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Abstract: One of the most important ideas ever produced by the application of materials science to
the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role
in the development of new treatment strategies including not only the replacement of tissues and
organs, but also repair and regeneration. They are designed to interact with damaged or injured
tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be
micro-environmentally sensitive. The existing materials have many limitations, including impaired
cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue
engineering by forming new assemblies similar in size and shape to the existing hierarchical bone
structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering
applications because they may allow to overcome some of the current restrictions entailed by
bone regeneration methods. This review covers the applications of different organic and inorganic
nanobiomaterials in the field of hard tissue engineering.

Keywords: nano-biomaterials; nanotechnology; scaffolds; hard tissue engineering

1. Introduction

Nanobiomaterials denote nanometer-sized materials whose structures and constituents have
significant and novel characteristics with a strong impact on healing and medicine [1,2]. They include
metals, ceramics, polymers, hydrogels, and novel self-assembled materials [3]. Rapid developments in
nanotechnology not only led to create new materials and tools for biomedical applications, but also
changed the way of using these materials in science and technology [4,5].

Human bone is a dynamic tissue that can rebuild and remodel in the body throughout life [6].
The human bone is a hierarchical assembly of nano- to macro-scale organic and inorganic components
involved in transmitting physio-chemical and mechano-chemical cues [7,8]. The schematic of Figure 1
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shows that normal human bone contains 30% organic collagen fibrils and 70% inorganic minerals [9–12],
while 2% of the total volume is occupied by bone cells, osteoblasts, osteoclasts, lining cells, progenitor
cells, and adipocytes [13,14]. Crystalline phases form 65% of the dry weight of the mineral matrix and
most part of calcined fraction in calcium phosphate [15,16].
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The continuously growing population and the higher complexity of human interactions have
generated new bone-related diseases (e.g., bone tumors, bone infections, and bone loss). This requires
effective handling and treatment for bone regeneration [17,18]. Tissue engineering has revolutionized
orthopedic and surgical studies, providing a new direction in the field based on nanoscale surface
modification to simulate properties of extracellular matrix (ECM) and new foundations of structural
variables of autologous tissue [19,20]. Tissue engineering is used to generate, restore, and/or replace
tissues and organs by using biomaterials and helps to produce similar native tissue or organ [21].

Nanotechnology solved many questions in tissue engineering by modifying regenerative
strategies [22]. Biomedical applications of nanotechnology became a hot subject because different
nanomaterials are utilized for the synthesis of scaffolds or implants [23,24]. These nanomaterials
may be metallic [25], ceramic, or polymeric [26] with different structural forms such as tubes, rods,
fibers, and spheres [27]. Various properties of materials such as physiochemical, electrical, mechanical,
optical, catalytic, and magnetic properties can be improved at the nanoscale [28] and tailored to
specific applications. Nanomaterials synthesized through top-down or bottom-up approaches [29]
(Figure 2) have outstanding properties, which are used for biomedical applications particularly in
tissue engineering [22].

Existing biomaterials often do not integrate with host tissue completely. This may cause infection
and foreign body reactions that lead to implant failure [30]. Indeed, nanostructured biomaterials
imitate the natural bone’s extracellular matrix (ECM), producing an artificial microenvironment that
promotes cell adhesion, proliferation and differentiation [31]. The specific biological, morphological,
and biochemical properties of nanobiomaterials attract researchers to use them for the hard tissue
engineering [32]. Nanostructured biomaterials can be used to fabricate high-performance scaffolds or
implants with tailored physical, chemical, and biological properties. Several natural and synthetic
nanostructured biomaterials are now available for the fabrication of scaffolds with decent bioactivity [33].

This survey article presents the most relevant applications of nanobiomaterials to bone tissue
engineering, trying to highlight how organic and inorganic nanobiomaterials can deal with the
above mentioned requirements on bone regeneration and the multiple challenges entailed by such a
complicated subject. A broad overview of the various types of nanobiomaterials and their applications
in the field of hard tissue engineering is provided.
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Besides the introductory articles mentioned above and other general articles on topics related
to nanomaterials and the different contexts where they operate, the present survey covers some 550
technical papers focusing on types, fabrication, and applications of nanobiomaterials. These articles
have been selected using three widely used academic search engines: Scopus, Web of Science,
and Google Scholar. For that purpose, keywords such as “tissue engineering”, “bone tissue
engineering”, “tissue regeneration”, “scaffolds”, “nanomaterials”, and “nanobiomaterials” as well
as their combinations have been used as input for the search process. High priority is given to
peer-reviewed journal articles with respect to book chapters and conference proceedings, which count
for some 10 papers, less than 1.75% of the total number of surveyed articles. More detailed statistics on
the articles surveyed for each topic will be reported at the end of the corresponding subsections.

The paper is structured as follows. Sections 2 and 3 describe the various types of organic and
inorganic nanobiomaterials and their applications in bone tissue engineering/regenerative medicines,
drug/gene delivery, anti-infection properties, coatings, scaffold fabrication, and cancer therapy;
generalizing conclusions are given at the end of each section. The conclusion section summarizes the
main findings of this survey.

2. Nanobiomaterials

Nanobiomaterials cover a wide variety of biomaterials including natural and artificial materials,
used for various applications in tissue engineering [34–36]. These materials can be classified into
two categories, i.e., organic nanobiomaterials and inorganic nanobiomaterials, where the former is
characterized by the presence of carbon-containing constituents. Organic–inorganic hybrids are much
more effective biomaterials than pure polymers, bioglasses, metals, alloys, and ceramics [37] as they
try to combine best properties of constituents following the general concept of composite material.
Section 2.1 will review the different types of organic nanobiomaterials, while Section 2.2 will review
the different types of inorganic nanobiomaterials.

2.1. Organic Nanobiomaterials

Nanostructured materials have characteristics like biocompatibility, nontoxicity, and non-carcinogenicity.
When used for replacement or restoration of body tissue, they are regarded as organic nanobiomaterials [38].
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Several research groups have shifted their attention from metallic to organic nanomaterials,
such as lipids, liposomes, dendrimers, and polymers including chitosan, gelatin, collagen, or other
biodegradable polymers [39]. Organic materials are combinations of a few of the lightest elements,
particularly hydrogen, nitrogen and oxygen, and carbon-containing chemical compounds located
within living organisms [40]. Proteins, nucleic acids, lipids, and carbohydrates (the polysaccharides)
are the basic types of organic materials [41].

Table 1 presents a general classification of organic nanobiomaterials and summarizes representative
applications of each material in tissue engineering. The following subsections present a general
description of each nanomaterial type listed in Table 1 and a detailed literature survey on the
corresponding developments for tissue engineering.

Table 1. Types of organic nanobiomaterials with their applications.

Types of Nanomaterials Size (nm) Applications References

Lipid <100

Nanocarriers for anticancer
drug doxorubicin

Osteoblastic bone formation
Osteoporosis treatment

[42–45]

Liposome >25

High encapsulation of hydrophilic
drug (drug delivery)

Growth factor delivery
Therapeutic gene delivery

Used as a template

[46–48]

Dendrimers <10 Multidrug delivery system [46,49,50]

Chitosan 20–200

Nano/microparticles or fiber-based scaffolds
Drug delivery

Support chondrocyte adhesion
Implant coating

[51–55]

Collagen – Drug Delivery
Scaffolds [56]

Gelatin <200
Bone scaffold systems formation

Drug-loaded gelatin nanoparticles (DGNPs)
Promote cell growth

[24,57,58]

Poly(lactic-co-glycolic acid) PLGA 100–250

Drug delivery
Scaffold system

Nanostructured Film
Enhanced cell attachment and growth

[59–62]

Carbon Nanotubes 20–100

Drug delivery
Biosensing

Mechanically improved scaffold fabrication
Enhanced rat brain neuron response

[63–66]

2.1.1. Lipids

Lipids are small hydrophobic or amphiphilic molecules [67]. They can be classified as fatty
lipids of acylglycerol, phospholipids such as glycerides, seduction lipids, sterols, demonstrations of
lipids played, lipids, and polylactide Kane [68]. Lipids are essential agents for the physiological and
pathophysiological functioning of cells [69]. Generally, 10–1000 nm sized spherical lipid nanoparticles are
synthesized [70]. All organisms consist of lipids as basic components, among other ingredients. The use
of these lipids in pharmaceutical and biomedical fields can solve the problem of biocompatibility and
biodegradation [71]. Besides liposomes (lipids arranged in the formation), other unique structures (e.g.,
hexagonal, spongy, solid structure, etc.) resulting from lipid polymorphisms also are available [72,73].
The latter have better stability and production efficiency than liposomes [48]. Lipid nanocarriers are
better than polymeric nanoparticles (NPs) in terms of biocompatibility and lower toxicity, production
cost and scalability, and encapsulation efficiency of highly lipophilic actives [74,75]. Lipid nanocarriers
such as solid lipid nanoparticles (SLN) [76], nanostructured lipid carriers (NLC) [77], lipid nanocapsules
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(LNC) [78], and drug–lipid conjugates [79] are used for various administration routes (i.e., parenteral,
oral, and topical ones) [80]. Lipid polymer hybrid nanoparticles (LPHNs) can also be used in the area
of bioimaging agents for medicinal diagnostics as delivery vehicles like iron oxide, quantum dots
(QDs) fluorescent dyes, and inorganic nanocrystals [81].

2.1.2. Liposomes

Liposomes were discovered in the mid-1960s by A. D. Bangham [82]. The vesicle of the liposome
is easily fabricated in a laboratory and made of one or more phospholipid bilayers [83] (Figure 3).
These are self-assembled versatile particles with diameters ranging from nanometer to micrometer
scale [84]. Resembling lipid cell membranes, the nature of phospholipid depends on the length of
fatty acid chains [48]. They have the ability to encapsulate and carry hydrophobic aqueous agents [82].
They exhibit many advantages over other carrier systems [85,86].
Nanomaterials 2020, 10, x 6 of 60 
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Bone morphogenetic protein-2 (BMP-2) is one of the most potent proteins in bone regeneration [87].
For this reason, encapsulation of BMP-2 in nanomaterials has attracted great interest. BMP-2-loaded
liposomal-based scaffolds may possess better osteoinductivity and bone formation ability [88].

Liposomes can carry drugs directly to the site of action and sustain their levels without causing
toxicity for long periods [89]. By changing the composition of lipids, liposome properties can change.
Some liposome preparations for anticancer drugs have successfully released on the market by acquiring
FDA’s approval [83]. Gentamycin- and vancomycin-integrated liposome-loaded particles are employed
for manufacturing of scaffolds [90]. The integration of bioactive aspirin into a liposome delivery
system would have a beneficial impact on stem cell osteoblast differentiation [91]. The initial drug
amount and the chemical and physical drug properties are considerable factors for the encapsulation
efficiency [92]. DOXIL®, the first FDA-approved nanodrug, which consists of liposomes encapsulating
doxorubicin, was prepared by this remote loading method [93]. This method can also be used for
preparing liposomes encapsulating other drugs such as daunorubicin and vincristine [94]. Liposomal
systems are highly used despite being the oldest of the non-viralgene-delivery vehicles [95]. Scaffolds
used as delivery vehicles for bioactive agents offer many advantages such as enhanced and extended
gene expression, and the ability to control a localized delivery of cargo [96] (see Figures 3 and 4).
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2.1.3. Dendrimers

Dendrimers are the newest class of highly-defined macromolecules, which differs from simple
polymers by branching at each repeating unit [97]. Their step-by-step controlled synthesis is used
worldwide for molecular chemistry, while their repeating structure made of monomers relate them to
the world of polymers [98,99]. The repetitively branched nanometer-scale dimension of dendrimers
is an ideal candidate for a variety of tissue engineering [100], molecular imaging [101], and drug
delivery [102] applications. Dendrimers can be a main component of scaffolds mimicking cross-linkers,
chemical surface modifiers, and charge modifiers, as well as natural extracellular matrices [103].

The combination of dendrimers with other conventional structural polymers, such as proteins,
carbohydrates and linear synthetic polymers, leads to obtain new physical, mechanical and biochemical
properties of hybrid structures [100,104]. The center of dendrimer may be composed of polypropylimine
(PPI), di-aminobutyl (DAB), polyamidoamine (PAMAM), and ethylenediamine (EDA), along with
various surface residues such as amine, carboxyl, and alcoholic groups [105]. A dendrimer can be
synthesized for particular use in different parts with controlled properties like solubility and thermal
stability [106].

Dendrimer–drug conjugation is a better approach to the encapsulation of cytotoxic pharmaceuticals.
In this way, numerous cytotoxic and anticancer drugs, and targeted individuals such as monoclonal
antibodies, peptides, and folic acid, can be conjugated to a single dendrimer molecule [107]. The drug
is covalently conjugated to the dendrimer rather than complexed (Figure 5) [108] and these conjugates
are relatively more stable.

Dendrimers are a good choice for hydrophobic moieties and poorly water-soluble drugs [109].
PAMAM dendrimer/DNA complexes were employed to encapsulate functional fast biodegradable
polymer films used for substrate-mediated gene delivery [110].

The physicochemical characteristics, such as solubility and pharmacokinetics, of dendrimers are
better than those of linear polymers. Therefore, dendrimers are ideal candidates for incorporation
into scaffolds used for tissue engineering applications [111,112]. A few scaffolds were fabricated with
dendrimers such as poly(caprolactone) chains conjugated to a poly(L-lysine) dendritic core to fabricate
an HA-composite [113], linear PCL/n-HA hybrids [114], N-hydroxy succinimide/1-ethyl-3-(3-dimethyl
aminopropyl) carbodiimide (NHS/EDC) cross-linked scaffold [115], and dexamethasone carboxymethyl
chitosan/PAMAM [116] for in vitro bone regeneration.
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2.1.4. Polymeric Nanomaterials

Polymeric nanoparticles of size range 10 nm to 1 µm are the most advanced noninvasive
approaches to tissue engineering and drug delivery applications [117]. They are comprised of repeating
units of chain-like macromolecules with multiple structures and compositions [118]. In general,
polymeric nanoparticles can be used for different applications by changing the physicochemical
properties of nanoparticles. Polymers are differently processed to produce nanofibers [119], spherical
nanoparticles [120] and polymeric micelles [121] for specific applications.

