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Abstract: Laser ablation (LA) is gaining acceptance for the treatment of tumors as an alternative
to surgical resection. This paper reviews the use of lasers for ablative and surgical applications.
Also reviewed are solutions aimed at improving LA outcomes: hyperthermal treatment planning
tools and thermometric techniques during LA, used to guide the surgeon in the choice and adjustment
of the optimal laser settings, and the potential use of nanoparticles to allow biologic selectivity of
ablative treatments. Promising technical solutions and a better knowledge of laser-tissue interaction
should allow LA to be used in a safe and effective manner as a cancer treatment.
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1. Introduction

Many ablative techniques are being proposed as alternatives to traditional resectional surgery.
These include laser ablation (LA), radio-frequency ablation, microwave ablation, high intensity focused
ultrasound treatments, and cryosurgery. All these techniques hold the promise of cancer killing while
sparing normal tissue. Ablative therapy can also be delivered in a minimally invasive manner,
allowing less pain and shorter recovery time. Among the mentioned techniques, LA shows the
attractive possibility of being guided through a flexible and small fiber to targets in deep-lying organs.

The first application of laser in surgery dates shortly after its invention, when in 1961 Salon and
coauthors investigated its potential as a clinical tool [1]. In the 1980s, the first preclinical and clinical
testing of lasers as ablative tools for brain cancer, gastrointestinal tumors (liver and pancreas), and
prostate cancer occurred [2,3]. Many different lasers have been proposed for use in surgery. This article
reviews the state of the art of the lasers most used in ablative procedures for cancer removal: with
particular attention on the characteristics of various lasers, on the factors which influence the treatment
outcome, and on the emerging solutions proposed to improve the outcomes of LA.

2. Basic Components of a Laser and Factors of Influence on the Laser Effect on Tissue

LA is performed by using a laser and a medium which transports the laser light inside the tissue.
The laser, which consists of a power source, a lasing medium, and reflecting mirrors, provides a
monochromatic light (the light is emitted at a specific wavelength), whose wavelength defines the
properties of the laser and the interaction with biological tissue. The medium is usually a small diameter
(0.2-0.8 mm) flexible optical fiber that transports the laser light inside deep organs. Laser-tissue
interaction can be described by three phenomena: scattering, reflection, and absorption. The light
absorbed by tissue is converted into heat. Prolonged exposure of tumor cells at temperatures ranging
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from 45 °C to 55 °C or short exposure at temperature higher than 60 °C causes irreversible cell
damage [4]. Complex mathematical descriptions, based on Arrhenius rate analysis, allow for estimating
the cell death as a function of both temperature and exposure time [5].

Heat generation in the tissue, hence the effect of LA, is influenced by a number of factors: laser
light wavelength, laser settings (laser power, laser energy, and treatment time), physical properties of
the tissue, and the emission characteristics of the optical applicator [6], see Figure 1.
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Figure 1. Schematic representation of the factors of laser ablation influencing the volume of

tissue destruction.

In order to destroy the tumor without damaging healthy surrounding tissue or minimizing
this unwanted effect, all the mentioned factors must be taken into account during the treatment.
In particular, a very important parameter used to describe how the laser light is absorbed by the
tissue is the absorption length, defined as the tissue depth needed to absorb 63% of the incident light.
The absorption length is specific for different laser types (laser light wavelength). It is also related to
the optical characteristics of the specific tumor and the surrounding healthy tissue [7]. Lasers with
wavelengths strongly absorbed by tissue are employed for superficial treatment. Conversely, in order
to treat deep tumors, a high optical penetration depth is required.

The choice of laser settings is related to the specific effects desired during the procedure. LA can
be performed in continuous mode or in pulsed mode. In continuous mode, low laser power (ranging
from 2 W or 3 W up to 30 W), and long treatment time (from a few minutes to more than 20 min) are
usually employed [8]. In pulsed mode, in which the laser energy is released intermittently in a series of
pulses rather than continuously, higher laser power (>100 W) is used. It must be noted that the tissue
temperature increase (hence the amount of damaged volume) is not a linear function with respect to
the laser settings [9]. Thus, tissue temperature and damage volume plateau with increasing treatment
time and laser power.

