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Abstract: Computer-based simulations are nowadays widely exploited for the prediction
of the mechanical behavior of different biomedical devices. In this aspect, structural finite
element analyses (FEA) are currently the preferred computational tool to evaluate the stent
response under bending. This work aims at developing a computational framework based
on linear and higher order FEA to evaluate the flexibility of self-expandable carotid artery
stents. In particular, numerical simulations involving large deformations and inelastic
shape memory alloy constitutive modeling are performed, and the results suggest that the
employment of higher order FEA allows accurately representing the computational domain
and getting a better approximation of the solution with a widely-reduced number of degrees
of freedom with respect to linear FEA. Moreover, when buckling phenomena occur, higher
order FEA presents a superior capability of reproducing the nonlinear local effects related to
buckling phenomena.
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1. Introduction

Carotid artery stenting (CAS) is a minimally-invasive procedure widely employed for the treatment
of atherosclerosis of carotid arteries. In particular, the CAS procedure restores the physiological blood
flow by means of the expansion of a metallic endoprosthesis, i.e., the stent, which is driven to the target
lesion by means of an endoluminal path. Nowadays, CAS is considered a cost-effective alternative to the
traditional open surgery approach, leading to minimal hospitalization and reduced social and economic
costs [1,2].

Within this framework, it is important to remark that stent delivery is a complex procedure, since
the stent needs to accommodate the tortuous path from the incision to the lesion location, avoiding
straightening the carotid artery in order to limit vessel injuries. It is immediately clear that stent design
plays a crucial role in determining the mechanical properties of the device. The structural requirements
of the optimal carotid artery stent are various and, often, contradictory [3–6]. For this reason, the stents
currently available on the market are usually the result of a trade-off among several biomechanical
features, experimentally evaluated in order to find a good balance between material properties and design
geometry. However, on the one hand, experimental tests are often not applicable due to the high costs
of prototype manufacturing, and on the other hand, the realistic working conditions are often difficult to
reproduce experimentally.

In this aspect, modern computational methods, typically based on finite element analysis (FEA), are
a ubiquitous tool to simulate various clinical procedures for pre-operative planning and to predict the
mechanical behavior of a wide range of medical devices [7–11].

Clearly, the reliable application of such computational methods for real-life clinical and industrial
problems requires the deep comprehension of the different sources of complexity related to the problem
itself. From the material point of view, the majority of modern carotid artery stents is made of NiTiNOL,
a nickel-titanium shape memory alloy (SMA) able to elastically recover from strains after stress-induced
large deformations [12,13]. SMA behavior is inherently nonlinear, and its macroscopic properties are
driven by a complex thermomechanical solid phase transition. In this aspect, modeling such materials
requires the development of accurate constitutive laws able to reproduce the major phenomena involved
in the material behavior, resorting to a set of parameters possibly limited in number, easy to estimate
and underlying a clear physical interpretation. From the numerical point of view, the evaluation of
a particular stent feature requires a reliable transposition of the device working conditions into the
computational model. This task is not trivial, since real-life problems often include complex nonlinear
phenomena, e.g., contact or geometrical instability, that can affect the predicting capabilities of many
computational models.

The present paper aims at investigating the capability of dedicated FEA to evaluate an important
stent feature, i.e., its flexibility (Flexibility is defined as the capability to properly bend in order



J. Funct. Biomater. 2015, 6 587

to accommodate the tortuous vascular structure, and it is considered one of the main features for
cardiovascular stents), using advanced constitutive modeling, as well as realistic devices and working
conditions. Linear (h-FEA) and higher order (p-FEA) discretizations are adopted to model the 3D
stent bending problem in a large deformation regime, corresponding to the cantilever beam bending
experiment proposed by Müller-Hülsbeck et al. [6]. Linear discretization represents a de facto
standard for the numerical evaluation of stent mechanical features [14–17], while the employment
of higher order elements allows an accurate representation of the stent geometry combined with
better approximation properties with respect to linear FEA. The simulations are performed both using
the general purpose solver FEAP [18] and the commercial FEA software Abaqus/Standard for the
most computationally-intensive simulations. The SMA model originally proposed by Souza [19] and
implemented in the version proposed by Auricchio and Petrini [20] within a large displacement-small
strain regime is considered. The results include a performance comparison with respect to the number of
degrees of freedom (DOF) and computational times, between h-FEA and p-FEA. Moreover, we highlight
the capability of the two methods to reproduce the nonlinear local effects due to geometrical instability.

