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Abstract: In this paper we propose a modification of the polycrystalline shape memory alloy 
constitutive model originally proposed by Souza. By introducing a transformation strain 
energy with two different hardening coefficients, we are able to take into account the effect 
of the martensitic transformation of unfavorably oriented grains occurring after the main 
plateau. By choosing a proper second hardening coefficient, it is possible to reproduce the 
correct stress strain behavior of the material after the plateau without the need of introducing 
a much smaller Young modulus for martensite. The proposed modification is introduced in 
the model comprising permanent deformation effects. Model results for uniaxial stress tests 
are compared to experimental results showing good agreement. 
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1. Introduction

Nitinol, a nearly equiatomic NiTi alloy, has been widely utilized in biomedical applications for more 
than 20 years. Peripheral stents, fixators, bone connectors are examples of Nitinol implants. Guide wires, 
endodontic files are examples of Nitinol medial or chirurgical tools. 

Currently, more demanding applications of Nitinol are emerging: cardiac valves are an example. 
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Engineers, for the design of such devices, are more and more interested in constitutive models robust 
and easy to use but also able to accurately describe the material behavior. Typical loading paths 
contemplate a first string deformations, during which the material may overcome locally the plateau 
deformation and undergo permanent inelasticity, a deployment and a smaller deformation during the 
operating lifetime of the device. An accurate evaluation of stresses during the first deformations and the 
quantification of permanent inelasticity are needed for an accurate design of future Nitinol devices. 

A 3D constitutive model first introduced by Souza et al. [1], further developed by Auricchio and 
Petrini [2], Auricchio et al. [3,4], and Barrera et al. [5], proved high stability and good predictive 
capabilities of both superelastic and shape memory behavior. However, the model provides a rather 
crude description of the material behavior at the end of the transformation where the real material shows 
a less steep stress-strain characteristic. This slope after the plateau has been traditionally described by 
introducing a different Young’s modulus for the martensite phase (see for example [6]). However, direct 
measurement of the elastic properties of Nitinol martensite and ab initio calculations (e.g., [7,8]) have 
shown that martensite have effective Young modulus similar and indeed higher than austenite.  

Recent investigations [9,10] have demonstrated that the softer behavior of polycrystalline NiTi after 
the transformation plateau has to be ascribed to the transformation of unfavorably oriented grains. 

Taking advantage of these findings, here we propose a slight modification of the original Souza-Auricchio 
model consisting in the introduction of a double hardening coefficient in the transformation strain energy 
components of the pseudo potential. The first hardening coefficient is responsible for the main 
transformation plateau or temperature induced transformation strain. The second coefficient, which is 
much higher, describes the material behavior after the main transformation is completed. 

After presenting the main model equations, we will compare the traditional model and the modified 
model in uniaxial stress conditions. 

The proposed model variation will be subsequently introduced in the model with permanent 
deformation described in [5] and simulations of the model will be compared with experimental results. 

2. 3D Phenomenological Model for Stress Temperature Induced Solid Phase Transformation 

The model assumes the strain, ϵ and the absolute temperature, T as control variables and the  
second-order traceless transformation strain tensor etr as internal variable. The quantity etr has the role 
of describing the strain associated to the phase transformations. 

Assuming a small strain regime, we express the free energy function for a polycrystalline SMA 
material through the following convex potential: 

Ψ(𝛜, 𝒆𝑡𝑟 , 𝑇) = Ψ𝑒𝑙 +Ψ𝑐ℎ +Ψ𝑡𝑟 (1) 

Indicating with I the second-order identity tensor and introducing the standard decomposition: 

𝝐 =
𝜃

3
𝑰 + 𝒆  

where θ and e are, respectively, the volumetric and the deviatoric components of the total strain, we 
describe the terms of Equation (1) as follows. 

The elastic strain energy, due to thermo-elastic material deformation is:  

Ψ𝑒𝑙 =
1

2
𝐾θ2 + 𝐺‖𝒆 − 𝒆𝑡𝑟‖2 − 3α𝐾θ(𝑇 − 𝑇0) 

(2) 



J. Funct. Biomater. 2015, 6 400 
 
with K the bulk modulus, G the shear modulus, α the thermal expansion coefficient, and T0 the reference 
temperature. The operator ‖∗‖ indicates the Euclidean norm. 