There are several techniques to synthesize polymer-based nanoparticles, applied in tissue
engineering [122]. Gelation [123], emulsion–solvent evaporation [124], nanoprecipitation [125],
salting-out [122], and desolvation process [126] are generally preferred for natural polymers,
like proteins and polysaccharides. Similar to other nanoparticle systems, polymer-based nanoparticles
or nanocomposites can be functionalized to perform active targeting [127].

Polymeric nanoparticles alter and may enhance the pharmacokinetic and pharmacodynamic
properties used for various drug types because they show controlled and sustained release
properties [128]. They offer a variety of benefits ranging from the administration of non-soluble
drugs to protection of unstable compounds [129]. These nanoparticles can be loaded with therapeutic
or bioactive molecules (Figure 6) either by dispersion or adsorption within the polymer matrix,
or encapsulation [130,131].
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Drug release may occur directly from nanoparticles through diffusion and polymeric nanoparticles
may dissociate into monomers [132]. Polymers used for nanoparticle fabrication should be degradable
via enzymatic or non-enzymatic routes under common metabolic pathways [133,134]. Drug-containing
polymeric nanoparticles must be stable during migration to the plasma, that is, at almost neutral
pH [135].

Chitosan, collagen, gelatin, hyaluronic acid, alginate, and albumin are representative examples of
natural biopolymers [136,137]. Polymeric nanoparticles are one of the fastest-growing platforms for the
applications in tissue engineering because of their biocompatibility, biodegradability, low cytotoxicity,
high permeation, ability to deliver poorly soluble drugs, and retaining bioactivity after degradation [117].
Some newly designed polymeric nanoparticles are sensitive to pH, temperature, oxidizing/reducing
agents, and magnetic field which support a high efficiency and specificity for tissue engineering
applications [138,139]. Due to good biocompatibility and adjustable chemical composition, and
their ability to reorganize, polymeric nanoparticles are very promising as nanobiomaterials for the
fabrication of scaffolds or bone substitutes [140]. Plasma protein-based nanoparticles have shown
high biodegradability, bioavailability, long in vivo half-lives, and long shelf lives without any toxicity.
Blood plasma is a complex mixture of 100,000 proteins, but only two of these proteins have been used
in drug administration and tissue regeneration [141,142].

Chitosan

Chitosan is a natural and nontoxic linear biopolymer synthesized from alkaline N-deacetylation
of chitin [143]. It can be extracted from exoskeleton of crustacean shells (i.e., crabs and shrimps) some
microbes, yeast, and fungi [144]. It has different molecular weights and is soluble in various organic
solutions at pH 6.5 and below. The shape of the chitosan nanoparticles is affected by the degree of
deacetylation [145,146]. The presence of amine and hydroxyl group leads the use of these compounds
in many research areas [147,148]. Chitosan has outstanding biochemical properties, making it very
attractive for applications in many areas including tissue engineering and/or regenerative medicine
(Figure 7) [149]. Chitosan nanoparticles carry well therapeutic agents and biomolecules because of
their high biocompatibility and biodegradability. Because of their small size, they can pass through
biological barriers in vivo and deliver the drugs at the targeted site [150].Nanomaterials 2020, 10, x 9 of 60 
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Applications of Chitosan: Scaffolds prepared from chitosan and ceramics, especially hydroxyapatite,
may have superior osteoconductive properties [151]. Bone morphogenetic protein-2 (BMP-2)-loaded
chitosan nanoparticles used for the coating of Ti implants were selected in order to examine bone
regeneration in mice [55]. Chitosan and growth factor (BMP-7) were used to functionalize a thick
electrospun poly(ε-caprolactone) nanofibrous implant (from 700 µm to 1 cm thick), which produced a
fish scale-like chitosan/BMP-7 nano-reservoir. This nanofibrous implant mimicked the extracellular
matrix and enabled in vitro colonization and bone regeneration [152]. There, the polycationic
nature of chitosan entails an antimicrobial behavior at nanoscale [153]. Besides the orthodontic
field, there are relevant applications of chitosan in skin healing, nerve regeneration, and oral
mucosa [39]. Nanobioglass incorporated chitosan-gelatin scaffolds showed excellent cytocompatibility
and ability to accelerate the crystallization of bone-like apatite in vitro [154,155]. The nanocomposite of
chitosan/hydroxyapatite-zinc oxide (CTS/HAp-ZnO) supporting organically modified montmorillonite
clay (OMMT) was synthesized and used for hard tissue engineering applications [156]. BMP-2
and BMP-7 loaded poly(3-hydroxybutyrate-co3-hydroxyvalerate) nanocapsules were used for the
fabrication of chitosan-poly(ethylene oxide) scaffolds [157]. Mili et al. [158] used nerve growth factor
(NGF) loaded chitosan nanoparticles for neural differentiation of canine mesenchymal stem cells.
Freeze-dried nano-TiO2/chitosan scaffolds showed high biocompatibility and antibacterial effects [159].
Chitosan-poly(vinyl alcohol)-gum tragacanth (CS/PVA/GT) hybrid nanofibrous scaffolds showed 20 MPa
ultimate tensile strength and supported L929 fibroblast cells growth [160]. Collagen–chitosan–calcium
phosphate microsphere scaffolds fused with glycolic acid did not show relevant differences in their
degradation, cytocompatibility, porosity, and Young’s modulus [160,161].

Collagen

The main constituents of living human bone are collagen type-1 (protein) and calcium phosphate
or hydroxyapatite (mineral) [162]. Collagen is the major structural protein of the soft and hard tissues
in living organisms [163]. It can have a significant role in preserving biological and structural integrity
of extracellular matrix (ECM) [164]. It is a versatile material that is widely used in the biomedical field
(Figure 8) due to advantages including high biocompatibility and biodegradability [165]. Collagen is
mainly used as a carrier for drug delivery as well as osteogenic and bone filling material [166]. Collagen
matrix was also used to deliver gene promoting bone synthesis [167]. Collagen with recombinant
human bone morphogenetic protein-2 was used to monitor bone formation [168].
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Bone morphogenic protein (BMP)-loaded collagen activates osteoinduction in the host tissue [169].
Collagen-based nanospheres/nanoparticles can be used as a systematic delivery carrier for various
therapeutic agents or biomolecules [166]. As collagen type-I and hydroxyapatite are a basic part
of the bone, hydroxyapatite and collagen were used to fabricate scaffolds that enhance osteoblast
differentiation and accelerate osteogenesis [170].

Collagen-based biomaterials in various formats such as 3-D scaffolds have been employed for tissue
engineering [171]. The combination of collagen with elastin was successfully fabricated and in vitro
tests proved the adhesion and proliferation of cells without any cytotoxicity [172]. Collagen-based inks
were used for 3D bioprinting employed for tissue repairing and scaffold fabrication. The collagen-based
ink was extruded with a temperature stage of −40 ◦C, followed by freeze-drying and cross-linking by
using 1-ethyl-(3-3-dimethylaminopropyl) hydrochloride solution [173].

Gelatin

Gelatin represents a derivative of collagen, extracted by collagen hydrolysis from the skin, bones,
and/or connective tissues of animals. It is a cost effective, biocompatible, and biodegradable polymer,
which supports cross-linking of functional groups. Gelatin is a versatile polymer that is known for his
wealth merits [174]. Pharmaceutical or medical grade gelatin has fragility and transparency for tablet
coatings, suspensions, capsule formulations, and nano-formulations (Figure 9).Nanomaterials 2020, 10, x 11 of 60 
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Because of their great biocompatibility, the injected gelatin-loaded nanoparticles have been
reported in the skeletal system [24,175,176]. It is a polyampholyte at pH 9 (gelatin A) and pH 5 (gelatin
B). Gelatin nanoparticles are used as a biomaterial for the delivery of biomolecules and therapeutic
agents [177]. However, digestive process of gelatin showed low antigenicity, with the formation of
harmless metabolic products. In order to prevent infectious disease transmission, genetic engineering
approaches were used for the production of human recombinant gelatin [178,179].

At the nanoscale, gelatin shows high biocompatibility, biodegradability, and low immunogenicity [180].
The presence of a higher number of functional groups on polymer backbone helps with crosslinking and
chemical modification [181]. The cross-linking is necessary to stabilize the macromolecular structure of
gelatin is not stable at normal body temperature due to the low melting temperature [182,183].

Gelatin methacryloyl (GelMA) hybrid hydrogel demonstrated a wide range of tissue engineering
applications. When exposed to light irradiation, GelMA scaffolds convert into hydrogels with tunable
mechanical properties [184]. Gelatin enables therapeutic cell adhesion without comprising cell
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phenotypes [185]. Porous HA-gelatin microparticles (1 to 100 µm) support human osteoblast-like
Saos-2 cells growth and cell delivery [186]. A mechanically strong gelatin–silk hydrogel composite was
prepared by direct blending of gelatin with amorphous Bombyxmori silk fibroin (SF) [187]. Gelatin
coated polyamide (PA) scaffold showed good biomechanical, cell attachment, and wound healing
characteristics while being transplanted to nude rats [188]. Poly(lactide-co-glycolide) (PLGA)–gelatin
fibrous scaffolds possess the highest Young’s modulus (770 ± 131 kPa) and tensile strength
(130 ± 7 kPa) [189]. Methacrylamide-modified gelatin (GelMOD) 3D CAD scaffolds showed excellent
stability in culture medium and support porcine mesenchymal stem cell adhesion and subsequent
proliferation [190].

Gelatin-based microcarriers used embryonic stem cell delivery for the applications in tissue
engineering [191]. The magnetic nanoparticles were assembled with magnetic gelatin membranes to
produce 3D multilayered scaffolds (Figure 10), which are used for controlled distribution of magnetically
labeled stem cells [192].
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Poly (Lactic-co-glycolic) acid (PLGA)

PLGA is considered as one of the most efficient tissue engineering materials due to its (i) high
biocompatibility, (ii) biodegradability, (iii) potential to interact with biological materials, and (iv)
clinical use approved by FDA [193]. Biodegradable biomolecule-loaded PLGA nanoparticles can
be used for the preparation of a drug delivery system, which can be further utilized in scaffold
fabrications [194–196]. These nanoparticles may increase the mechanical properties of the scaffolds
but decrease swelling behavior without changing the morphology of the scaffold [197]. Afterward,
this system is effective to prepare a controlled release platform for model drugs that favors the
bio-distribution and development of clinically relevant therapies [198]. Different methods such as gas
foaming [199], porogen leaching [200], solid freedom fabrication [201], and phase separation [202] can
be used for PLGA scaffolds fabrication.

2.1.5. Carbon Nanostructures

Carbon nanomaterials are great candidate materials for bone tissue engineering due to their
conductivity, lightweight, stability and strength [203]. Nanostructures such as fullerenes, carbon
nanotubes, carbon nanofibers, and graphene are the most common structures (Figure 11) [204,205].

Han et al. [205] pointed out that carbon is biocompatible and can be used in many clinical
applications, such as prosthetic heart valves. However, a pure form of carbon nanomaterials cannot be
used as a substrate for bone tissue [206]. Therefore, carbon-based materials are used in combined form
to fabricate scaffolds [207]. Carbon nanostructures doped or reinforced compositions became more
popular due to their high performance and compatibility with bone tissues [203].
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Carbon nanofibers (CNF) are cylindrical or conical structures of various diameters and lengths.
The interior structure of the CNF contains an improved layout of graphene sheets. Graphene is a
single-layer two-dimensional material composed of long-edged reactive carbon atoms. Graphene
leaves are characterized by stable dispersion and orientation of nanofillers [208–210].

Carbon nanotubes (CNT) enhance mechanical and electrical properties, which helps to generate
innovative products. CNTs are one of the ideal and favorable materials used for designing novel polymer
composites [211]. Many authors focused on the progress of composite materials fabrication-integrating
CNTs to enhance its applications in biomedical field [212–216].

Nanodiamonds (4–10 nm) are typically different from other nanostructures as they are sp3

hybridized [203]. They show admirable protein binding ability and can be used as a carrier for some
biomolecules such as BMP-2 [217]. The carbon nanotube/gold hybrids are employed commonly for the
delivery of the anticancer drug doxorubicin hydrochloride into A549 lung cancer cell line [218].

Nanoscaffolds can be produced by electrospinning poly(ε-caprolactone) (PCL) and different
types of carbon nanomaterials such as carbon nanotubes, graphene, and fullerene [219]. Mesoporous
silica (mSiO2) decorated carbon nanotubes (CNTs) hybrid composite were used for the simultaneous
applications of gentamicin and protein cytochrome C delivery and imaging [220]. Single-walled carbon
nano-horns encapsulated with positively charged lipids complex were used for targeted drug and
protein delivery [221].
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2.1.6. Summary and Statistical Analysis of the Survey on Organic Nanobiomaterials

The survey on organic nanobiomaterials presented in Section 2.1 regarded some 200 articles.
Polymeric nanomaterials, carbon nanostructures, and nanocomposite materials are the most widely
investigated subject (60.8% of the studies), followed by dendrimers (21.1%) and lipids/liposomes (18.1%).
While dendrimers and lipid/liposomes are mainly utilized as nanocarriers, the other nanomaterials cover
a much broader spectrum of applications. The development of new nanomaterials (especially carbon
nanomaterials or materials including natural bone constituents such as, for example, collagen) that
can improve tissue regeneration, cell growth, and drug/protein delivery currently represents the main
research area in the field of organic nanobiomaterials with a strong tendency to design hybrid materials
and improve fabrication techniques of the resulting nanocomposite materials/scaffolds/structures.
Such a trend has become very clear in the last 5–6 years. However, much work remains to be done
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in order to fully understand interactions between different phases of nanocomposite materials and
cell/tissues to be repaired/treated. Another important issue strictly related to the above mentioned one
is how to “optimize” the composition of the nanocomposite for the specific purposes on which the
material itself is designed.

