

Supplementary Material

Microalgae-templated Spray Drying for Hierarchical and Porous Fe₃O₄/C Composite Microspheres as Liion Battery Anode Materials

Jinseok Park^{1,+}, Jungmin Kim^{2,+}, Dae Soo Jung³, Isheunesu Phiri², Hyeon-Su Bae², Jinseok Hong², Sojin Kim², Young-Gi Lee^{4,*}, Myung-Hyun Ryou^{2,*}, Kyubock Lee^{5,*}

Figure 1. TGA results of Fe₃O₄/C composite materials, measured in an air atmosphere. The weight increases up to 300 $^{\circ}$ C due to the oxidation of Fe₃O₄ under air.

Figure 2. (a) N_2 adsorption–desorption isotherm, (b) low pressure range of adsorption isotherm, (c) BJH pore size distribution, and (d) H-K micropore size distribution curves of Fe₃O₄/C.

Figure 3. SEM image of spray dried iron nitrate solutions (0.16 M) without the microalgae after annealing.

Figure 4. XRD patterns of spray dried iron nitrate solutions (0.16 M) without the microalgae after annealing.