The chemical energy is:  

Ψ𝑐ℎ = β(𝑇)〈𝑇 − 𝑇
∗〉‖𝒆𝑡𝑟‖ (3) 

with β(T) a function related to the dependence of the critical stress on temperature and 〈∗〉 the positive 
part of the argument. 

Finally the transformation strain energy, due to the transformation-induced hardening, is set equal to:  

Ψ𝑡𝑟 = {

1

2
ℎ1‖𝒆

𝑡𝑟‖2 𝑖𝑓 ‖𝒆𝑡𝑟‖ < ϵ𝐿

1

2
ℎ1ϵ𝐿 

2 +
1

2
ℎ2(‖𝒆

𝑡𝑟‖ − 𝜖𝐿)
2 𝑖𝑓 ‖𝒆𝑡𝑟‖ ≥ ϵ𝐿 

 (4) 

Starting from the pseudo-potential and following standard arguments, we obtain the model 
constitutive equations:  

𝑝 =
𝜕𝛹

𝜕𝜃
= 𝐾(𝜃 − 3𝛼(𝑇 − 𝑇0)) 

𝒔 =
𝜕𝛹

𝜕𝒆
= 2𝐺(𝒆 − 𝒆𝑡𝑟) 

𝑿 = −
𝜕Ψ

𝜕𝒆𝒕𝒓
=

{
 

 𝒔 − (β〈𝑇 − 𝑇∗〉 + ℎ1‖𝒆
𝑡𝑟‖)

𝜕‖𝒆𝑡𝑟‖

𝜕𝒆𝑡𝑟
 𝑖𝑓 ‖𝒆𝑡𝑟‖ < ϵ𝐿

𝒔 − (β〈𝑇 − 𝑇∗〉 + ℎ ∙ ϵ𝐿 + ℎ2(‖𝒆
𝑡𝑟‖ − ϵ𝐿))

𝜕‖𝒆𝑡𝑟‖

𝜕𝒆𝑡𝑟
 𝑖𝑓 ‖𝒆𝑡𝑟‖ ≥ ϵ𝐿 

 

(5) 

The model is then completed by introducing the associative evolution law: 

𝒆̇𝑡𝑟 = 𝜁̇
𝜕𝐹(𝑿)

𝜕𝑿
 (6) 

and the Kuhn-Tucker conditions: 

𝜁̇ ≥ 0, 𝐹 ≤ 0, 𝜁̇ ∙ 𝐹 = 0 (7) 

For the sake of simplicity, here we choose a symmetric yield function:  

𝐹 = ‖𝑿‖2  

In the present model no limit to the transformation strain is considered. This limitation could be easily 
overcome by introducing an indicator function as in the original model. It must considered, however, 
that reaching the full transformation would cause an increase of the slope in a monotonic stress strain 
test before plasticity takes place. This is not observed experimentally, suggesting that plasticity occurs 
before the complete martensite transformation occurs. 

3. Comparison of Standard Model and the Proposed Model in Uniaxial Stress Tests 

The standard model and the modified model proposed are compared by simulating a uniaxial stress 
strain test. The results are shown in Figure 1. The parameters utilized for the simulations are summarized 
in Table 1. 
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Figure 1. Comparison of standard model behavior in a uniaxial stress strain test starting 
from the parent phase. 

Table 1. Parameters utilized for the model comparison. 

Parameter Value 
G 2.63 × 104 MPa 
K 6.86 × 104 MPa 
α 1 × 10−5 
β 4.4 MPa/K 
h1 100 MPa 
h2 3 × 104 MPa 
𝜖𝐿 0.065 ∙ √3/2  
R 110 MPa 
T* 235 K 

Starting from the rest condition in the parent phase the two models behave identically up to the end 
of the plateau. After reaching the maximum transformations strain ϵ𝐿 , the standard model behaves 
elastically with a young modulus identical to the one of the parent phase. On the contrary, in the modified 
model the transformation continues, but with a much higher hardening. This section of the stress-strain 
characteristic can be described by the following equation: 

𝜎11 = √
3

2
 2𝐺(𝛼3‖𝒆‖ + 𝛼2) (8) 

where 

𝛼1 = 𝛽〈𝑇 − 𝑇0〉 + (ℎ − ℎ2)𝜖𝐿 

𝛼2 = 
𝛼1 + 𝑅

2𝐺 + ℎ2
 

𝛼3 =
ℎ2

2𝐺 + ℎ2
 

 

During unloading, the modified model firstly behaves elastically. Like the original model, the 
proposed modified model assumes identical elastic modulus of the austenite and the martensite phase. 
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When the critical stress is reached, the reverse transformation starts, initially with the higher hardening, 
assuming that the reverse transformation of the unfavorably oriented grains is the first to take place. 
When the transformation modulus is lower than ϵ𝐿, the reverse transformation proceeds with the lower 
hardening coefficient. At this point the two models again provide an identical solution. 