2.2. Inorganic Nanobiomaterials

Inorganic biomaterials are those lacking carbon element and they are widely employed for in vivo
and in vitro biomedical research [222]. These crystalline or glass structured nanomaterials are used
to replace or restore a body tissue [36]. The main applications of inorganic biomaterials, including
bioceramics and bioglasses, are for orthopedics and dentistry. Modifications in composition and
fabrication techniques may produce a range of biocompatible materials such as bioceramics [223].
Natural bone also includes inorganic materials like calcium (Ca) and phosphorus (P) in the form of
hydroxyapatite (HA) crystals, as well as carbonate (CO3

2−), potassium (K), fluoride (F), chlorine (Cl),
sodium (Na), magnesium (Mg), and some trace elements including copper (Cu), zinc (Zn), strontium
(Sr), iron (Fe), and silicon (Si) [224]. Therefore, it is very logical to investigate on nanomaterials based
on these inorganic constituents.

Table 2 presents a general classification of inorganic nanobiomaterials and summarizes
representative applications of each material in tissue engineering. The following subsections present a
general description of each nanomaterial type listed in Table 2 and a detailed literature survey on the
corresponding developments for tissue engineering.

Table 2. Types of inorganic nanomaterials with their applications.

Types of Nanomaterials Size (nm) Applications References

Nano Silica 10–100

Composite-based scaffold
Bio-imaging

Drug delivery
Enhanced osteogenic differentiation

[225–227]

Gold nanostructured
materials 5–50

Bioinorganic hybrid nanostructures
Thin film scaffold

Bio-imaging
[228–230]

Magnetic nanomaterials
and nanoparticles 10

Drug and gene delivery
Improved cell adhesion

Cell tracking
[21,231,232]

Bioactive Glasses 20–500 Improved scaffolds performance
Drug and gene delivery [233,234]

Silver nanoparticles 1–100 Tissue repair and regeneration
Antibacterial action [235–237]

Nanostructured Titanium <300

Nano tubular anodized titanium
Improved mechanical properties
Enhanced chondrocyte adhesion

Support osteoblast adhesion and proliferation
Orthopedic coating

[238–243]

Hydroxyapatite 20–80
~200–500

Enhanced osteoblast functioning
Increase bone apatite formation [244,245]

Zirconia nanoparticles <100 Enhanced osteointegration
Antibacterial implants formation [246,247]

Alumina nanoparticles <80
Enhanced bone cells adhesion and

proliferation
Calcium phase deposition

[245,248]

Copper nanoparticles <100 Antimicrobial implant fabrication [25]

2.2.1. Nano Silica

A huge amount of investigations on biomedical applications of silica nanostructures have been
carried out in the past decade [249]. The ability to synthesize uniform, porous and dispersible
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nanoparticles, together with the fact that particles’ size and shape can be easily controlled [226],
certainly favored the variety of applications of silica in tissue engineering [250]. Furthermore, as silica
is biocompatible and chemically stable [251,252], it has been used also for biomedical imaging and
medication administration [225], either itself or as a coating of other compounds [251].

Mesoporous silica nanoparticles (MSNPs) have been used as a drug delivery vehicle [253] and to
improve mechanical properties of biological materials. It was noted their use as well as for sustained and
prolonged release or administration of intracellular genes in bone tissue engineering [226]. MSNPs work
as efficient biocompatible nanocarriers due to (i) high visibility, (ii) dispersibility, (iii) binding capability
to a target tissue, (iv) ability to load and deliver large concentrations of cargos, and (v) triggered or
controlled release of cargos [250]. The functioning of MSNPs can be tailored by modifying the silanol
group present within the pore interiors and on the outer surface. These positive chemical moieties
are adsorbed by negatively charged SiO– groups at neutral pH, through electrostatic interactions
(Figure 12).
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Figure 12. Schematic of a multifunctional mesoporous silica nanoparticle showing possible core/shell
design, surface modifications, and multiple types of cargos. (Adapted with permission from© 2013
American Chemical Society [250]).

Anitha et al. [254] reported a composite matrix containing crystalline rod-shaped core with
uniform amorphous silica sheath (Si–n HA), which showed good biocompatibility, osteogenic
differentiation, vascularization, and bone regeneration potential. Silicate containing hydroxyapatite
stimulates cell viability of human mesenchymal stem cells for extended proliferation [255].
Zhou et al. [256] synthesized PLGA–SBA15 composite membranes with different silica contents
by electrospinning method; these membranes showed better osteogenic initiation then the pure PLGA
membranes. Ding et al. [257] successfully fabricated levofloxacin (LFX)-loaded polyhydroxybutyrate/

poly(ε-caprolactone) (PHB/PCL) and PHB/PCL/sol–gel-derived silica (SGS) scaffolds, which support
the growth of MG-63 osteoblasts. A microfluidic device was used to generate photo-cross-linkable
gelatin microgels (GelMA), coupled with providing a protective silica hydrogel layer for applications
in injectable tissue constructs [258]. Dexamethasone (DEX)-loaded aminated mesoporous silica
nanoparticles (MSNs-NH2) were prepared via electrophoretic deposition (EPD) and successfully
incorporated within poly(l-lactic acid)/poly(ε-caprolactone) (PLLA/PCL) matrix to fabricate composite
nanofibrous scaffolds for bone tissue engineering applications [259].
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2.2.2. Nano Bioglass

Bioglasses (BG) have been intensively investigated as biomaterials since their discovery in 1969
and first developments in the 1970s made by L. Hench [260]. Compared to common glass, bioglass
contains less silica and higher amounts of calcium and phosphorous. As a biomaterial for tissue
engineering, bioglass is applied independently or in combination with a number of polymers [261]
(Figure 13). BG can arouse fibroblasts with higher bioactivity by accelerating bioactive growth factors
and proteins as compared to untreated fibroblasts [262].
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BG degrade slowly when implanted into the targeted patient’s site and release ions, which favors
the biosynthesis of hydroxyapatite [263]. The silica-rich surface of bioglass promotes the exchange
of Ca2+ and PO4

3− with physiological fluid, which leads to the generation of a Ca–P layer [264,265].
This biodegradation may be enhanced by the presence of a SiO2 network, which forms non-bridging
silicon-oxygen bonds [266]; the low connectivity of the SiO2 network enhances dissolution of bioglass
while the presence of Na and Ca forms Si–O–Si bonds and reduces dissolution rate. Mesoporous BG
can be fabricated using the sol-gel method, which can be a good carrier for targeted drug delivery [267].
The sol–gel method was also used by Kumar et al. [268] to develop bioglass nanoparticles with a higher
content of silica, which are suited for bone tissue applications.

Bioglass nanoparticles show high biocompatibility and surface area, which can enhance in vitro
osteoconductivity as compared to layer and microsized particles of bioglass [269]. The size of the
particles can be modified by changing the synthesis parameters and techniques. However, because of
its brittleness, the glass alone cannot be used to heal large bone defects [270]. In order to solve this issue,
Bioglass 45S5 was used with poly(D,L-lactide) (PDLLA), a biodegradable polymer, to form a composite
scaffold with enhanced biomechanical characteristics [271]. The early failure of a bioglass composite at
the interface occurs because of nonuniform mechanical strength, phase separation, nonhomogeneous
mixture, and different degradation properties of two compounds. A hybrid composite of poly(methyl
methacrylate) (PMMA) and bioactive glass was manufactured via the sol-gel method (Figure 14) to
enhance physicochemical and mechanical properties [272].

An elastin-like polypeptidic and bioglass (ELP/BG) hydrogel was also fabricated that is
mechanically robust, injectable, and self-healable. This ELP/BG biocomposite can be useful for
drug delivery and tissue engineering purposes [273]. A 3D construct of type-I collagen and 45S5
Bioglass meets the basic requirements of a scaffold including biocompatibility, osteoconductivity,
osteoinductivity, and biodegradability [274]. Bioglass nanoparticles were also used with bacterially
derived poly(3-hydroxybutyrate) to fabricate bioactive composite film using a fermentation
technique [275]. Different glass modifiers (Mg2+, Ca2+, and Sr2+) were used to prepare borosilicate
bioactive glasses through a melt-quenching technique which showed good antibacterial properties [276].
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Poly(propylene fumarate) (PPF) was used to functionalize bioglass particles that enhance the bioactivity
and cell adhesion, proliferation, and bone regeneration [277].
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2.2.3. Nano Hydroxyapatite

Hydroxyapatite (Ca10(PO4)6(OH)2) is a significant natural mineral constituent of bones (70%
wt.) and teeth (96% wt.) [278,279]. Synthetic HA is a biocompatible ceramic material, used for
biomedical applications (Figure 13) because it may replicate the behavior of mineral part of the
bone [280,281]. It shows outstanding biocompatibility with bones, teeth, skin, and muscles, both in vitro
and in vivo [282,283]. The stoichiometric molar ratio Ca/P in synthetic HA of 1.67 is not the actual ratio
in the hydroxyapatite of normal bones, because of the presence of other elements such as C, N, Fe,
Mg, and Na [284]. Hydroxyapatite (HA) can be easily synthesized by using different methods such as
hydrothermal, sol–gel, and co-precipitation methods [285]. The comparison of mineral compositions
of hydroxyapatite, bone and teeth is shown in Table 3 [286,287].

Table 3. Mineral composition of hydroxyapatite, bone, and teeth.

Types Ca P Ca/P Total Inorganic (%) Total Organic (%) Water (%)

HA 39.6 18.5 1.67 100 - -

Dentine 35.1 16.9 1.61 70 20 10

Bone 34.8 15.2 1.71 65 25 10

Enamel 36.5 17.1 1.63 97 1.5 1.5

HA shows such excellent biocompatibility, bio-inertia and bioactivity without toxicity,
immunogenicity [288,289]. It has a good ability to make bonds with bone directly and it is primarily
used in therapeutic applications such as implants and fillers for bones and teeth in different forms [290].
To overcome the low mechanical strength of hydroxyapatite scaffolds, a large number of natural and
synthetic polymers were combined with HA such as collagen, polyethylene, polylactic acid, alginates,
poly(methyl methacrylate), and polycaprolactone [136].

Woodard et al. [291] compared the activity of nano- and microsized ceramic materials in the body.
Their studies demonstrated a substantial increase in osteoblast adhesion and protein adsorption in
nanomaterials. The major components of the inorganic nanostructure can have a higher biological
activity than micro-components [245]. Polydopamine (pDA)-templated hydroxyapatite (tHA) was
introduced into polycaprolactone (PCL) matrix to make bioactive tHA/PCL composite based fibrous
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scaffold; in vitro and in vivo investigations (Figure 15) showed a favorable cytocompatibility at a given
concentration of tHA (0–10% wt.) [292].
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A new type of scaffold with bamboo fiber (5%) incorporated nano-hydroxyapatite/poly(lactic
-co-glycolic) (30%) was fabricated via freeze-drying; bamboo fibers improved biomechanical properties of
n-HA/PLGA composite scaffolds thus developing a superior potential for bone tissue engineering [293].
Sol–gel synthesized hydroxyapatite–TiO2-based nanocomposites synthesized in supercritical CO2 have
better Young’s and flexural moduli than PCL/HAp composites [294]. A set of techniques including
molding/particle leaching and plasma-treated surface deposition were used to fabricate bilayered
PLGA/PLGA-HAp composite scaffold [295]; the in vivo rat model experiment proved that the new
composite is suitable for osteochondral tissue engineering applications. Electrospinning mediated
poly(ε-caprolactone)−poly(ethylene glycol)−poly(ε-caprolactone) (PCL–PEG–PCL, PCEC) and
nano-hydroxyapatite (n-HA) composite scaffolds showed good biocompatibility and nontoxicity [296].
Hydroxyapatite/Na(Y/Gd)F4:Yb3+, Er3+ composite fibers [297], and gadolinium-doped mesoporous
strontium hydroxyapatite nanorods [298] were successfully used in drug storage/release applications.

2.2.4. Silver Nanoparticles

Silver proved its bactericidal activities against many bacteria since 1000 B.C. Now silver is
used as an antiseptic, antibacterial, and antitumor agent [299]. Because of their strong antibacterial
activity against both Gram-positive and Gram-negative bacterial strains, silver nanoparticles were
widely used for fabricating antibacterial nanocomposite-based scaffolds and coated implants [235,237].
Furthermore, silver may be combined with different materials such as CNT [300], chitosan, HA [301],
and manganite [302] to get a specific function. Ag-doped or coated implants allow reducing the
number of bacterial infections without interfering with bone cell growth in the body (Figure 16 [303]).
The antimicrobial activity of Ag has been reported against Escherichia coli [304], Candida albicans [11],
Vibrio cholera [305], and Staphylococcus aureus [306].
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transfer chain. (E) Reactive oxygen species (ROS). (F) DNA damage. (G) Cell death.