The paper is structured as follows: In Section 2, we describe the proposed computational framework,
including SMA constitutive relations, stent geometrical modeling and the implemented analysis setup.
In Section 3, we present and discuss some numerical results for both h- and p-FEA. This section is
structured in order to highlight not only a general comparison in terms of the number of degrees of
freedom, but also a focus on local nonlinear effects. Finally, in Section 4, we summarize our findings.

2. Materials and Methods

In this section, the SMA constitutive model used in the present study is described. In particular,
the time-continuous and time-discrete frameworks, as well as the adopted large displacement-small
strain implementation are detailed. Subsequently, the computational framework to obtain both linear
and p-FEA stent models is described. The resulting model is then integrated within an analysis setup
simulating an experimental stent bending test.

2.1. Souza-Auricchio Model: Time-Continuous Framework

Following the works by Souza et al. [19] and Auricchio and Petrini [20], we adopt a 3D constitutive
model developed within the framework of phenomenological continuum thermomechanics and able to
describe the main SMA macroscopic behaviors. The assumed control variables are the total strain ε
and the absolute temperature T , while the transformation strain etr is taken as an internal variable. The
transformation strain satisfies the constraint:

‖etr‖ ≤ εL (1)

where εL is a material parameter corresponding to the maximum transformation strain reached at the end
of the phase transformation during an uniaxial test.

The Helmoltz free energy density function Ψ = Ψ(ε, T, etr) is used as the thermodynamic potential
as follows:

Ψ =
1

2
κ θ2 +G ‖e− etr‖2 + τM ‖etr‖+

1

2
h ‖etr‖2 + IεL(etr) (2)
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θ and e being the volumetric and deviatoric part of the total strain ε, respectively; τM = β〈T − T ∗〉,
where β is a positive parameter related to the dependence of the critical stress on temperature, T ∗

a reference temperature and 〈·〉 indicates the positive part function; κ and G are the bulk and shear
modulus, respectively; h defines the phase transformation hardening. The indicator function:

IεL(etr) =

{
0 if ‖etr‖ ≤ εL

+∞ otherwise
(3)

is introduced to satisfy the transformation strain constraint of Equation (1).
Following standard arguments [21], the constitutive equations can be differentiated:

p =
∂Ψ

∂θ
= κθ

s =
∂Ψ

∂e
= 2G(e− etr)

X = −
∂Ψ

∂etr
= s− τM

etr

‖etr‖
− hetr − γ

etr

‖etr‖

(4)

where p and s are the volumetric and deviatoric part of the stress σ, respectively, and X is the
thermodynamic stress-like quantity associated with the transformation strain etr. The variable γ results
from the indicator function subdifferential ∂IεL(etr), and it is defined as follows:

γ =

{
0 if ‖etr‖ < εL

≥ 0 if ‖etr‖ = εL
(5)

yielding ∂IεL(etr) = γetr/‖etr‖.
A classical Mises-type limit function F = F (X) is introduced as:

F = ‖X‖ −RY (6)

where RY is a positive material parameter corresponding to the elastic radius in the deviatoric space.
The evolution equation for the internal variable takes the form:

ėtr = λ̇
∂F

∂X
= λ̇

X

‖X‖
(7)

where λ̇ is the non-negative consistency parameter. The model is finally completed by the classical
Kuhn–Tucker conditions:

λ̇ ≥ 0, F ≤ 0, λ̇F = 0 (8)

2.2. Souza-Auricchio Model: Time-Discrete Framework

Starting from the material state at time tn, identified by the quantities (etrn , λn, γn), we admit global
guess values of the total strain ε and temperature T at time tn+1. A return map procedure, based on the
elastic predictor/inelastic corrector scheme [22], is adopted to compute the stress and the other variables
at the current time tn+1. For the sake of notational simplicity, we omit the subscript n + 1 for all of
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the variables computed at the current time tn+1 and adopt subscript n for the variables computed at time
tn. The implicit backward Euler integration scheme is employed within the evolution equation in the
following form:

etr = etrn + ∆λ
X

‖X‖
(9)

where ∆λ =
∫ tn+1

tn
λ̇ dt is the time-integrated consistency parameter. The algorithm consists of

evaluating an elastic trial state (denoted with subscript TR) in which the internal variables remain
constant, i.e., 

∆λTR = 0

etrTR = etrn
γTR = 0

(10)

from which: 
sTR = 2G (e− etrTR)

XTR = sTR − τM
etrTR

‖etrTR‖
− hetrTR

(11)