The emission characteristics of the optical applicator play a great role on the geometry of the
damaged tissue. Applicators called “bare-fiber” were employed during the first applications of
LA. Basically, they are an optical waveguide with an emitting distal end. Appropriate designs
and manufacturing of the emitting surface of the applicators allow for reducing the power density
and the temperature on their surface, and allow for controlling the tissue geometry damaged [10].
Sapphire-tipped fibers were introduced to avoid carbonization around the fiber tip [11] in order to
penetrate more deeply inside the tissue because charred tissue limits light penetration and tissue
necrosis [12]. Then other applicators were designed and validated, such as the cylindrical fiber tip [13]
and zebra applicators [14]. Moreover, several solutions based on the development of cooled tip
applicators or on the use of multiple bare fibers have been proposed to obtain large and controlled
damaged volumes [15-18].
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Laser use brings about specific safety concerns. LA is performed by lasers emitting light at a
power higher than 0.5 W. Medical lasers are therefore Class IV lasers according to the ANSI (American
National Standards Institute) standard (ANSI Z136.1 and Z136.3 combination set: “Safe Use of Lasers
and Safe Use of Lasers in Health Care Facilities”). The high power of light emitted by Class IV lasers
can damage the eye and skin. As a consequence, administrative, engineering, and procedural measures
are used to control laser hazards. All the personnel involved in the LA have to be qualified. All should
wear protective eyewear for the specific wavelength and optical density used. Moreover, the access
to the room during LA should be controlled, and laser hazard signs indicating the class, power, and
mode of operation of the laser should be posted.

3. Lasers in Surgery

As described in the previous section, the effects of laser light on tissue depend on the laser
operation mode and on its light wavelength. As a consequence, many different lasers have been used
to ablate tumors, in order to obtain different effects. They differ mainly according to their wavelength,
hence absorption length (Figure 2).
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Figure 2. Wavelength, penetration depth, and modality of work of widely employed medical lasers.
The absorption spectra of melanin, hemoglobin, and water are also shown.

When deep penetration is required, lasers emitting infrared light are employed. Diode lasers,
with wavelengths of 800-980 nm and Nd:YAG (neodymium-doped yttrium aluminium garnet;
Nd:Y3AI5012) lasers with a wavelength of 1064 nm have an absorption length of approximately
10 cm, as shown in Figure 2. The KTP:YAG laser (KTP stands for potassium-titanyl-phosphate) emits at
532 nm, and is highly absorbed by hemoglobin but deeply penetrates in water. This difference
is pointed in the plot shown in Figure 2. The absorption of light is limited to three important
components of biological tissue because the analysis of specific organs will result in difficulties, the
data are incomplete, and the experimental data regarding absorption values show high dispersion [7].
Superficial treatments were performed with a CO; laser (10,600 nm), Thulium (2016 nm), and Ho:YAG
(2100 nm) with lower penetration depths (from around 10 um to almost 1 mm).
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Nd:YAG, Ho:YAG, and diode lasers were the original lasers deployed in clinical practice.
The Nd:YAG laser (1064 nm) is usually used in continuous mode. It has been for decades the most
widely used laser because the high penetration of its wavelength is optimal in the treatment of several
tumors. The ablation is mostly performed with bare or cylindrical applicators which allows for ablation
zones of up to 15 mm and 50 mm diameter, respectively [19]. The use of cooled applicator allows for
improving the radial temperature distribution, avoiding carbonization, and using higher laser power.
Table 1 reports a number of applications of Nd:YAG lasers in surgery.

Table 1. Nd:YAG laser for tumor ablation (y = years; m = months; SR = Survival Rate;
HCC = Hepatocellular carcinoma; met = metastases; P = laser power; t = treatment time).