In addition to antibacterial activity, Ag nanoparticles promote wound healing, reduce scar
formation, and reduce inflammation [307]. Silver nanoparticles have many applications as antimicrobial
agents when combined with different biological substances [308]. A micrometer-sized surface-enhanced
Raman spectroscopy (SERS) substrate, core–shell microparticles composed of solid carbonate core
coated with silver nanoparticles, and polyhedral multishell fullerene-like structure were developed for
biomedical applications [309]. Soft poly(vinyl alcohol) (PVA) hydrogel films containing silver particles
prepared on solid biodegradable poly(l-lactic acid) (PLLA) exhibit both antibacterial and reduced
cell adhesion properties [310]. Biocompatible maleimide-coated silver nanoparticles (Ag NPs) can be
used as co-cross-linkers for the preparation of a nanocomposite gelatin-based hydrogel. Covalently
bound Ag nanoparticles support swelling and drug release properties of composite hydrogel without
producing toxicity [311]. In situ fabricated Ag NPs (4-19 nm) and immobilized on titanium by using a
plasma immersion ion implantation process motivated osteoblast differentiation in rat bone marrow
stem cells (BMSCs) [312]. Patrascu et al. [313] fabricated collagen/hydroxyapatite-silver nanoparticles
(COLL/HA-Ag)-based antiseptic composite for biomedical applications.

2.2.5. Gold Nanoparticles

Gold nanoparticles (GNPs) are defined as a colloid of nanometer-sized particles with better
properties than bulk gold. They are produced in different shapes such as spheres [314], rods [315],
star-like [316], and cages [317]. GNPs possess unique characteristics, such as easy-to-control, nanoscale
size, easy preparation, high surface area, easy functionalization, and excellent biocompatibility,
that make them highly suited for many tissue engineering and more in general for biotechnology
applications [318,319]. GNPs are definitely superior over other types of nanoparticles in terms of low
toxicity and colloidal stability. Furthermore, they present an outstanding physicochemical behavior,
which is related to local plasmon resonance phenomena.

Gold nanoparticles were utilized for biosensing [320], bioimaging [321–323], cancer therapy [324],
gene delivery to enhance osteogenic differentiation [325], and photo-thermal therapy [229,314,316,323].
Gold nanoparticles were also combined with other materials such as silica (to produce core and shell
nanoparticles) [318,323] as well as natural polymers (to improve mechanical properties) and synthetic
polymers (to enhance biocompatibility) [318].
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Due to their excellent biocompatibility and chemical inertness, gold nanoparticles became the ideal
choice for the preparation of scaffolds in many cases [318]. The mission of GNPs in tissue engineering
and regenerative medicine is to act as a multimodal tool in order to improve scaffold properties, cell
differentiation and intracellular growth factor delivery (Figure 17), while monitoring cellular events in
real-time [326].
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2.2.6. Titanium Dioxide

Titanium is widely used in many surgical applications (e.g., prostheses and implants) because of
its excellent biocompatibility, good mechanical properties, and lower mass density than steel [327].
The low density and high specific strength of titanium results in lightweight implants with good
mechanical properties [238,239]. Furthermore, the smooth surface of Ti mesh prevents bacterial
contamination instead of adsorbate materials. Therefore, titanium mesh provides an excellent solution
to guide bone regeneration [243].

Nanostructured TiO2 materials of various morphologies such as nanoparticles, nanorods,
nanowires, nanotubes, and other hierarchical nanostructures can be produced using different
techniques such as, for example, microwaves [328,329], hydrothermal/solvothermal processes [330,331],
sol–gel [332,333], anode oxidation [334,335], chemical vapor deposition [336,337], sonochemical
processes [338,339], and green synthesis [340–342].

As can be seen from Figure 18, nanostructured TiO2 is a multifunctional material for a wide
range of applications in engineering and biomedical areas. Interestingly, TiO2 nanoparticles represent
a miniature of electrochemical cells capable of light-induced redox chemistry. This quality can be
used for manipulating biomolecules and cell metabolic processes. TiO2 nanoparticles prove to have
a higher affinity for binding proteins and other cellular components when used within cellular
environment [343,344]. TiO2 nanoparticles can also be used to enhance photodynamic therapy (PDT)
and sonodynamic therapy (SDT) [345].
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Titanium nanotubes (TNTs) possess excellent biocompatibility and drug-releasing performance.
Furthermore, they can be generated on the surface of the existing medical implants [346,347].
The physical adsorption of the drugs promotes the anti-inflammatory properties of the TNTs, and with
improved osteoblast adhesion, the drug-eluting technique is extended [348].

TiO2 based scaffolds are biocompatible, have good osteoconductive performance and antibacterial
properties [349], and show high porosity, excellent interconnectivity, and sufficient mechanical
strength [350,351]. Nanostructured TiO2 can be combined with several polymers including polylactic
acid (PLA) [352]; poly(ether-ether ketone) (PEEK) [353]; poly(lactic-co-glycolic acid) (PLGA) [354];
and inorganic materials such as SiO2 [355], Al2O3 [356], bioglass [357], hydroxyapatite [358],
graphene [359], and calcium phosphate [360].

Nano-TiO2 surface coated implants can limit autoimmune reactions between the underlying
bone tissue surfaces and the implant [361]. However, material deterioration or generation of chronic
inflammation in the implanted tissues may reduce success rate [361,362]. Various TiO2 nanostructures
were used for loading and eluting cefuroxime as an antibiotic on orthopedic implants [363].

2.2.7. Zirconia

Zirconia was first recognized by M.H. Klaproth in 1789 and used as a pigment for ceramics for
a long time [364]. Since the 1970s, zirconia received massive consideration as a biomedical material
in association to its chemical and biological inertness [365]. Consequently, zirconia was also used to
overcome the brittleness of alumina and the consequent failure of implants [366], and as a material for
the repair and replacement of bones due to its unique biomechanical properties [367].

Investigations on zirconia biomaterials began in the 1960s. Classical orthopedics studied for many
years have used zirconia in the area of hip replacement [368,369]. Zirconium oxide (zirconia) possesses
improved mechanical properties and has become one of the most popular ceramic materials in the
field of healthcare due to its high biocompatibility and low toxicity [364,370].

Zirconia is one of the most useful structured ceramics because it provides high resistance to
bending and fracture. However, zirconium oxide with a low fracture toughness due to the presence of
alumina abrasive grains [371] also was introduced as an alternative to having excellent wear resistance
due to the unwanted release of orthopedic alumina. Porous zirconia stents can be manufactured by
cutting CAD/CAM blocks in the desired shape, and zirconia stents assembled with HA significantly
increase the volume of new bone formation in vivo [372].
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While it might be concluded that zirconia has one of the best combinations of mechanical strength,
fracture resistance, biocompatibility, and biological activity, its performance can be further enhanced
via a proper modification of material’s surface or by combining the material with some other bioactive
ceramics and glass [367]. In addition, as a result of the introduction of Zr into the Ca-Si system,
no toxicity was observed. Previous studies confirmed that the optimum content of zirconium and
strontium increases the surface energy of the magnesium alloy and enhances the ability to stimulate
bone formation around the implant [373,374]. Hydroxyapatite and fluorapatite slurry coated zirconia
scaffolds induce osteoconductivity and enhance bonding strength up to 33 MPa [375]. The dispersion of
zirconia with alumina lead to produce ZrO2-toughened alumina (Al2O3), known as zirconia-toughened
alumina (ZTA) [376].

Zirconia (ZrO2)/β-tricalcium phosphate (β-TCP) composite has shown excellent mechanical
properties and supports osteoblast regeneration [377]. Silk fibroin-chitosan-zirconia (SF/CS/nano
ZrO2) and chitin–chitosan/nano ZrO2 composites provide a suitable environment for cell infiltration
and colonization [378,379]. Different temperature based hydroxyapatite-zirconium composites such
as 873 K (HZ600), 923 K (HZ650), and 973 K (HZ700) demonstrated that osteoblast growth and
mineralization were not influenced by any composite [380]. A new biphasic calcium phosphate (BCP)
scaffold reinforced with zirconia (ZrO2) was fabricated through the fused deposition modeling (FDM)
technique. The 90% BCP and 10% ZrO2 scaffold thus created had significantly better mechanical
properties than 100% BCP and 0% ZrO2 scaffold [381].

ZrO2 nanoparticle (NP)-doped CTS–PVA–HAP composites (ZrCPH I–III) showed improvement
in the tensile strength of ZrCPH I–III with respect to the CTS–PVA–HAP scaffold [382]. Sol–gel
cum solvothermal derived mesoporous titanium zirconium (TiZr) oxide nanospheres were used
for ibuprofen, dexamethasone, and erythromycin drugs loading and in vitro release studies [383].
The excellent biocompatibility of Zr makes it a good material for metal–organic frameworks (MOFs).
Surface functionalization of Zr-fumarate MOF (Figure 19) was used for dichloroacetate (DCA) drug
loading, which is more efficient at transporting the drug mimic calcein into HeLa cells [384].
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2.2.8. Alumina

Since 1975, the bio-inertness of alumina has been confirmed. Alumina has very high hardness and
resistance to abrasion on the Moh scale next to diamond [385]. In addition, the crystalline nature of
alumina makes it insoluble at room temperature in regular chemical reagents [386]. Alumina has been
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used in many fabrications of artificial implants since it was inserted into an artificial femur head in the
1970s [387]. Pure and densified alumina, α-Al2O3 (corundum), was the first ceramic material used in
the biomedical field for dental restorations, cochlear implants, and load-bearing hip prostheses [388].
As porous alumina does not degrade under in vitro and in vivo environments, it may be used for
biosensing [389], good electrical insulation [390], and immune isolation [391].

Properties such as abrasion resistance, power and chemical inertness favor the use of alumina
in hard tissue engineering [392]. If the alumina is implanted in bone marrow, no toxic effects are
generated in the surrounding tissue [393]. However, the high stiffness of alumina may lead to have a
high elastic incompatibility between the biological tissue and the implant [394]. The tensile strength of
alumina can be increased by reducing grain size and increasing its density [395]. In view of their good
mechanical behavior, alumina implants are characterized by long-time survival predictions [396].

A significant feature in applications involving open and aligned porous structures, such as bone
tissue scaffolds, catalysts, and membranes, is the anisotropic nature of porous alumina ceramics [397].
The α-alumina is the most stable oxide amongst transient and metastable types [398]. It should be
noted that essential physico-chemical properties of alumina surface are significantly affected by the
protein adsorption process. For example, the presence of liquid solutions nearby the implanted site
can cause accelerated protein adsorption on the alumina’s surface [399]. Piconi et al. [394] reported
the in vitro biocompatibility of alumina with various cell lines such as fibroblasts and osteoblasts,
and immunological cells with various cell environments.

The particle size of alumina may affect biocompatibility, particularly when using nanoparticles
because of their high surface/volume ratio [400]. Alumina suspensions (70% wt.) and wheat
flour (20–30% vol.) were used to synthesize different particle sized porous alumina ceramics [401].
Hydroxyapatite/alumina composite based foam was synthesized via a precipitation method under a
variety of pH values that showed a good concentration of Ca2+ and PO4

3− contents [402]. The chemical
modification of porous alumina surface with vitronectin and peptide (i.e., arginine-glycine-aspartic
acid cysteine (RGDC)) enhanced bone cell adhesion and production of extracellular matrix [403].

Porous anodic alumina (PAA) can be fabricated on the surface of other materials through
anodization process [404,405]. It can be considered a good nanocontainer to load active agents such as
drugs or biomolecules [406]. Evaporation induced self-assembly derived mesoporous aluminum oxide
was used for the delivery of poor-water soluble compound Telmisartan (anti-blood pressure drug)
with 45% loading efficiency [407]. The drug is not loaded within the pores of the PAA completely,
but the surface itself can hold some of this load, which can be quite high; this promotes another phase
release [408,409].

Calcium phosphate with 20% alumina (Ca3(PO4)2–Al2O3) bio-ceramic composite revealed
enhanced biocompatibility and mechanical properties [410]. Using alumina nanowires reinforcement
in polyhydroxy butyrate-chitosan (PHB-CTS/3% Al2O3) scaffolds enhanced the mechanical properties
of the scaffold. The addition of alumina increased by ten times the tensile strength of PHB-CTS/3%
Al2O3, which became higher than its counterpart for the original PHB-CTS scaffold [411].

Al2O3 coating was used for improving the performance of stainless steel 316L and Ti-6Al-4V
implants [412]. In general, coating materials are used to protect the surface of the implant material and
the interface with the biological system at hand [413]. Nanorod-like HA-coated porous Al2O3 was
fabricated by anodic oxidation that revealed excellent biological activity in vitro [414].

2.2.9. Copper

Copper ions stimulate the proliferation of human vein endothelial cells and mesenchymal stem
cells (MSCs) but not human dermal fibroblasts [415,416]. Copper nanoparticles can also act as antifungal
and antibacterial agents [417]. Copper is commonly used in bone implants for its antimicrobial activity
against a wide range of pathogens [418]. As copper is an essential component of the body, it may be
more suitable for in vivo applications [25].
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The importance of copper has been studied extensively because its deficiency can lead to
osteoporosis [419]. Cu also stimulates angiogenesis and collagen deposition, which are key elements
in wound healing [420]. The use of copper-based biomaterials is cost-effective compared to other vital
materials based on gold and silver [421].

Copper ions were incorporated into biologically active scaffolds for controlled release
to improve vascular strengthening and antimicrobial action for prolonged periods [422].
Copper-doped wollastonite (Cu–Ws) particles (1184 nm) have shown biocompatibility towards
mouse mesenchymal stem cells (mMSC) up to 0.05 mg/ml concentration [423]. A freeze-dried
chitosan/hydroxyapatite/copper-zinc alloy (CS/nHAp/nCu–Zn) composite-based scaffold showed lower
degradation and higher protein adsorption without producing toxicity towards rat osteoprogenitor
cells [422]. Collagen-copper-doped bioactive glass (CuBG-CS) scaffolds exhibited enhanced mechanical
properties (up to 1.9-fold) and osteogenesis (up to 3.6-fold) than chitosan [424].