Then, the limit function (see Equation (6)) is computed to verify the admissibility of the trial state. If
the trial state is admissible, the step is elastic; otherwise, the step is inelastic, and the transformation
strain has to be updated through the time-discrete evolution equation (see Equation (9)). We perform the
inelastic step by solving the following non-linear system with a Newton–Raphson method: etr − etrn −∆λ

X

‖X‖
= 0

‖X‖ −RY = 0

(12)

If the above solution is not admissible (i.e., if constraint (1) is not verified), a further inelastic
step is performed for saturated conditions, and the following non-linear system is solved with a
Newton–Raphson method: 

etr − etrn −∆λ
X

‖X‖
= 0

‖X‖ −RY = 0

‖etr‖ − εL = 0

(13)

It is important to remark that the ratio etr/‖etr‖ is undefined when etr is null. Therefore, the euclidean
norm ‖etr‖ is opportunely replaced with the following regularized expression:

‖etr‖ =
√
‖etr‖2 + δ −

√
δ (14)

where δ is a user-defined positive regularization parameter (∼10−8). We remark that the implicit
implementation requires also the formulation of the consistent tangent matrix C (see [20] for the
corresponding expression).
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2.3. Souza-Auricchio Model: Numerical Implementation

The Souza-Auricchio model is implemented as a user material subroutine (UMAT) for both
FEAP and Abaqus/Standard Version 6.11 (Dassault Systémes, Johnson, RI, USA). The hypothesis
of large displacements and rotations, but small strains (as typically induced in many biomedical
applications [17]), is assumed. In particular, starting from the deformation gradient F provided by the
solver, we compute the Green–Lagrange strain tensor as E = 1

2
(FTF − I). Then, we use the following

additive decomposition of the strain tensor E:

E = e + 1
3
θI (15)

where:
θ = tr(E) e = E− 1

3
θI (16)

The quantities e and θ, coupled with the temperature T and the internal variable etr, are used to

compute the second Piola–Kirchhoff stress tensor S = s + 1
3
pI and the consistent tangent matrix C

(see Equation (4) and Section 2.2). Both S and C are expressed in terms of the reference configuration,
and a push forward procedure needs to be applied in order to obtain the Cauchy stress tensor σ and the
consistent tangent matrix c in terms of the current configuration. In particular, we have:

σ = 1
J
FSFT (17)

c = 1
J
φ∗[C] (18)

where φ∗ refers to the compact notation for the push forward operation on fourth order tensors, as
described in [23].

2.4. Stent Model

A novel computational framework to interface the CAD software Rhinoceros v. 4.0 SR8 (McNeel
and Associated, Seattle, WA, USA) with the general purpose solver FEAP is presented. The stent model
used in the present work resembles a commercially available stent used in clinical practice, i.e., a XACT
Carotid Stent (Abbott, IL, USA). This device is characterized by a closed-cell design, since all of the
junctions between different rings are connected. This feature strongly influences many biomechanical
outcomes, e.g., vessel scaffolding, adaptability and, also, flexibility. We consider a straight configuration
having a 9-mm reference internal diameter, a 0.18-mm thickness and a 30-mm length. Since no data
are available from the manufacturer, the main geometrical features of such devices are derived from
high-resolution micro-CT scans (cf. Figure 1a) of the crimped stent in the delivery system [7]. The FEA
stent model is generated through the following steps:

• The geometrical features derived by the micro-CT scans are elaborated using a parametrical model,
in order to obtain a geometrical description corresponding to the unfold stent in open configuration.
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• A planar CAD geometry (see Figure 1b) is generated. Subsequently, a 2D CAD NURBS surface
for the whole stent is created.

• The CAD surface structure is extruded and rolled by means of an in-house MATLAB code (The
MathWorks Inc. Natick, MA, USA) leading to the final stent in open configuration, as depicted in
Figure 1c.

• The 3D trivariate CAD data are processed in order to obtain both h- and p-FEA meshes. At last,
the FEA mesh is exported in a suitable format for the solver FEAP.

For the h-FEA, we employ traditional trilinear brick elements with full integration, while for the
p-FEA, we employ cubic-cubic-quadratic brick elements (for circumferential, longitudinal and thickness
directions, respectively) with full integration. In particular, the p-FEA polynomial orders are obtained
by construction of the 2D NURBS surface for circumferential and longitudinal directions, while the
thickness polynomial order, linear by construction, has been raised to quadratic in order to have a fully
high order p-FEA mesh. Both refinement techniques are implemented using an in-house MATLAB code
based on the NURBS toolbox [24,25], a set of routines implementing the algorithms included in [26]. In
particular, the p-FEA mesh is recovered by iterative knot insertion on a highly regular NURBS mesh.