Tumor Diameter of
Author (Number of Tumor Applicator Laser Settings Follow Up/Complications
Patients) umo
Pacella et al., . P=5W 000 o o
2001 [20] HCC (74) 0.8-4 cm Bare fiber t = 6-12 min SR: 99%, 68%, and 15% at1,3,and 5y
Vogl et al., Malignant liver o Bare or P= 31;:1;1;3‘/\] blaze fiber 0.1% death
2002 [21] tumor (899) Cooled fiber - cooe © 13% of overall complications
t=3-28 min
Vogl et al., Malignant liver . P mean for each applicator . o o
2013 [22] tumor (401) <5cm Cooled fiber MW SR: 86.5% and 33.4% at 1and 5y
Mean SR:
. Primary and _ HCC: 14.6 m (for HCC),
Ez)t)cé(se[;;’ secondary liver — Cooled fiber ¢ —P16—2350‘1Vnin 15.2 m (for met)
tumor (35) B Carcinoid (all patients alive from 1 to
47 m post ablation)
Pech et al., Colorectal liver <5em Cooled diffuser Pdisz?szr II; f:g:;n Median of SR 23 m
2007 [24] met (66) - tip fiber t = 1537 min Major complications rate 2.3%
Ritz etal., Colorectal liver <5em Cooled diffuser P=24-30 W Aitee;uignfc(;lli(:\g;};igzor
2007 [25] met (56) - fiber tip t=20-28 min Morbidity rate 21.4%
Chr;sotgfl[r; 6e]t al, COlzZ:t(zlol)lver <10 cm Bare fiber P=24W Overall complications 16%
Windahl et al., Penile cancer <Sem . . Median follow up: 42 m
2004 [27] (67) Local recurrence rate 19%
Lont et al., Penile cancer 3 . . Median follow up 106 m
2005 [28] (257) em Local recurrence rate 37.5%
Meijer et al., Penile cancer . . P=2535W Follow up 3 m-16y
2007 [29] (44) - Local disease: 48% of the patients
Schlenker et al., Penile cancer . Cooled bare P =30-50 W Local recurrence: 42%, mean time to
2010 [30] (54) fiber t=60-150 s local recurrence 53 m
Beer et al., Bladder cancer . Bare fiber P =40-50 W Total complications 15%
1989 [31] (252) t per pulse = 3-4s Only 1 bladder perforation
J. Ruiz-Tovar Bladder cancer o . P=35W .
etal., 2008 [32] e Bare fiber t per pulse =25 Bladder perforation
Beisland et al., Bladder cancer . P=45-50 W . .
1985 [33] (100) — Bare fiber t per pulse <45 1 bowel perforation, 2 severe bleeding
Kardos et al., Bladder cancer 7 mm of o P=3040W No major complications
1994 [34] (116) average t (per pulse) =2-3 s ) P
Cavaliere et al., Breast cancer P=20-30 W Major limitation: rapid regrowth of
1994 [35] (1585) t (per pulse) =4-5s the tumor
. . Overall survival longer than those
zfzrv;gé??éz Ghokzllizs)toma >20 mm Diffuser tip P=6W reported from natural history or
) after chemotherapy
Streitparth et al., Osteoid 5 mm Bare fiber P=23W o
2009 [37] osteoma (1) t=11 min
Dick et al., Renal tumor (9) o Cooled Bare P=25W Two minor and one major
2002 [38] fiber t = 10-30 min complications
Di Matteoetal,  \euroendocrine . P=4W
2013 [39] Pancreatic — Bare fiber t =5 min —
tumor (1) B
Maurij et al., cervical lymph 1or?2 fibers, P=34W No major complications; 2 minor

2016 [40] node met (24) t=5-10 min complications (8.3%).
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Hepatocellular carcinoma (HCC) and liver metastases were the most commonly treated cancers
by Nd:YAG lasers. These treatments are performed with low power, measured in Watts, and the time
of treatment, measured in minutes (e.g., 5 W and 6-12 min [20]). Laser power can be increased to
30 W-40 W with cooled applicators [41]. Different groups used this laser for liver metastases [21] with
good results in terms of survival rate and complications [23-26]. Large liver metastases have been
treated with modified techniques consisting of “pull back” of the applicator or the use of multiple
applicators [22].