Copper nanoparticles were investigated also for wound healing applications. 1 µM concentration
of 80 nm CuNPs was found not to be toxic to the cultured fibroblast, endothelial, and keratinocyte cells,
and it supported endothelial cell migration and proliferation [425]. CuNPs may alter the structure of
proteins and enzymes, affecting their normal functions and causing inactivation of bacterial functions
at the injury site [426]. Chen et al. reported the cytotoxic effect of copper NPs towards human histolytic
lymphoma (U937) and human cervical cancer cells by inducing apoptosis [427]. CuNPs were used
to design a special drug delivery system for chemotherapy. For example, Figure 20 illustrates a
mesoporous, upconversion, nanoparticles (mUCNPs)-based controlled-release drug carrier system
exhibiting higher upconversion luminescence emission intensity [428].
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for tumor diagnosis and synergetic chemo-phototherapy (adapted with permission from Elsevier©
2017 [428]).

2.2.10. Magnetic Nanoparticles

Magnetic elements (i.e., iron, nickel, cobalt, and their oxides) were utilized for the fabrication
of nanomaterials for different medical applications [429,430] such as MRI, drug delivery, medical
diagnostics, cancer therapy, biosensoring, and magneto-optic devices. Magnetic nanoparticles can
be synthesized through different techniques including co-precipitation [431], microemulsion [432],
hydrothermal synthesis [433], sol–gel process [434], polyol synthesis [435], flow injection [436],
sonolysis/sonochemical methods [437], microwave irradiation [438], electrochemical synthesis [439],
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solvothermal method [440], chemical vapor deposition [441], laser pyrolysis [442], and green synthesis [443]
using biomass or biotemplate.

Due to high magnetic flux density, magnetic nanoparticles were used for drug targeting [444] and
bio-separation [445], including cell sorting [446]. Sun et al. [447] analyzed metallic, bi-metallic, magnetic
cationic liposomes and superparamagnetic iron oxide nanoparticles for imaging and drug delivery.
The surface of magnetic nanoparticles also needs to be functionalized to recognize specific targets
(Figure 21) [448]. Polyethylene glycol (PEG) is one of the best polymers used for the functionalization
of magnetic nanoparticles by surface modification [449]. Interestingly, surface modified magnetic
nanoparticles reduce nonspecific interaction with biological molecules.Nanomaterials 2020, 10, x 25 of 60 
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Magnetic manipulation is another important advantage of magnetic nanoparticles [450]. It is
done by labeling cells with magnetic nanoparticles that can easily be controlled by remote control or
external magnetic field [451]. The magnetic nanoparticles, which are usually smaller than 10 nm can
be easily transported through skin lipid matrix and hair follicles to the stratum granulosum, where it is
condensing between corneocytes [452].

In orthopedic surgery, implant-associated infection is a serious issue, as stated in the
previous sections. Infection around a bone graft can lead to serious illness or failure of surgery.
Drug-loaded Fe3O4 composites promote cell adhesion, proliferation, and osteogenic differentiation of
hBMSCs [453–455]. In stem cell therapy for bone regeneration, an application of these NPs is the
magnetic targeting of stem cells to the deserved locations, known as magnetic homing of stem cells.
For example, penetration of ferumoxide-labeled cells into porous hydroxyapatite ceramic implanted in
a rabbit ulnar defect was significantly facilitated by this approach, which improved bone formation
even in the chronic process [456].

2.2.11. Summary and Statistical Analysis of the Survey on Inorganic Nanobiomaterials

The survey on inorganic nanobiomaterials presented in Section 2.2 covered some 230 articles,
practically the same as its counterpart for organic biomaterials not counting about 30 articles on
fabrication techniques of silica and magnetic nanoparticles.

While the number of technical papers appears to be rather uniformly distributed among the ten
types of inorganic nanomaterials considered in this survey, it should be noted that most studies focused
on nanoparticles and their functionalization for drug/gene/therapy delivery, cell labeling, biosensing,
and bioimaging (75%), followed by studies on development and fabrication of new composite materials
and scaffolds (25%).

Gold and titania present the largest variety of nanostructures and the latter material may also
be available in the form of nanotubes. Gold nanoparticles may represent the best solution for most
applications in view of the possibility of controlling size and dimensions of nanostructures as well
as for their special physical properties (for example, local plasmon resonance). However, massive
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utilization of GNPs is obviously limited by the high cost of gold. Silica and titania nanoparticles also
are widely utilized as standalone materials or in combination with gold and silver nanoparticles.

Similar to what has been observed for organic nanobiomaterials, a rapidly growing research
area in the field of inorganic nanobiomaterials for bone tissue engineering is to hybridize them with
other materials (e.g., chitosan, PLA, PLGA, collagen, and hydroxyapatite) to enhance mechanical
properties, biocompatibility and osteogenetic properties of the modified materials. Development of
high-performance scaffolds comprised of multiple materials is the final stage of this complicated process.

3. Applications of Nanobiomaterials

Nanobiomaterials have outstanding mechanical, chemical, electrical and optical properties, which
make them highly suited for a variety of biological applications [70]. Nanotechnologies made it possible
to develop new nanoscale materials (nanobiomaterials) with upgraded surface area to volume ratio,
enabling more surface interactions [457–459]. As nanobiomaterials possess very specific properties
that may be tailored to specific targets (i.e., solubility (for otherwise insoluble drugs), carriers for
hydrophobic entities, multifunctional capability, active and passive targeting, ligands (size exclusion),
and reduced toxicity), they have tremendous potential for disease identification (as imaging tools),
care delivery, and prevention in new ways [107]. Nanobiomaterials are special kinds of materials that
are introduced into the body for the treatment of damaged hard tissues [460]. The huge variety of
biomedical applications of nanobiomaterials are illustrated in Figure 22 [428,461–463].
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Nanobiomaterials have well-defined nanostructures such as size, shape, channels, pore structure,
and surface domain [464]. Nanoscale dimension enables nanobiomaterials to develop critical
physical and chemical characteristics that enhance their performance [465,466]. The properties and
behaviors of nanobiomaterials, therefore, allow the diagnosis, monitoring, treatment, and prevention
of diseases [467]. Nano-size materials show more catalytic reactions at their surface than macro-sized
or conventional materials [468]. The nanoscale biomaterials create biomimetic feature towards most of
the proteins which support further biological reactions such as cell attachment, growth, proliferation
and generation of new tissue [36].
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3.1. Bone Regeneration

A perfect bone and cartilage repair scaffold materials should neither suppress the activity of
normal cells nor induce toxicity during and after implantation [469]. Figure 23 illustrates the basic
cycle of tissue regeneration using nanobiomaterials or derived scaffolds [255].
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Figure 23. Basic principle procedures for tissue engineering. (Adapted with permission from©2019
American Chemical Society [255]).

The various synthetic nanostructured matrices are able to stimulate cell differentiation with a
focus on preserving the structural features, composition, and biology of natural bone tissue [470].
The main constituents used so far in this regard are nano-hydroxyapatite [471], anodized titanium [472],
collagen [473], and silver-incorporated calcium silicate. Nanobiomaterials (1–100 nm) generated from
polymers, metals, ceramics, and composites act as effective constituents for hard tissue and play a
significant role in osteointegration on nanostructured surfaces [474].

Alumina has been widely used for the fabrication of knee and hip joint prosthesis with low wear
rates [475]. Bioactive glasses were used as a prosthesis for the restoration of the ossicular chain of the
middle ear and oral implant to preserve the alveolar ridge from bone resorption [476,477]. Different
metal oxides such as ZnO, Fe2O3, TiO2, and Al2O3, and polymers such as PLA, PGA, and their
copolymers were used with bioactive glass systems for hard tissue engineering applications [478,479].

3.2. Drug Delivery

As mentioned above, various nanobiomaterials can be used for bone regeneration, prevention
of infections, and osteointegration [480,481]. A nanoparticle that functions as carrier can stabilize
the bioactive molecules through encapsulation [482], facilitating targeting cellular delivery and
targeted drug release [483,484]. Nanospheres, tubes and capsules are widely accepted tools for
targeted and sustained release drug delivery because of their small size and high specific surface area,
which encapsulates the drug molecules and shows high reactivity to the surrounding tissues [485].
The materials selected for nanosphere fabrication depend on application principles and requirements.
Some factors in this regard include size, drug characteristics, surface properties, biodegradability and
biocompatibility of materials and drug release profile [486]. The 2D and 3D structures of scaffolds can
be useful for the drug (poorly soluble drugs) loading purpose in tissue engineering (Figure 24).
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3.3. Gene Delivery

The rapid development of nanotechnology made available novel DNA and RNA delivery systems
for gene therapy (Figure 25) that can be used instead of viral vectors [487]. Gene therapy collectively
refers to therapies aimed at manipulating gene expression in living organisms by supplying exogenous
DNA or RNA that is incorporated or not incorporated to cure or prevent diseases [488]. There is great
incentive to work towards safer and targeted viral vectors and to engineer more effective non-viral
systems that can achieve secure, effective gene therapy in humans because of the enormous potential
for gene therapies to influence medicine.
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Figure 25. Fundamental steps of gene delivery by nanocarriers (orange spheres). (Adapted with
permission from©2016 Royal Society of Chemistry [489]).

There are a number of nanocarriers used for gene delivery (Figure 25) [489] applications which are
based on lipids [490,491], liposomes [492–494], dendrimers [495], polymers [496,497], graphene [498,499],
carbon nanotubes (CNTs) [500,501], mesoporous silica [502], gold nanoparticles [503,504], magnetic
nanoparticles [505,506], and other types of inorganic nanoparticles.
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The number of clinical trials for cancer [507], liver disease [508], hemophilia [509], and bone
regeneration [510–512] is continuously increasing due to the promising opportunity to correct gene
disorders. Nanomaterials are used for gene delivery because of their small size and superior
stability [513]. Before the use of these nanomaterials, surfaces need to be functionalized with small
biomolecules or polymers to adapt their physiochemical properties such as hydrophobicity, charge
density, and binding affinity [514,515]. Factors including molecular weight, biodegradability, rigidity,
charge density, pKa value, solubility, crystallinity, and hydrophobicity ensure effective and safe gene
delivery [516,517].

Surface-modified graphene oxide through cationic polymers such as polyethylenimine (PEI)
provides a large surface area for the encapsulation of DNA molecules [518]. DNA/drug molecules
attached graphene oxide conjugated provide an outstanding platform for the immobilization
of nucleotides on its surface [519]. Mesoporous silica nanospheres (MSNs) and functionalized
single-walled carbon nanotubes (SWCNT) represent an excellent gene delivery system [520].
In Figure 26, a potential route is recorded for the use of dendrimers as vectors of gene delivery.
As plasmid DNA penetrates the cell membrane, it makes (in vitro) a complex between dendrimer
and DNA (called dendriplex). This complex is transported through the blood system to the specific
cell. Finally, the DNA moves through the cytoplasm to reach the nucleus for gene expression in
series [521,522].
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3.4. Anti-Infective Nanobiomaterials

Disease, injury, and trauma can lead to serious bacterial infections, which cause disease and
adverse complications in host tissues and even death of patients [523]. Nanobiomaterials made from
polymers, metals, and ceramics might be a potential source of infection when they are introduced
into the body [524,525]. Virus and bacterial infections cause unregulated damage that leads to
organ failure [526]. In polymeric biomaterials, the most common bacterial infections are powered
by Staphylococcus epidermidis (S. epidermidis) from skin and Staphylococcus aureus (S. aureus), which
may identified on metallic biomaterials [527]. Ceramics and metals can represent an alternative
because of their resistance to infection. However, in presence of minor imperfections on the surface or
microfractures, pathogens, such as bacteria, can form a colony [528]. Biomaterials from natural sources
were used as alternative as scaffolds for promoting regeneration but they carry a risk for pathogenic
transmission [529].



Nanomaterials 2020, 10, 2019 29 of 60

3.5. Nanobiomaterials for Coating

Micro/nanoscale tissue engineering scaffolds play a vital role on the organization of natural
extracellular matrix [530]. Nanostructured 3D scaffolds enhance cell functioning, migration,
differentiation, proliferation, and extracellular matrix formation [531].

Nanobiomaterials used for coatings include silica (SiO2), titania (TiO2), zirconia (ZrO2), alumina
(Al2O3), zinc oxide (ZnO), CNT, graphene, and various combined oxides [532]. Simple calcium
phosphate coating method on metals, glasses, inorganic ceramics and organic polymers (such as
PLGA, PS, PP, and silicone), collagens, and silk fibers can improve biocompatibility or enhance
the bioreactivity for orthopedic applications [494,533]. TiO2 and Al2O3 can be used as biologically
active coating agents, supporting cell adhesion, growth, osteogenic differentiation, bone matrix
production, and mineralization [534]. Nanostructured TiO2 has a positive effect on the performance of
bone cells. TiO2 is available in the form of nanocrystals [535], nanofibers [536], nanoparticles [537],
also immobilized on nanotubes [538]. TiO2 nanotube coating on any substrate enhances hydroxyapatite
formation in SBF [539]. Nano silica coating on Ti-6Al-4V alloys generates apatite and supports adhesion
and attachment of human osteoblast-like Saos-2 cells [540]. Nitinol coated stainless steel has shown
enhanced biocompatibility but Ni ions produce an allergic response and toxicity [541]. Zirconia coated
pure and yttrium-stabilized nanostructure promote deposition of apatite from SBF, which supports cell
adhesion and growth [542]. Zinc oxide doped with alumina or functionalized with the silane coupling
agent KH550 supports the proliferation of fibroblasts [543].

Carbon nanotubes have been used with various synthetic and natural polymers or minerals for
the improvement of mechanical properties [544]. CNT and other nano-carbon forms stimulate cell
adhesion and growth of osteogenic cells. Graphene-based films and composites used for biomaterial
coatings can be obtained from pure or oxidized graphene. These graphene-based films improve the
osteogenic differentiation manifested by collagen I and osteocalcin, high calcium phosphate deposition,
and high alkaline phosphatase activity [545,546]. Due to the antimicrobial impression of graphene,
graphene oxide (GO), and their derivatives, these materials can be used for implant coating [547].
Graphene oxide (GO) coating on the collagen scaffold induces morphological changes depending on
GO concentration [548]. The application of GO improved physical properties like compressive strength
as well as adsorption of Ca and proteins without changing porosity [549]. Graphene oxide-silk fibroin
(GO-SF) composite used as an alternative to coating with collagen, showed improved biomechanical
properties and proved could work in cellular environments [550].