P-FEA 

FEA FEA 

p-FEA 

h- 

Figure 1. Stent model generation: (a) detail of a high resolution micro-CT performed on
the real stents within the delivery system; (b) planar CAD geometry reproducing the stent
design pattern; (c) 3D CAD stent model; (d) h- (top) and p- (bottom) finite element analysis
(FEA) mesh generation.

2.5. Analysis Setup

Following the computational framework proposed by Auricchio et al. [27], the flexibility test is
simulated through a displacement-based analysis in the large deformation regime. A displacement of
11 mm along the Y direction is imposed for all of the nodes referring to the distal extremity of the stent,
while the proximal one is clamped. We consider the resultant reaction force at the distal extremity of
the device as a reference quantity to evaluate the capability of both h- and p-FEA to correctly reproduce
the stent bending, as also used in the experimental setup proposed by Müller-Hülsbeck et al. [6]. In
particular, the resultant is obtained as the sum of the reaction force contributions at the distal extremity of
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the stent. The Souza-Auricchio model constitutive parameters are obtained from the literature [27]. We
use 6 and 4 refined meshes for h- and p-FEA, respectively (the different refinement levels are shown in
Figure 2). As introduced in Section 1, h-FEA-5 and h-FEA-6 simulations are computationally intensive,
and thus, for efficiency reasons, they are performed using the Abaqus/Standard solver (Both h-FEA
and p-FEA simulations are performed on an Intel Xeon E5-4620 at 2.20 GHz workstation with 252 GB
RAM). The description of all analyses in terms of numbers of degrees of freedom (DOF) and polynomial
degrees can be found in Table 1.

p-FEA-1 p-FEA-2 p-FEA-3 p-FEA-4 

h-FEA-1 h-FEA-2 h-FEA-3 h-FEA-4 h-FEA-5 h-FEA-6 

p-
FE

A 
h-

FE
A 

Figure 2. Stent refinement levels: top p-FEA; bottom h-FEA.

3. Results and Discussion

The present work aims at investigating the potential of dedicated FEA in simulating the stent
flexibility behavior comparing the performance of h- and p-FEA discretizations. As previously indicated,
we consider the resultant reaction force at the distal extremity of the stent as a reference quantity to
evaluate the performance with respect to the number of DOF. In particular, the force-displacement curves
for h-FEA and and p-FEA simulations are depicted and compared in Figure 3a,b. Moreover, reaction
force convergence plots with respect to the DOF number for both methods are reported in Figure 3,c.
Finally, the data concerning reaction force values and numerical errors, evaluated with respect to the
results from the most refined p-FEA analysis (p-FEA-4) are reported in Table 1.
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Figure 3. Force-displacement diagrams for shape memory alloy (SMA) stent bending:
(a) FEA; (b) p-FEA; (c) reaction force convergence plot.

Table 1. Stent bending analyses: the relative errors are evaluated with respect to the finest
P-FEA simulation, labeled as P-FEA-4. The symbols p, q and r indicate the circumferential,
longitudinal and thickness polynomial orders of the FEA meshes, respectively.

Mesh Label DOF Order Reaction Force (N) Critical Load (N)

p q r Value Error Value Error

FEA-1 606,276 1 1 1 1.0102 60.21% 1.3354 47.76 %
FEA-2 1,635,960 1 1 1 0.91935 51.85% 1.1671 29.14 %
FEA-3 2,118,096 1 1 1 0.89916 42.60 % 1.1300 25.03 %
FEA-4 3,246,480 1 1 1 0.79611 26.25 % 1.0754 18.99 %
FEA-5 5,281,740 1 1 1 0.73349 16.32 % 0.99991 10.64 %
FEA-6 10,622,016 1 1 1 0.68897 9.26 % 0.97022 7.35 %

p-FEA-1 598,212 3 3 2 0.7725 22.51 % 1.0342 14.31 %
p-FEA-2 1,844,820 3 3 2 0.6732 6.76% 0.9544 5.49 %
p-FEA-3 3,469,668 3 3 2 0.6480 2.76 % 0.91242 0.8 %
p-FEA-4 5,269,642 3 3 2 0.63054 – 0.90473 –

The results show that, as expected, p-FEA presents a better performance with respect to h-FEA on a
per degree of freedom basis, with a gain of about one order of magnitude in terms of DOF number. In
particular, except the coarsest mesh p-FEA-1, which presents some unphysical local buckling, all of the
p-FEA meshes show a numerical error below 7%. As an example, we fix the DOF number in the range
of 2 · 106, corresponding to the meshes p-FEA-2 and h-FEA-3, respectively. In particular, p-FEA-2
shows a numerical error of 6.76% with respect to the converged solution p-FEA-4, while h-FEA-3
shows a relative error of 42.60%. Moreover, the most refined h-FEA, comprising over ten million DOF,
still shows an error of 9.26%.