Premalignant lesions and early stages of penile cancer carcinoma have been treated since the
1980s. The indication for the use of LA in this clinical setting is superficial penile cancer (either
Tis or T1 disease). Contraindications to laser therapy include tumors with >6 mm depth invasion
and T2 tumors [42]. Recently several studies focused on the efficacy of Nd:YAG lasers on penile
cancer [29,30] and on the combination of Nd:YAG and CO;, lasers [27,28], with good results in terms
of local recurrence and satisfaction after the treatment, as well as good functional and cosmetic
outcomes [27,43].

During the 1980s and 1990s, bladder cancer was treated by Nd:YAG lasers with high power
and short time pulses [31,33,34,44]. The main risk is the perforation of the bowel or bladder [45],
in particular at high laser power (>50 W) [46], although this has also been reported at 35 W [32].
This laser has been also used for the ablation of cervical lymph node metastases from papillary
thyroid carcinoma with good results in terms of technical success (100% of the lymph nodes) and on
complications (there were no major complications) [40]. Despite promising results, the use of Nd:YAG
lasers on the treatment of bladder cancer has been abandoned, with the introduction of alternative
lasers (see below).

Nd:YAG LA has been used as palliative treatments for several other cancers, e.g., colorectal [47,48],
pancreas neuroendocrine tumors [39], lung [35,49], glioblastoma [36], osteoid osteoma [37], renal [38],
ureteral tumors [50], and breast cancer [51]. These uses have generally been delivered at power settings
of 5 W and a few minutes of application, or at high (50 W) power with short pulses of 1-3 s.

The Ho:YAG laser operates in pulsed mode at a wavelength of 2100 nm. Since the 1990s,
it has replaced the Nd:YAG laser for the treatment of superficial bladder cancer [52,53]. Treatments
are performed at different frequencies (5 Hz—40 Hz), energy per pulse (0.5 ]-2.2 J), and power
(4 W—40 W) [52-61], and show peri- and post-operative complication rates lower when compared to
conventional transurethral resection (Table 2). In urology, this laser has also been employed to treat
upper urinary tract tumors with settings similar to the ones employed during bladder ablation [62].

Table 2. Ho:YAG laser for tumor ablation (E= energy delivered by the treatment; P = laser power;
f = frequency of the pulse).

Tumor (Number Diameter of . . Follow Up/
Author of Patients) Tumor Applicator Laser Settings Complications
. E=05-1.0] N
Syed et al., 2001 [55] Bladder (41) <l cm Bare fiber No complications
f=5-10Hz
E=05-1.0]
Razvi et al., 1995 [53] Bladder (25) <lcm Bare fiber P=472W No complications
f=8-14Hz
Das et al., 1998 [56] Bladder (23) — Bare fiber — 1x recatheterization
E=1]
Johnson, 1994 [52] Bladder (15) 2-15 mm Bare fiber P=10W No complications
f=10Hz
E=1]J
Jonler et al., 2004 [57] Bladder (52) 2-30 mm Bare fiber P=40W Recurrence
f=40Hz
. . E=05-12]
Hossain et al., 005 [58] Bladder (30) <40 mm Bare fiber Recurrence

f=10-12 Hz
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Table 2. Cont.

Tumor (Number Diameter of . . Follow Up/
Author of Patients) Tumor Applicator Laser Settings Complications
E=15-22]
Zhu et al., 2008 [59] Bladder (101) — Bare fiber P=2040W —
f=15-20Hz
E=15]
Xishuang et al., 008 [61] Bladder (64) — Bare fiber P=30W —
f=20Hz
Wong et al., 2013 [60] Bladder (54) <30 mm Bare fiber E=06-08] Recurrence
v f=10-15Hz
E=05-1]
Matsuoka et al., 2003 [62] ~ Upper urinary tract (30) 5-30 mm Bare fiber P=1540W Recurrence
f=5-20Hz

Laser diodes are replacing the Nd:YAG laser because they are more compact and portable
(weighting less than 10 kg), less expensive, and deliver wavelengths between 800 nm and 980 nm with
tissue penetration similar to that obtained by Nd:YAG lasers. Diode lasers have been largely employed
on prostatic tumors with very good results in terms of complications and tumor recurrence (Table 3).
The treatment is performed at different wavelengths (805 nm, 830 nm, or 980 nm) and the amount of
damaged tissue is controlled with ultrasound, with temperature monitoring by fluoroptic thermal
probes [63-65].

