocols, show a magnetic transition at T = 144 K.
(b) The in-plane magnetic field dependence of magnetization (M(H)) loop of the film at 10 K. (c) The
temperature dependence of dielectric constant (εr) and loss tangent (tanδ) at different frequencies.
The dashed line at 149 K indicates a dielectric anomaly close to magnetic transition. The curved-dash
line highlights the relaxor behavior. An enlarged view of the loss data, marked by a narrow-dashed
rectangle, is represented in the left inset, showing that the dielectric anomaly can also be observed in
loss tangent curves. The right inset shows a Vogel–Fulcher plot with extrapolated freezing temperature
(Tf = 370 K, dashed red line), manifesting the relaxor ferroelectricity in epitaxial YCO films.
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To investigate the possible correlation of the magnetic transitions with the dielectric behavior,
the temperature-dependent dielectric studies were performed on the ~32-nm YCO film grown on
conducting Nb:STO (001) substrate, using Pt top electrodes in a capacitor geometry. Figure 3c shows
the dielectric constant (εr) and loss tangent (tanδ) of the YCO film capacitor measured at different
frequencies in the span of 500 Hz to 1 MHz for the temperature range 77–460 K. A dielectric anomaly,
as a kink in εr and tanδ, can be observed around the magnetic ordering temperature for each frequency,
in agreement with M(T) curves in Figure 3a. Interestingly, the positions of the kink in both εr and tanδ
do not shift with increasing frequency, which indicates that this dielectric anomaly is not associated
with any relaxation phenomenon. An exponential enhancement in tanδ can be observed at higher
temperatures, which could be due to the increase in the dc leakage current at high temperatures.
Similar high dielectric losses and a monotonous increase in tanδ were reported in polycrystalline YCO
films [30] and highly oriented DyCrO3 films [38].

Another broad peak is observed in εr at TC = 375−408 K, shifting to lower temperatures and
increasing in magnitude with decreasing frequency, indicating that it could be associated with
the intrinsic dielectric relaxation in YCO—a typical strong dispersion effect often attributed to the
freezing-in of ferroelectric clusters [39]. A Vogel–Fulcher relationship with an extrapolated freezing
temperature of around 370 K, as shown in the right inset of Figure 3c, corroborates the presence of
relaxor ferroelectricity in our YCO films [40]. This observation of the dielectric phase transition agrees
well with the relaxor-dielectric behavior and the related ferroelectric phase transition reported in bulk
YCO powders and polycrystalline films [30]. The occurrence of a dielectric anomaly at 149 K, close
to the magnetic ordering temperature, illustrates a close correlation between magnetic and dielectric
properties, indicating the possibility of either a magnetodielectric effect or an additional structural
phase transition in this system, which needs to be investigated in future work.

The RCrO3 perovskites show complex optical properties in terms of multiband optical
transitions [26,41]. The several optical transitions can also be observed in the 32-nm YCO films
as shown in the optical conductivity spectrum [σ1 (ω)] measured by spectroscopic ellipsometry at
room temperature in Figure 4. The spectrum is well-fitted to Gaussians and the characteristic features
of this spectrum include four distinct peaks at 3.02, 3.74, 4.23, and above 5 eV. Some of these bands
are in good agreement with the calculated excitation energies and experimentally reported optical
transitions in LCO films [26], where the four most prominent optical bands are assigned to intra-Cr
t2g-eg (2.7, 3.6 eV), inter-Cr t2g-t2g (4.4 eV), and interion O 2p-Cr 3d (from ~5 eV) transitions. However,
an additional peak at 3.02 eV does not match any optical transitions reported in Ref. [26]. An optical
peak at ~3.3 eV was reported in LaCrO4 and La2CrO6 films [41], which corresponds to the green and
yellow color of these samples, respectively. However, the nearly transparent nature of the YCO film
(inset of Figure 4), similar to LCO films [41], and the relatively low energy of the additional peak
(3.02 eV), as compared to the 3.3-eV peak of LaCrO4 and La2CrO6 phases, indicate that this additional
peak in our sample may not be due to the presence of YCrO4 (Cr5+) or Y2CrO6 (Cr6+) phase inclusions.
The XAS results support the argument, as no obvious deviation from Cr3+ can be observed in the YCO
films, however, further studies are required to determine the origin of this peak. A strong optical
transition can be observed to emerge at ~3.75 eV in Figure 4, which can be defined as the optical
bandgap of the YCO film in agreement with the direct band gap of ~3.72 eV reported for bulk YCO [42].
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positions of all Gaussian peaks are shown with arrows. The inset shows the photograph of a 32-nm
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4. Conclusions

To summarize, this work demonstrates that the structurally and stoichiometrically well-defined
epitaxial YCO thin films can be grown using PLD, without any post-synthesis annealing steps.
The epitaxially strained YCO films grew in a layer-by-layer fashion, giving rise to excellent crystallinity
and smooth surfaces. The observation of ferromagnetic hysteresis loops at 10 K and relaxor-ferroelectric
behavior at TC = 375–408 K, ascribed the multiferroic behavior of the YCO films. A dielectric anomaly
close to the magnetic ordering temperature indicates the presence of a magneto(di)electric effect in the
epitaxial YCO films. These results may open up an avenue to further study the role of epitaxial strain
on the on-set of magnetic and ferroelectric ordering temperatures and magnetoelectric coupling in
RCrO3 material systems.
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