HA can accelerate new bone formation by coating on titanium and tantalum scaffolds. It was
demonstrated that after 6 weeks of implantation with titanium and tantalum scaffolds coated is
possible to reach fully dense bone formation [551]. Calcium-phosphate-coated Fe foam showed better
differentiation and proliferation rate of human mesenchymal stem cells than uncoated Fe foam [552].
Polymer-coated mesoporous silica nanoparticles are effective, cell-specific targeted chemotherapeutic
agent delivery method [553]. In rat calvarial defects, HA-coated PLGA scaffolds alone promote bone
regeneration and increased exposure to HA nanoparticles on the scaffold surface has been documented
to result in accelerated bone deposition by local progenitors [554].

3.6. Nanostructured Scaffolds

Scaffolds are artificial constructs that provide support, tensile strength, and aid in tissue
ingrowth [555]. They can also serve as carriers for growth factors, drugs and other required
ingredients [556]. Scaffolds mimic the presence of extracellular matrix and allow the replacement of
tissue without producing any harmful disturbance with respect to surrounding tissues. An ideal scaffold
should be biocompatible, biodegradable, bioactive, non-toxic, mechanically stable, biodegradable,
and bioresorbable (Figure 27) [557]. The amalgamation of organic and inorganic materials with
scaffolds may enhance morphology and mechanical properties, thus supporting better cell attachment
and proliferation [558].
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Scaffold properties can be improved by using nanoparticles because organic and inorganic
minerals in natural bone have nanoscale structures [559]. Many studies found that the addition
of titanium and iron improve biological and mechanical properties such as collagen synthesis and
apatite generation [560,561]. In addition, engineered nanofibrous scaffolds are also suitable for
loadbearing applications and can replace natural extracellular matrix (ECM) with artificial ECM.
The nanofibrous scaffold can therefore get a much more suitable environment for cellular growth and
eventual regeneration of the bone [562]. Nanofiber-based scaffolds have been fabricated by using
different synthetic polymers including PCL [563–566], PLLA [567,568], copolymer [569], PLGA [61],
and chitosan [569].

Different kinds of metallic nanoparticles can be used for the synthesis of composite-based scaffolds
with enhanced mechanical characteristics, cell adhesion, and bone tissue generating capacity [12].
The incorporation of titanium, iron, and alumoxane in a scaffold can improve mechanical properties,
collagen synthesis, calcium deposition, and alkaline phosphatase activity [561].

Graphene and its derivatives were used as reinforcement material for fibrous scaffolds,
films, and hydrogels [570]. The graphene and graphene oxide incorporation into hydrogels yield
enhancements in mechanical properties without producing adverse effects on encapsulated fibroblast
cells [571]. Carbon-based nanomaterials can be used to improve mechanical strength of scaffolds [572].
Alumina, titania, bioglass, and hydroxyapatite support osteoblast adhesion and growth [573].

Nanobiomaterial-based composite structures are an efficient platform for the synthesis of
engineered scaffolds and application in bone tissue engineering (Figure 28) [574]. Nanocomposite-based
scaffolds exhibit inherent characteristics such as porous and rough surface and increased wettability,
which promote fast bone regeneration. These nanocomposite-based scaffolds provide a porous structure
for nutrients exchange and increased protein adsorption. Scaffolds exhibited micro/nano-scaled
porous structural pathway for cell–scaffold interaction and integrin-triggered signaling pathway.
The nanoscale features support bone cells (osteoblast) and bone-derived stem cells proliferation,
migration, cell signaling, stem cell fate, and genetic cell fate. The nanobiomaterials based scaffold
have notable mechanical and biological advantages and can induce bone tissue regeneration [531].
The nanostructured materials improve morphological characteristics of scaffolds that may enhance
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osteoinduction, bone cell attachment, differentiation, proliferation, and natural bone cell growth within
the extracellular matrix [12].
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Hydroxyapatite (HA) has attracted attention because of its inherent biological compatibility and
bone conduction as well as its similarity with bone minerals [575]. For this reason, HA was combined
with a number of synthetic and natural polymers such as polycaprolactone [576], poly (lactic acid)
(PLA) [577], polyethylene, poly(lactic-co-glycolic acid) (PLGA) [203], collagen [578], gelatin [148],
and chitosan [579] to fabricate scaffolds. These composite based scaffolds showed improved mechanical
properties, porosity and biocompatibility without or with significantly less adverse effects.

3.7. Bone Cancer Therapy

Cancer is the uncontrolled growth of tissues that could lead to invasion into other organs without
proper regulation or differentiation [580]. Conventional cancer therapy is associated with multiple
adverse side effects [581]. Bone metastases or “bone mets” occur when cancer cells from the primary
tumor relocate to the bone and also spread in the prostate, breast, and lung, which leads to painful
(75% of patients) and devastating skeletal-related events (SREs) [582,583]. Depending on the stage of
the disease, history, and the overall health of the patient, disease management includes a combination
of therapies as shown in Figure 29 [584].
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The different types of nanoparticles (NPs) used as carriers for small-molecule drugs, proteins,
and nucleic acids [585] can be localized to specific disease locations for the treatment of bone
metastasis [586]. Nanoparticles also improve the efficiency of other methods used for treating bone
metastasis [587]. The effectiveness of NPs depends on their accumulation in vascularized solid tumors
via the enhanced permeability and retention (EPR) effect [588]. A wide variety of nanomaterials
have been developed in the 1 to 100 nm range and include various anti-tumor drugs (Figure 30) by
fine-tuning the chemical structure, scale, and shape (morphology) that can regulate the nanomaterials’
functionality [589].
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4. Counter-Indications

There is inevitably some sort of interaction between the organic or inorganic materials and the
biological environment when individual or composite biomaterials are put in contact with the tissues
and fluids of the human body. The basic clinical research may decide that the materials should not cause
any local or systemic adverse reactions. Recent studies exposed that nanosized materials can easily
penetrate biological membranes of normal cells and enter vascular system to facilitate redistribution
in different tissues. Nanomaterials, which by themselves are not very harmful, could become toxic
if are ingested in higher concentration. The toxicity of metal based biomaterials to the liver is an
important basis for the safety assessment of nanosized materials. Metal based nanoparticles release
ions which may enter the cells and affect the functions of organelles, leading to liver injury. Various
factors including amount, composition, pH, and fabrication techniques may decide the compatibility
and cytotoxicity of biomaterials. The research is ongoing to improve the existing technologies which
may produce highly compatible substitutes without producing adverse effects.

5. Conclusions

This review article provided a broad overview of the various types of organic and inorganic
nanobiomaterials and their applications in the field of hard tissue engineering. Besides classifying
nanobiomaterials, the survey covered several key aspects like bone/cartilage regeneration, drug/gene
delivery, anti-infection properties, coatings, scaffold fabrication, and cancer therapy. A total of 550
articles selected by means of web search engines widely used in science and engineering were reviewed
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in this study. Interestingly, the number of reviewed articles was approximately the same for organic
and inorganic biomaterials.

Biomaterials science is a highly multidisciplinary area. Developments in life science and
nanotechnology enabled scientists and engineers to conceive new designs and improve the existing bone
structure. For example, advances in nanotechnology allowed for the development of novel methods
for fabricating new nanostructured scaffolds possessing a higher efficiency in tissue regeneration.

Nanomaterials represent an excellent tool for research and therapeutic approaches in bone
tissue engineering. Organic nanomaterials are more biocompatible, nontoxic, and help more with
cell regeneration than inorganic nanomaterials. However, inorganic nanomaterials provide better
mechanical strength and inertness to chemical agent. From the references cited in this survey it appears
that nanoparticles, graphene and nanocomposites are the most diffused types of nanostructures
used for hard tissue applications. An important research trend which results in a rapidly growing
number of published articles is the development of new composite nanobiomaterials especially for
scaffold applications.

Interactions between bone cells and nanomaterials depend on the composition of nanoparticles.
Proper selection of nanoparticles may result in faster bone regeneration and recovery. Besides
composition, the overall performance of a nanobiomaterial depends on porosity, microstructure,
mechanical properties and functionality. Nanomaterials-based scaffolds also play a major role in
three-dimensional tissue growth. Nanostructural modifications provide a favorable environment for
bone regeneration.

The survey presented in the article proved that tissue engineering supports (i) application of
engineering design methods to functionally engineered tissues, (ii) development of novel biomaterials
for constructing scaffolds that mimic extracellular matrix, and (iii) creating artificial microenvironments.
Nanobiomaterials represent an excellent tool for research and therapeutic approaches in bone tissue
engineering. However, further investigations should be aimed at producing advanced nanobiomaterials
suitable for hard tissue engineering that can fill the gap between biomaterial fabrication and
clinical implementation.
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401. Gregorová, E.; Pabst, W.; Živcová, Z.; Sedlářová, I.; Holíková, S. Porous alumina ceramics prepared with
wheat flour. J. Eur. Ceram. Soc. 2010, 30, 2871–2880. [CrossRef]
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458. Uskoković, V. Entering the era of nanoscience: Time to be so small. J. Biomed. Nanotechnol. 2013, 9, 1441–1470.
[CrossRef]

459. Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J.
2018, 26, 64–70. [CrossRef]

460. Hasan, A.; Morshed, M.; Memic, A.; Hassan, S.; Webster, T.J.; Marei, H.E.-S. Nanoparticles in tissue
engineering: Applications, challenges and prospects. Int. J. Nanomed. 2018, 13, 5637–5655. [CrossRef]

461. Singh, S.K.; Kulkarni, P.P.; Dash, D. Biomedical applications of nanomaterials: An overview. Bionanotechnology
2013, 1–32. [CrossRef]

http://dx.doi.org/10.1007/s11051-011-0631-5
http://dx.doi.org/10.1134/S1087659610030090
http://dx.doi.org/10.1021/ja0702465
http://dx.doi.org/10.3109/21691401.2014.982802
http://dx.doi.org/10.1088/2053-1591/aa892f
http://dx.doi.org/10.1039/c1ra00023c
http://dx.doi.org/10.1186/1477-044X-2-7
http://www.ncbi.nlm.nih.gov/pubmed/15566570
http://dx.doi.org/10.1634/stemcells.2004-0177
http://www.ncbi.nlm.nih.gov/pubmed/15790768
http://dx.doi.org/10.1016/j.addr.2008.03.018
http://www.ncbi.nlm.nih.gov/pubmed/18558452
http://dx.doi.org/10.3390/nano7090243
http://dx.doi.org/10.3390/nano8100810
http://www.ncbi.nlm.nih.gov/pubmed/30304823
http://dx.doi.org/10.1186/1556-276X-7-144
http://dx.doi.org/10.1039/c2cs15315g
http://dx.doi.org/10.1038/sj.jid.5700733
http://dx.doi.org/10.1002/cphc.201701294
http://dx.doi.org/10.1007/s10856-013-4960-z
http://www.ncbi.nlm.nih.gov/pubmed/23695360
http://dx.doi.org/10.1016/j.msec.2013.03.040
http://www.ncbi.nlm.nih.gov/pubmed/23706197
http://dx.doi.org/10.3727/096368915X689613
http://www.ncbi.nlm.nih.gov/pubmed/26419946
http://dx.doi.org/10.1039/C4CS00445K
http://dx.doi.org/10.1166/jbn.2013.1642
http://dx.doi.org/10.1016/j.jsps.2017.10.012
http://dx.doi.org/10.2147/IJN.S153758
http://dx.doi.org/10.1002/9781118451915.ch1


Nanomaterials 2020, 10, 2019 55 of 60

462. Das, S.; Mitra, S.; Khurana, S.M.P.; Debnath, N. Nanomaterials for biomedical applications. Front. Life Sci.
2013, 7, 90–98. [CrossRef]

463. Ng, C.-T.; Baeg, G.-H.; Yu, L.E.; Bay, C.-N.O. Biomedical applications of nanomaterials as therapeutics.
Curr. Med. Chem. 2018, 25, 1409–1419. [CrossRef]

464. Gentile, A.; Ruffino, F.; Grimaldi, G.M. Complex-morphology metal-based nanostructures: Fabrication,
characterization, and applications. Nanomaterials 2016, 6, 110. [CrossRef] [PubMed]

465. Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison
and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871–12934. [CrossRef]
[PubMed]

466. Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and
nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9,
1050–1074. [CrossRef] [PubMed]

467. Lin, P.-C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials.
Biotechnol. Adv. 2014, 32, 711–726. [CrossRef] [PubMed]

468. Biener, J.; Wittstock, A.; Baumann, T.F.; Weissmüller, J.; Bäumer, M.; Hamza, A.V. Surface chemistry in
nanoscale materials. Materials 2009, 2, 2404–2428. [CrossRef]

469. Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953. [CrossRef]
470. Singh, A.; Elisseeff, J. Biomaterials for stem cell differentiation. J. Mater. Chem. 2010, 20, 8832–8847. [CrossRef]
471. Yang, X.; Li, Y.; Liu, X.; Zhang, R.; Feng, Q. In vitro uptake of hydroxyapatite nanoparticles and their effect on

osteogenic differentiation of human mesenchymal stem cells. Stem Cells Int. 2018, 2018, 2036176. [CrossRef]
472. Lavenus, S.; Trichet, V.; Le Chevalier, S.; Hoornaert, A.; Louarn, G.; Layrolle, P. Cell differentiation and

osseointegration influenced by nanoscale anodized titanium surfaces. Nanomedicine 2012, 7, 967–980.
[CrossRef]