Table 3. Diode laser for tumor ablation (met = metastases; P = laser power; t = treatment time).

Tumor (Number Diameter . . ..
Author of Patients) of Tumor Applicator Laser Settings Follow Up/ Complications
Atri et al., 2009 [65] Prostatic carcinoma 16 mm 1 bare fiber Two lasers at P = 152 W, Necrotic tissue in
1) t=12 min targeted area
. Prostatic carcinoma . P=2W Biopsies confirmed the
Amin et al., 1993 [64] o — 3 applicators t=500s presence of necrosis
. Prostatic carcinoma lor2 67% of patients free of tumor
Linder etal,, 2009(63] (12) - applicators - in the target at 6 m
. Osteoid osteoma ] P=2W 6 recurrence,
Gangi et al., 2007 [66] (114) <24 mm Bare fiber t<600s 1 unsuccessful treatment
Carpentier et al., 2008 [67] . Met'astahc <3 cm nghf-ct‘hffusmg P=15W No tumor recurrence
intracranial tumor (4) tip
Dowlatshahi et al., 2002 [68] ~ Breast tumor (54) 523 mm — P=5W Complete destruction of
owiats etal, cas o B 93% of the tumors
Haraldsdéttir et al., 2008 [69] Breast tumor (54) — Bare fiber P=3W Small skin necrosis in
two patients
P=2-27W for LA improves survival in
Gillams et al., 2000 [70] Hepatic met (69) — Bare fiber each fiber patients with inoperable but
t=440s limited liver met.

Laser diodes (980 nm) have also been used for metastatic brain tumors using a temperature
feedback obtained by MR (Magnetic Resonance)-based thermometry, with reasonable preliminary
results on four patients in terms of both tumor recurrence and complications [67]. Osteoid osteoma has
been treated by a diode laser (805 nm) with good results in terms of recurrence (only six recurrences in
a cohort of 114 patients and all were treated successfully with a second application) [66]. Because of
the increasing detection of small breast cancer due to the widespread use of mammography, the diode
laser (805 nm) is also being investigated for the treatment of small tumors with the use of temperature
feedback [68,69]. It is also being explored for the treatment of hepatic metastases from colorectal cancer
using a wavelength of 810 nm [70].

4. New Solutions to Guide Laser Ablation

The most promising emerging solutions in terms of the potential clinical impact on LA aim at
controlling with high accuracy the amount of damaged tissue or at obtaining a more selective tumor
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treatment that does not damage the surrounding healthy tissue. Recent efforts are devoted to the
development of Hyperthermal Treatment Planning (HTP) tools, to the improvement of new solutions
for real time thermometry, and to the use of tumor targeted nanoparticles. In this section, the basis and
the most significant challenges of these three promising solutions will be described.

HTP tools aim at establishing the treatment settings that maximize the thermal treatment quality.
HTPs model the interaction between the energy delivered by the thermal treatment and the tissue,
in order to obtain a prediction of the tissue temperature distribution and therefore the amount of
damaged tissue volume. As described in [71], the simulations can be divided in three main steps:
(1) the first step is the generation of the patient model. This is aimed at obtaining a description of the
geometry and of the physical properties of the tissue undergoing the treatment. This first step is crucial
because the geometry and characteristics of the tissue strongly influence the interaction between the
tissue and the energy delivered to treat the tumor (i.e., laser light in the case of LA treatment); (2) the
second step is focused on the calculation of the amount of power absorbed by the tissue. Obviously the
models employed depend on the kind of device used to induce the hyperthermia. In LA, the simulation
is aimed at calculating the light distribution within the tissue. This task is usually performed using
the Monte Carlo simulation and requires the knowledge of the tissue optical properties at the used
laser wavelength and the emission modality of the applicator; (3) the third step provides the tissue
temperature distribution. The model most widely used to perform this prediction is the Pennes’
equation. The accurate prediction of temperature can improve the treatment outcomes.