As introduced previously, we now focus on the influence of stent design, with particular care for kink
formation and the buckling phenomenon, which often appear when a closed-cell stent is considered.
Kink resistance is an important feature of stent devices [28]. When strains locally increase beyond the
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critical value, the buckling phenomenon occurs, inducing high stresses. This phenomenon can be very
dangerous for device performance, since it can lead to the reduction of the fatigue life and implant failure.
In particular, closed-cell designs show reduced adaptability and are prone to kinking [7].

Our results confirm this statement, also in accordance with experimental results [6] (Figure 4b,c).
From a computational viewpoint, in Figure 3, it is possible to observe that, while p-FEA presents
the same deformation pattern for all considered refinements, h-FEA shows different behaviors with
different refinements, which are related to some spurious stress concentrations that lead to an erroneous
reproduction of the buckling deformation path. In particular, the p-FEA deformation pattern shows two
stages of local buckling regardless of the refinement level (see Figure 3b). On the other hand, h-FEA
is not able to catch this local behavior until a high number of DOF is included (see Figure 3a). This
phenomenon can be better appreciated in Figure 4a. This aspect has a great influence on the capability
of accurately reproducing the value of the critical load (see Table 1).
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Figure 4. FEA versus p-FEA comparison: (a) force displacement curves obtained using
the finest FEA mesh (FEA-8) and a coarse p-FEA mesh (p-FEA-2); (b) p-FEA-2 deformed
configuration; (c) FEA-8 deformed configuration.

3.1. Computational Times

Even though a fair efficiency comparison of h-FEA and p-FEA stent bending simulations requires the
employment of the same software package, it is interesting to provide the computational times for a given
level of accuracy. In particular, the computational time coming from two simulations with comparable
levels of accuracy, i.e., p-FEA-2 mesh and h-FEA-6 mesh, are reported in Table 2. In this case, while the
p-FEA-2 simulation is performed with FEAP and one CPU, the h-FEA-6 simulation is performed with
Abaqus/Standard with eight CPUs, for the reason of the motivations previously mentioned. However,
it is interesting to remark that, from a qualitative point of view, p-FEA shows comparable times with
respect to h-FEA, despite the difference in the number of used CPUs.

Table 2. Computational times for p-FEA and h-FEA.

Mesh Label DOF No. of CPUs Solver Total Analysis Time

p-FEA-2 1,844,820 1 FEAP 27 h 15 min
FEA-6 10,622,016 8 Abaqus/Standard 26 h 23 min
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4. Conclusions

In the present study, we developed a numerical bench test able to integrate stent FEA models and
inelastic SMA constitutive modeling, in order to evaluate the flexibility of self-expandable carotid artery
stents. We implemented a computational framework able to employ both h-FEA and p-FEA, with the
ultimate goal to compare the numerical performance of high order basis with respect to the standard
linear basis. Our results suggest that the employment of p-FEA allows one to accurately represent the
computational domain and to obtain a better approximation of the solution with a reduced number of
DOF with respect to h-FEA. Moreover, when buckling phenomena occur and geometrical accuracy plays
an important role, p-FEA presents a superior capability to reproduce the nonlinear local effects. The full
exploitation of the present framework within the stent development requires different advancements,
including the coupling of flexibility test with imaging techniques of real devices, the calibration of the
SMA model parameters, the introduction of realistic vessel models and the implementation of a robust
contact driver to simulate the stent-vessel interaction. Moreover, the cutting-edge research on stents
requires the use of explicit dynamics solvers, able to get rid of the high nonlinearity of such simulations.
In this aspect, it is well known in the literature that p-FEA are not able to correctly reproduce a wide range
of the frequency spectrum, while the use of linear elements mitigate this adverse effect [29,30]. Some
recent results [31] demonstrate that the introduction of more sophisticated basis, i.e., NURBS-based
isogeometric analysis [32], characterized by high order and high regularity basis functions, provides
excellent results also for explicit dynamics simulations [33].
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