473. Somaiah, C.; Kumar, A.; Mawrie, D.; Sharma, A.; Patil, S.D.; Bhattacharyya, J.; Swaminathan, R.;
Jaganathan, B.G. Collagen promotes higher adhesion, survival and proliferation of mesenchymal stem cells.
PLoS ONE 2015, 10, e0145068. [CrossRef]

474. Rasouli, R.; Barhoum, A.; Uludag, H. A review of nanostructured surface and materials for dental implants:
Surface coating, pattering and functionalization for improved performance. Biomater. Sci. 2018, 6, 1312–1338.
[CrossRef]

475. Bertazzo, S.; Zambuzzi, W.F.; Da Silva, H.A.; Ferreira, C.V.; Bertran, C.A. Bioactivation of alumina by surface
modification: A possibility for improving the applicability of alumina in bone and oral repair. Clin. Oral
Implants Res. 2009, 20, 288–293. [CrossRef] [PubMed]

476. Profeta, A.C.; Huppa, C. Bioactive-glass in oral and maxillofacial surgery. Craniomaxillofac. Trauma Reconstr.
2016, 9, 1–14. [CrossRef] [PubMed]

477. Crovace, M.C.; Souza, M.T.; Chinaglia, C.R.; Peitl, O.; Zanotto, E.D. Biosilicate®—A multipurpose, highly
bioactive glass-ceramic. In vitro, in vivo and clinical trials. J. Non. Cryst. Solids 2016, 432, 90–110. [CrossRef]

478. Kargozar, S.; Montazerian, M.; Fiume, E.; Baino, F. Multiple and promising applications of strontium
(Sr)-containing bioactive glasses in bone tissue engineering. Front. Bioeng. Biotechnol. 2019, 7, 161. [CrossRef]
[PubMed]

479. Baino, F.; Vitale-Brovarone, C. Three-dimensional glass-derived scaffolds for bone tissue engineering: Current
trends and forecasts for the future. J. Biomed. Mater. Res. Part A 2011, 97, 514–535. [CrossRef]

480. Tautzenberger, A.; Kovtun, A.; Ignatius, A. Nanoparticles and their potential for application in bone.
Int. J. Nanomed. 2012, 7, 4545–4557. [CrossRef]

481. Kumar, P.; Dehiya, B.S.; Sindhu, A. Ibuprofen-loaded CTS/nHA/nBG Scaffolds for the applications of hard
tissue engineering. Iran. Biomed. J. 2019, 23, 190–199. [CrossRef]

482. Faraji, A.H.; Wipf, P. Nanoparticles in cellular drug delivery. Bioorganic Med. Chem. 2009, 17, 2950–2962.
[CrossRef]

483. Kong, G.; Braun, R.D.; Dewhirst, M.W. Hyperthermia enables tumor-specific nanoparticle delivery: Effect of
particle size hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size 1. Cancer Res.
2000, 60, 4440–4445.

484. Trewyn, B.G.; Slowing, I.I.; Chen, H.; Lin, V.S. Synthesis and functionalization of a mesoporous silica
nanoparticle based on the sol-gel process and applications in controlled release. Acc. Chem. Res. 2007, 40,
846–853. [CrossRef] [PubMed]

http://dx.doi.org/10.1080/21553769.2013.869510
http://dx.doi.org/10.2174/0929867324666170331120328
http://dx.doi.org/10.3390/nano6060110
http://www.ncbi.nlm.nih.gov/pubmed/28335236
http://dx.doi.org/10.1039/C8NR02278J
http://www.ncbi.nlm.nih.gov/pubmed/29926865
http://dx.doi.org/10.3762/bjnano.9.98
http://www.ncbi.nlm.nih.gov/pubmed/29719757
http://dx.doi.org/10.1016/j.biotechadv.2013.11.006
http://www.ncbi.nlm.nih.gov/pubmed/24252561
http://dx.doi.org/10.3390/ma2042404
http://dx.doi.org/10.1016/j.biomaterials.2008.04.023
http://dx.doi.org/10.1039/c0jm01613f
http://dx.doi.org/10.1155/2018/2036176
http://dx.doi.org/10.2217/nnm.11.181
http://dx.doi.org/10.1371/journal.pone.0145068
http://dx.doi.org/10.1039/C8BM00021B
http://dx.doi.org/10.1111/j.1600-0501.2008.01642.x
http://www.ncbi.nlm.nih.gov/pubmed/19397640
http://dx.doi.org/10.1055/s-0035-1551543
http://www.ncbi.nlm.nih.gov/pubmed/26889342
http://dx.doi.org/10.1016/j.jnoncrysol.2015.03.022
http://dx.doi.org/10.3389/fbioe.2019.00161
http://www.ncbi.nlm.nih.gov/pubmed/31334228
http://dx.doi.org/10.1002/jbm.a.33072
http://dx.doi.org/10.2147/IJN.S34127
http://dx.doi.org/10.29252/ibj.23.3.190
http://dx.doi.org/10.1016/j.bmc.2009.02.043
http://dx.doi.org/10.1021/ar600032u
http://www.ncbi.nlm.nih.gov/pubmed/17645305


Nanomaterials 2020, 10, 2019 56 of 60

485. Kumari, A.; Singla, R.; Guliani, A.; Yadav, S.K. Nanoencapsulation for drug delivery. EXCLI J. 2014, 13,
265–286. [PubMed]

486. Mahapatro, A.; Singh, D.K. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery
of drugs and vaccines. J. Nanobiotechnol. 2011, 9, 55. [CrossRef] [PubMed]

487. Riley, M.K.; Vermerris, W. Recent advances in nanomaterials for gene delivery—A review. Nanomaterials
2017, 7, 94. [CrossRef]

488. Ylä-Herttuala, S. Endgame: Glybera finally recommended for approval as the first gene therapy drug in the
European Union. Mol. Ther. 2012, 20, 1831–1832. [CrossRef]

489. Loh, X.J.; Lee, T.-C.; Dou, Q.; Deen, G.R. Utilising inorganic nanocarriers for gene delivery. Biomater. Sci.
2016, 4, 70–86. [CrossRef]

490. Zhao, Y.; Huang, L. Lipid nanoparticles for gene delivery. Adv. Genet. 2014, 88, 13–36.
491. Martin, B.; Sainlos, M.; Aissaoui, A.; Oudrhiri, N.; Hauchecorne, M.; Vigneron, J.-P.; Lehn, J.-M.; Lehn, P.

The design of cationic lipids for gene delivery. Curr. Pharm. Des. 2005, 11, 375–394. [CrossRef]
492. Nordling-David, M.M.; Golomb, G. Gene delivery by liposomes. Isr. J. Chem. 2013, 53, 737–747. [CrossRef]
493. Ropert, C. Liposomes as a gene delivery system. Braz. J. Med. Biol. Res. 1999, 32, 163–169. [CrossRef]
494. Zylberberg, C.; Gaskill, K.; Pasley, S.; Matosevic, S. Engineering liposomal nanoparticles for targeted gene

therapy. Gene Ther. 2017, 24, 441–452. [CrossRef] [PubMed]
495. Santander-Ortega, M.J.; Lozano, M.V.; Uchegbu, I.F.; Schätzlein, A.G. 6—Dendrimers for gene therapy.

In Polymers and Nanomaterials for Gene Therapy; Narain, R., Ed.; Woodhead Publishing: Cambridge, UK, 2016;
pp. 113–146.

496. Eliyahu, H.; Barenholz, Y.; Domb, A.J. Polymers for DNA delivery. Molecules 2005, 10, 34–64. [CrossRef]
[PubMed]

497. Sharma, M.R.R.; Rekha, C.P. Polymers for gene delivery: Current status and future perspectives. Recent Patents
DNA Gene Seq. 2012, 6, 98–107.

498. Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Graphene-based
nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov. Today 2017,
22, 1302–1317. [CrossRef] [PubMed]

499. Imani, R.; Mohabatpour, F.; Mostafavi, F. Graphene-based nano-carrier modifications for gene delivery
applications. Carbon N. Y. 2018, 140, 569–591. [CrossRef]

500. Dolatabadi, J.E.N.; Omid, Y.O.; Losic, D. Carbon nanotubes as an advanced drug and gene delivery
nanosystem. Curr. Nanosci. 2011, 7, 297–314. [CrossRef]

501. Ramos-Perez, V.; Cifuentes, A.; Coronas, N.; de Pablo, A.; Borrós, S. Modification of carbon nanotubes for gene
delivery vectors. In Nanomaterial Interfaces in Biology: Methods and Protocols; Bergese, P., Hamad-Schifferli, K.,
Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 261–268.

502. Keasberry, N.A.; Yapp, C.W.; Idris, A. Mesoporous silica nanoparticles as a carrier platform for intracellular
delivery of nucleic acids. Biochemistry 2017, 82, 655–662. [CrossRef]

503. Mendes, R.; Fernandes, A.R.; Baptista, P.V. Gold nanoparticle approach to the selective delivery of gene
silencing in cancer—The case for combined delivery? Genes 2017, 8, 94. [CrossRef]

504. Ding, Y.; Jiang, Z.; Saha, K.; Kim, C.S.; Kim, S.T.; Landis, R.F.; Rotello, V.M. Gold nanoparticles for nucleic
acid delivery. Mol. Ther. 2014, 22, 1075–1083. [CrossRef]

505. Majidi, S.; Zeinali Sehrig, F.; Samiei, M.; Milani, M.; Abbasi, E.; Dadashzadeh, K.; Akbarzadeh, A. Magnetic
nanoparticles: Applications in gene delivery and gene therapy. Artif. Cells Nanomed. Biotechnol. 2016, 44,
1186–1193. [CrossRef]

506. McBain, S.C.; Yiu, H.H.P.; Dobson, J. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomed.
2008, 3, 169–180.

507. Giacca, M.; Zacchigna, S. Virus-mediated gene delivery for human gene therapy. J. Control. Release 2012, 161,
377–388. [CrossRef] [PubMed]

508. Domvri, K.; Zarogoulidis, P.; Porpodis, K.; Koffa, M.; Lambropoulou, M.; Kakolyris, S.; Minadakis, G.;
Zarogoulidis, K.; Chatzaki, E. Gene therapy in liver diseases: State-of-the-art and future perspectives.
Curr. Gene Ther. 2012, 12, 463–483. [CrossRef] [PubMed]

509. Nienhuis, A.W.; Nathwani, A.C.; Davidoff, A.M. Gene therapy for hemophilia. Mol. Ther. 2017, 25, 1163–1167.
[CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/26417260
http://dx.doi.org/10.1186/1477-3155-9-55
http://www.ncbi.nlm.nih.gov/pubmed/22123084
http://dx.doi.org/10.3390/nano7050094
http://dx.doi.org/10.1038/mt.2012.194
http://dx.doi.org/10.1039/C5BM00277J
http://dx.doi.org/10.2174/1381612053382133
http://dx.doi.org/10.1002/ijch.201300055
http://dx.doi.org/10.1590/S0100-879X1999000200004
http://dx.doi.org/10.1038/gt.2017.41
http://www.ncbi.nlm.nih.gov/pubmed/28504657
http://dx.doi.org/10.3390/10010034
http://www.ncbi.nlm.nih.gov/pubmed/18007276
http://dx.doi.org/10.1016/j.drudis.2017.04.002
http://www.ncbi.nlm.nih.gov/pubmed/28869820
http://dx.doi.org/10.1016/j.carbon.2018.09.019
http://dx.doi.org/10.2174/157341311795542444
http://dx.doi.org/10.1134/S0006297917060025
http://dx.doi.org/10.3390/genes8030094
http://dx.doi.org/10.1038/mt.2014.30
http://dx.doi.org/10.3109/21691401.2015.1014093
http://dx.doi.org/10.1016/j.jconrel.2012.04.008
http://www.ncbi.nlm.nih.gov/pubmed/22516095
http://dx.doi.org/10.2174/156652312803519788
http://www.ncbi.nlm.nih.gov/pubmed/22845887
http://dx.doi.org/10.1016/j.ymthe.2017.03.033


Nanomaterials 2020, 10, 2019 57 of 60

510. Luo, J.; Sun, M.; Kang, Q.; Peng, Y.; Jiang, W.; Luu, H.; Luo, Q.; Park, J.; Li, Y.; Haydon, R. Gene therapy for
bone regeneration. Curr. Gene Ther. 2005, 5, 167–179. [CrossRef]

511. Pensak, M.J.; Lieberman, J.R. Gene therapy for bone regeneration. Curr. Pharm. Des. 2013, 19, 3466–3473.
[CrossRef]

512. Shapiro, G.; Lieber, R.; Gazit, D.; Pelled, G. Recent advances and future of gene therapy for bone regeneration.
Curr. Osteoporos. Rep. 2018, 16, 504–511. [CrossRef]

513. De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomed. 2008,
3, 133–149. [CrossRef]

514. Navya, P.N.; Daima, H.K. Rational engineering of physicochemical properties of nanomaterials for biomedical
applications with nanotoxicological perspectives. Nano Converg. 2016, 3, 1. [CrossRef]

515. Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic
nanoparticles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1333–1383. [CrossRef]

516. Liu, C.; Zhang, N. Chapter 13—Nanoparticles in gene therapy: Principles, prospects, and challenges.
In Nanoparticles in Translational Science and Medicine; Villaverde, A.B.T.-P., Ed.; Academic Press: Cambridge,
MA, USA, 2011; Volume 104, pp. 509–562.