The importance of HTP (hyperthermal treatment planning) tools in current clinical settings is
confirmed by the recent decision of the European Society for Hyperthermic Oncology to include HTP
in their quality assurance guidelines for deep hyperthermia [72], and by the recent development of
several commercial treatment planning packages (e.g., the Sigma -Hyperplan system, VEDO, Semcad
X, and Alba HTPS) and flexible software packages [73,74]. HTP tools have been clinically evaluated
and validated [75,76]. Recently, Hyperplan predicted both the occurrence of discomfort and its location
in a cohort of 30 patients with an error of the temperature prediction lower than 4 °C [77]. HTP tools
have been also used for improving the safety and effectiveness of local hyperthermal treatments
combined with radiotherapy and chemotherapy [78,79]. In spite of the HTPs limitations in the accurate
prediction of the temperature distribution, they have demonstrated marked improvements over the
last few years, so their integration into the clinical workflow is gaining acceptance [80]. In addition,
temperature feedback obtained by thermometric techniques could correct HTP prediction during
the treatment.

The importance of temperature monitoring during LA can be motivated by considering that the
amount of damaged tissue depends on both the tissue temperature map and the exposure time [81];
therefore the knowledge in real time of the tissue temperature may be particularly beneficial for the
optimization of laser settings applied during treatment. Thermometric techniques can be divided in
two categories: invasive techniques and non-invasive techniques [82].

Among the invasive thermometric techniques, the most largely employed transducers are
thermistors, thermocouples, and fiber optic-based sensors. Their use has been investigated in many
recent in vivo and ex vivo cancer thermal treatment studies [83-86] and on different organs [87,88].
They allow for real time temperature monitoring with good spatial resolution, and quite good
(thermocouples) or good (thermistors) accuracy. Their main drawbacks are related to their intrinsic
invasiveness, and measurement only at a single point. There can also be measurement errors due to the
strong light absorption of the wires of the thermocouple [89-91] and due to the high heat conduction
for both thermocouples and thermistors.

Two kinds of transducers based on fiber optic technology are employed in this field: Fiber Bragg
Grating (FBG) sensors and fluoroptic sensors. These sensors have been introduced in this field more
recently than thermocouples and thermistor [63,92,93]. Their main advantages are related to due to
their immunity from electromagnetic fields and their MR-compatibility, which allows for using this
sensor during MR-guided procedures [94]. Their small size and flexibility, short response time, good
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spatial resolution, and good accuracy (~0.2 °C) are also assets. Their main drawbacks are related to
their invasiveness, and measurement only at a single point for flouroptic sensors. Moreover, FBGs
are sensitive to the strain that can produce measurement errors during in vivo trials caused by the
respiratory movements of the patients [95]. Temperature probes embedding FBGs within a needle
have been proposed to tackle this problem [96,97]. Regarding the fluoroptic sensor, the error caused by
laser light absorption cannot be considered as negligible [91].

The most promising non-invasive thermometric methods are MR-based thermometry and CT
(Computed Tomography)-based thermometry.

Basically, MR-thermometry is founded on the dependence of a number of MR parameters on
temperature [98]. After a series of experiments on phantoms, ex vivo tissues, and on in vivo animal
models [99], MR thermometry has been employed during LA of HCC and liver tumors , prostate
cancer, and metastases during the last decade [100-102]. Recent studies have shown the possibility of
obtaining good spatial and temporal resolution and good precision [103].

CT-thermometry was first investigated during the 1970s [104], but investigations were
discouraged by the limitation of the CT scan in terms of reproducibility and stability. In the last
decade, the improvements of CT scanners have encouraged a number of groups to use this method
in thermal treatment. During the last few years this technique has been mainly employed during
ex vivo experiments and on phantoms [105-110]. Although laser ablation guided by non-invasive
thermometry is in its infancy, recent technical solutions are helping to increase the number of studies
in animal models and in humans.