517. Islam, M.; Park, T.-E.; Singh, B.; Maharjan, S.; Firdous, J.; Kang, S.-K.; Yun, C.-H.; Choi, Y.; Cho, C.
Major degradable polycations as carriers for DNA and siRNA. J. Control. Release 2014, 193, 74–89. [CrossRef]
[PubMed]

518. Wang, Y.; Li, Z.; Weber, T.J.; Hu, D.; Lin, C.-T.; Li, J.; Lin, Y. In Situ Live Cell Sensing of multiple nucleotides
exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal. Chem. 2013, 85, 6775–6782. [CrossRef]
[PubMed]

519. Keles, E.; Song, Y.; Du, D.; Dong, W.-J.; Lin, Y. Recent progress in nanomaterials for gene delivery applications.
Biomater. Sci. 2016, 4, 1291–1309. [CrossRef] [PubMed]

520. Radu, D.R.; Lai, C.-Y.; Jeftinija, K.; Rowe, E.W.; Jeftinija, S.; Lin, V.S.-Y. A Polyamidoamine dendrimer-capped
mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc. 2004, 126, 13216–13217.
[CrossRef] [PubMed]

521. Palmerston Mendes, L.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery
in cancer therapy. Molecules 2017, 22, 1401. [CrossRef] [PubMed]

522. Kukowska-Latallo, J.F.; Bielinska, A.U.; Johnson, J.; Spindle, R.; Tomalia, D.A.; Baker, J.R. Efficient transfer
of genetic material into mammalian cells using starburst polyamidoamine dendrimers. Proc. Natl. Acad.
Sci. USA 1996, 93, 4897–4902. [CrossRef] [PubMed]

523. Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and
inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [CrossRef] [PubMed]

524. Busscher, H.J.; van der Mei, H.C.; Subbiahdoss, G.; Jutte, P.C.; van den Dungen, J.J.A.M.; Zaat, S.A.J.;
Schultz, M.J.; Grainger, D.W. Biomaterial-associated infection: Locating the finish line in the race for the
surface. Sci. Transl. Med. 2012, 4, 153rv10. [CrossRef]

525. Buhmann, M.T.; Stiefel, P.; Maniura-Weber, K.; Ren, Q. In vitro biofilm models for device-related infections.
Trends Biotechnol. 2016, 34, 945–948. [CrossRef]

526. Lin, G.-L.; McGinley, J.P.; Drysdale, S.B.; Pollard, A.J. Epidemiology and immune pathogenesis of viral sepsis.
Front. Immunol. 2018, 9, 2147. [CrossRef]

527. Oliveira, W.F.; Silva, P.M.S.; Silva, R.C.S.; Silva, G.M.M.; Machado, G.; Coelho, L.C.B.B.; Correia, M.T.S.
Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J. Hosp. Infect. 2018, 98,
111–117. [CrossRef] [PubMed]

528. Holzapfel, B.M.; Reichert, J.C.; Schantz, J.-T.; Gbureck, U.; Rackwitz, L.; Nöth, U.; Jakob, F.; Rudert, M.;
Groll, J.; Hutmacher, D.W. How smart do biomaterials need to be? A translational science and clinical point
of view. Adv. Drug Deliv. Rev. 2013, 65, 581–603. [CrossRef] [PubMed]

529. Ng, V. Risk of Disease Transmission With Bone Allograft. Orthopedics 2012, 35, 679–681. [CrossRef] [PubMed]
530. Jun, I.; Han, H.-S.; Edwards, J.R.; Jeon, H. Electrospun Fibrous scaffolds for tissue engineering: Viewpoints

on architecture and fabrication. Int. J. Mol. Sci. 2018, 19, 745. [CrossRef]
531. Gong, T.; Xie, J.; Liao, J.; Zhang, T.; Lin, S.; Lin, Y. Nanomaterials and bone regeneration. Bone Res. 2015, 3,

1–7. [CrossRef]
532. Gopalu, K.; Rangaraj, S.; Venkatachalam, R.; Kannan, N. Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles

on maize seed germination under different growth conditions. IET Nanobiotechnol. 2016, 10, 171–177.

http://dx.doi.org/10.2174/1566523053544218
http://dx.doi.org/10.2174/1381612811319190012
http://dx.doi.org/10.1007/s11914-018-0459-3
http://dx.doi.org/10.2147/IJN.S596
http://dx.doi.org/10.1186/s40580-016-0064-z
http://dx.doi.org/10.1098/rsta.2009.0273
http://dx.doi.org/10.1016/j.jconrel.2014.05.055
http://www.ncbi.nlm.nih.gov/pubmed/24942341
http://dx.doi.org/10.1021/ac400858g
http://www.ncbi.nlm.nih.gov/pubmed/23758346
http://dx.doi.org/10.1039/C6BM00441E
http://www.ncbi.nlm.nih.gov/pubmed/27480033
http://dx.doi.org/10.1021/ja046275m
http://www.ncbi.nlm.nih.gov/pubmed/15479063
http://dx.doi.org/10.3390/molecules22091401
http://www.ncbi.nlm.nih.gov/pubmed/28832535
http://dx.doi.org/10.1073/pnas.93.10.4897
http://www.ncbi.nlm.nih.gov/pubmed/8643500
http://dx.doi.org/10.18632/oncotarget.23208
http://www.ncbi.nlm.nih.gov/pubmed/29467962
http://dx.doi.org/10.1126/scitranslmed.3004528
http://dx.doi.org/10.1016/j.tibtech.2016.05.016
http://dx.doi.org/10.3389/fimmu.2018.02147
http://dx.doi.org/10.1016/j.jhin.2017.11.008
http://www.ncbi.nlm.nih.gov/pubmed/29175074
http://dx.doi.org/10.1016/j.addr.2012.07.009
http://www.ncbi.nlm.nih.gov/pubmed/22820527
http://dx.doi.org/10.3928/01477447-20120725-04
http://www.ncbi.nlm.nih.gov/pubmed/22868589
http://dx.doi.org/10.3390/ijms19030745
http://dx.doi.org/10.1038/boneres.2015.29


Nanomaterials 2020, 10, 2019 58 of 60

533. Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric scaffolds in tissue engineering
application: A review. Int. J. Polym. Sci. 2011, 2011, 290602. [CrossRef]

534. Mozumder, M.S.; Zhu, J.; Perinpanayagam, H. Titania-polymeric powder coatings with nano-topography
support enhanced human mesenchymal cell responses. J. Biomed. Mater. Res. Part A 2012, 100, 2695–2709.
[CrossRef]

535. Trentler, T.J.; Denler, T.E.; Bertone, J.F.; Agrawal, A.; Colvin, V.L. Synthesis of TiO2 nanocrystals by
nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 1999, 121, 1613–1614. [CrossRef]

536. Hussian, H.A.R.A.; Hassan, M.A.M.; Agool, I.R. Synthesis of titanium dioxide (TiO2) nanofiber and nanotube
using different chemical method. Optik 2016, 127, 2996–2999. [CrossRef]

537. Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium dioxide nanoparticles: A review of current toxicological
data. Part. Fibre Toxicol. 2013, 10, 15. [CrossRef] [PubMed]

538. Ashkarran, A.A.; Fakhari, M.; Hamidinezhad, H.; Haddadi, H.; Nourani, M.R. TiO2 nanoparticles
immobilized on carbon nanotubes for enhanced visible-light photo-induced activity. J. Mater. Res. Technol.
2015, 4, 126–132. [CrossRef]

539. Tsuchiya, H.; Macak, J.M.; Müller, L.; Kunze, J.; Müller, F.; Greil, P.; Virtanen, S.; Schmuki, P. Hydroxyapatite
growth on anodic TiO2 nanotubes. J. Biomed. Mater. Res. Part A 2006, 77, 534–541. [CrossRef] [PubMed]

540. Inzunza, D.; Covarrubias, C.; Von Marttens, A.; Leighton, Y.; Carvajal, J.C.; Valenzuela, F.; Diaz-Dosque, M.;
Méndez, N.; Martínez, C.; Pino, A.M.; et al. Synthesis of nanostructured porous silica coatings on titanium
and their cell adhesive and osteogenic differentiation properties. J. Biomed. Mater. Res. Part A 2013, 102,
37–48. [CrossRef]

541. Assad, M.; Chernyshov, A.; Leroux, M.; Rivard, C. A new porous titanium-nickel alloy: Part 1. Cytotoxicity
and genotoxicity evaluation. Biomed. Mater. Eng. 2002, 12, 225–237.

542. Gu, Y.W.; Khor, K.; Pan, D.; Cheang, P. Activity of plasma sprayed yttria stabilized zirconia reinforced
hydroxyapatite/Ti–6Al–4V composite coatings in simulated body fluid. Biomaterials 2004, 25, 3177–3185.
[CrossRef]

543. Maschhoff, P.M.; Geilich, B.M.; Webster, T.J. Greater fibroblast proliferation on an ultrasonicated ZnO/PVC
nanocomposite material. Int. J. Nanomed. 2014, 9, 257–263.

544. Pei, B.; Wang, W.; Dunne, N.; Li, X. Applications of carbon nanotubes in bone tissue regeneration and
engineering: Superiority, concerns, current advancements, and prospects. Nanomaterials 2019, 9, 1501.
[CrossRef] [PubMed]

545. Subbiah, R.; Du, P.; Van, S.Y.; Suhaeri, M.; Hwang, M.P.; Lee, K.; Kwideok, P. Fibronectin-tethered graphene
oxide as an artificial matrix for osteogenesis. Biomed. Mater. 2014, 9, 65003. [CrossRef] [PubMed]

546. Zhao, C.; Lu, X.; Zanden, Z.; Liu, J. The promising application of graphene oxide as coating materials
in orthopedic implants: Preparation, characterization and cell behavior. Biomed. Mater. 2015, 10, 15019.
[CrossRef] [PubMed]

547. Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M.V. Review on the antimicrobial properties of carbon
nanostructures. Materials 2017, 10, 1066. [CrossRef] [PubMed]

548. Nishida, E.; Miyaji, H.; Takita, H.; Kanayama, I.; Tsuji, M.; Akasaka, T.; Sugaya, T.; Sakagami, R.; Kawanami, M.
Graphene oxide coating facilitates the bioactivity of scaffold material for tissue engineering. Jpn. J. Appl. Phys.
2014, 53, 06JD04. [CrossRef]

549. Guazzo, R.; Gardin, C.; Bellin, G.; Sbricoli, L.; Ferroni, L.; Ludovichetti, F.S.; Piattelli, A.; Antoniac, I.;
Bressan, E.; Zavan, B. Graphene-based nanomaterials for tissue engineering in the dental field. Nanomaterials
2018, 8, 349. [CrossRef] [PubMed]

550. Vera-Sánchez, M.; Aznar-Cervantes, S.; Jover, E.; García-Bernal, D.; Oñate-Sánchez, R.; Hernández-Romero, D.;
Moraleda, J.M.; Collado-González, M.; Rodríguez-Lozano, F.J.; Cenis, J. Silk-fibroin and graphene
oxide composites promote human periodontal ligament stem cell spontaneous differentiation into
osteo/cementoblast-like cells. Stem Cells Dev. 2016, 25, 1742–1754. [CrossRef] [PubMed]

551. Ghassemi, T.; Shahroodi, A.; Ebrahimzadeh, M.H.; Mousavian, A.; Movaffagh, J.; Moradi, A. Current concepts
in scaffolding for bone tissue engineering. Arch. Bone Jt. Surg. 2018, 6, 90–99.

552. Farack, J.; Wolf-Brandstetter, C.; Glorius, S.; Nies, B.; Standke, G.; Quadbeck, P.; Worch, H.; Scharnweber, D.
The effect of perfusion culture on proliferation and differentiation of human mesenchymal stem cells on
biocorrodible bone replacement material. Mater. Sci. Eng. B 2011, 176, 1767–1772. [CrossRef]

http://dx.doi.org/10.1155/2011/290602
http://dx.doi.org/10.1002/jbm.a.34199
http://dx.doi.org/10.1021/ja983361b
http://dx.doi.org/10.1016/j.ijleo.2015.12.012
http://dx.doi.org/10.1186/1743-8977-10-15
http://www.ncbi.nlm.nih.gov/pubmed/23587290
http://dx.doi.org/10.1016/j.jmrt.2014.10.005
http://dx.doi.org/10.1002/jbm.a.30677
http://www.ncbi.nlm.nih.gov/pubmed/16489589
http://dx.doi.org/10.1002/jbm.a.34673
http://dx.doi.org/10.1016/j.biomaterials.2003.09.101
http://dx.doi.org/10.3390/nano9101501
http://www.ncbi.nlm.nih.gov/pubmed/31652533
http://dx.doi.org/10.1088/1748-6041/9/6/065003
http://www.ncbi.nlm.nih.gov/pubmed/25329544
http://dx.doi.org/10.1088/1748-6041/10/1/015019
http://www.ncbi.nlm.nih.gov/pubmed/25668049
http://dx.doi.org/10.3390/ma10091066
http://www.ncbi.nlm.nih.gov/pubmed/28892011
http://dx.doi.org/10.7567/JJAP.53.06JD04
http://dx.doi.org/10.3390/nano8050349
http://www.ncbi.nlm.nih.gov/pubmed/29783786
http://dx.doi.org/10.1089/scd.2016.0028
http://www.ncbi.nlm.nih.gov/pubmed/27503546
http://dx.doi.org/10.1016/j.mseb.2011.06.004


Nanomaterials 2020, 10, 2019 59 of 60

553. Zhang, P.; Wu, T.; Kong, J.-L. In situ monitoring of intracellular controlled drug release from mesoporous
silica nanoparticles coated with pH-responsive charge-reversal polymer. ACS Appl. Mater. Interfaces 2014, 6,
17446–17453. [CrossRef]

554. Kim, S.-S.; Ahn, K.-M.; Park, M.S.; Lee, J.-H.; Choi, C.Y.; Kim, B.-S. A poly(lactide-co-glycolide)/hydroxyapatite
composite scaffold with enhanced osteoconductivity. J. Biomed. Mater. Res. Part A 2007, 80, 206–215.
[CrossRef]
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