The main advantages of these two non-invasive techniques are related to the non-invasiveness
and to the possibility of obtaining a tridimensional temperature distribution. The main disadvantages
of MR-thermometry are related to the cost of the MR scan, cost of custom made sequences to obtain
good thermal sensitivity, and the hazards of working in an MR environment; the main drawback of
the CT-based thermometry is related to the use of ionizing radiation.

Finally, an emerging solution which is noteworthy is the use of nanoparticles in the photothermal
ablation of cancer. The aim of this solution is to improve the selectivity of the treatment in order to
destroy the tumor while preserving the integrity of the healthy surrounding tissue. The basis of this
therapy is that materials that highly absorb light can be designed and delivered specifically to the
tumor cells. The subsequent application of light will then cause specific thermal killing to nanoparticle
tagged tumor cells.

Gold based nanoparticles have been designed and absorb light in the near-infrared (NIR) region
where water and hemoglobin show high transmissivity (as shown in Figure 2). If the nanoparticles
are selectively accumulated in the tumor, the light will be mostly absorbed by the tumor only. As a
consequence, the absorbed light that is converted into heat energy causes a temperature increase
localized in the target. This specificity depends on the geometry, morphology, and surface charge of
the nanoparticles; therefore several kinds of gold nanoparticles have been designed for photothermal
ablation to optimize the absorption and selectivity (e.g., nanorods, nanoshells, branched nanoparticles,
and nanocages) [111]. These nanoparticles have been used in several cancer models (e.g., breast
cancer, pancreatic cancer) [112-114]. The comparison between the effects on cells in the absence
of nanoparticles and on cells with nanoparticles has been performed to assess the efficacy of this
technique [112,115]. For instance, El-Sayed et al. noted that in the absence of nanoparticles, the
cells did not experience destruction up to a laser power density of 76 W/cm?; on the other hand,
benign cells with nanoparticles were destroyed at 57 W/cm?, and for malignant cells it occurred
at a lower value (25 W/cm?) [116]. Recently, this technique has been evaluated in vivo in animal
models. The efficacy of in vivo treatment has correlated to the findings that nanoshell-treated tumors
were noted to experience a temperature increase higher than that for the nanoshell-free controls
(37.4 & 6.6 °C vs. 9.1 £ 4.7 °C) [117].

Clearly, the use of nanoparticles in this treatment approach is in its infancy. The early promising
results bring expectations that this approach may have an important future clinical impact. Further
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improvements and successful introduction in therapy require a proper evaluation and understanding
of their interactions with biological entities and their potential for inadvertent toxicities [118,119].

5. Discussion

LA is becoming a valid alternative to surgical resection. The ultimate goal of LA is to reduce
the suffering related to specific cancers and to improve outcomes. After the tumor localization and
the identification of its features (geometry, contours, histology), there are two main challenges in LA:
an accurate placement of the applicator in the tumor, and accurate treatment planning and monitoring.
New HTP tools and monitoring tools are beginning to overcome some of these challenges, and they
are gaining widespread attention and broad clinical acceptance as techniques for improving the safety
and outcomes of thermal treatments.

The current landscape of LA is changing rapidly, with new and exciting developments.
Among others, emerging solutions and developments which are noteworthy are: the recent evolution in
the use of new lasers with different wavelengths and modes of operation, and equipment (e.g., custom
applicators) are leading to promising results in terms of treatment selectivity; the improved
understanding of the laser-tissue interactions is used to increase the accuracy of computational models
for HTP tools for planning patient-specific treatments; the improvement in precision and accuracy
of tridimensional non-invasive thermometry and the increasing interest in multi-point temperature
probes based on FBG technology are gaining widespread attention for the real time monitoring of the
effects of LA; and lastly, the progress in targeting nanoparticles to tumor cells as well as the possibility
to specifically tune the laser to the surface plasmon resonance frequency of the nanoparticles are paving
the way for the advent of targeted heating. For the promise of this technology to be realized, new
solutions, such as HTP tools, thermometry, and the advancement of nanotechnology in medicine, have
to be further improved and translated for clinical use. This requires a continued and close research
collaboration between interdisciplinary groups involving clinical experts, physicists, bioengineering,
and material scientists.
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