The proposed model variation, consisting in the modified term of the pseudo-potential Ψ𝑡𝑟  
described in Equation (4), can be easily introduced in the model contemplating permanent inelasticity 
described in [5]. 

The model equations will not be re-proposed here. We will only recall the new quantities introduced 
in the model to account for permanent inelasticity, and the additional parameters. 

Permanent inelasticity is described by two new internal variables, the plasticity tensor epl, the 
functional fatigue tensor q, modeling the irreversible processes induced by microscopic and macroscopic 
stresses. Increasing q prevents the material from fully recovering generic external deformations. The 
thermodynamic force associated to the functional fatigue tensor is identified by the tensor Q. For the 
model definition it is necessary to define the limit function ξ , that now must comprehend both the 
thermodynamic force X and Q, the functional fatigue hardening H and the coefficient a, describing the 
ratio between the plasticity tensor and the functional fatigue tensor. 

For the simulations with permanent inelasticity we have adopted the limit function:  

𝜉 = 𝑚𝑎𝑥{‖𝑿,𝑸‖𝑘,𝑛 − 𝑅, 0} (9) 

where ‖𝜈1, 𝜈2‖𝑘,𝑛 = (|𝜈1|𝑛 + 𝑘|𝜈2|𝑛)
1

𝑛. The following quantities (Table 2) complete the parameter set 
reported in Table 1. 

Table 2. Parameters set utilized for the model comprising permanent inelasticity. 

Parameter Value 
H 100 MPa 
A 1 
N 5 
k 0.07 

The adopted parameters are not obtained with a rigorous fitting procedure but provide a reasonable 
matching with experimental results. A comparison is shown in Figures 2 and 3. 

Experiments have been carried on a standard 0.3 mm diameter superelastic wire provided by Memry. 
Stress strain test and temperature loops at constant load have been performed on SMAq, an internally 
constructed characterization tools [11]. 

Several loading conditions are provided. In order to understand the internal variable interplay, we 
start analyzing a stress strain test at 50 °C up to 9% deformation (Figure 2b), with the help of Figure 4, 
where the thermodynamic force status is represented.  

Upon loading, when the plateau stress is reached the thermodynamic forces are located on the limit 
boundary (black line of Figure 4) and the internal variables evolve according the flow rule. The limit 
curve is traveled counterclockwise by the force coordinates until unloading. Points 1, 3 and 5 represent 
the last point reached by the material after the first, second and third loading cycle. On subsequent  
cycles the Q component of the force is lower, due to accumulated hardening, for the same total 
deformation conditions. 
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(a) 

 
(b) 

 
(c) 

Figure 2. Comparison of simulated and experimental results for stress strain uniaxial tests 
of superelastic Nitinol at different temperatures. (a) stress-strain at 50 °C up to 6% strain;  
(b) stress train at 50 °C up to 9% strain; (c) stress-strain at 37 °C up to 9% strain. 
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(a) 

 
(b) 

Figure 3. Comparison of simulated and experimental results for temperature loops under 
uniaxial tensile load at different tensile stresses. (a) 400 MPa; (b) 500 MPa.  

 

Figure 4. Thermodynamic force position at the end of the tension load step at 50 °C . Points 
1, 3 and 5 refer to the first, second and third cycle respectively. 
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On the limit curve, the tensor 𝒒̇ and 𝒆̇𝒕𝒓 are parallel and the constant of proportionality equals the 
tangent of the normal to the ξ(𝑋, 𝑄) function. Thus, when the material in on point 3 of Figure 4, the ratio 
between the increment in q and the increment in etr is lower than in position 4. This explains why the q 
tensor increment, that can be appreciated looking at the residual strain at zero stress, decreases at 
increasing cycles. 

In Figure 2b the results for stress strain loop inverted at lower strain. The residual strain is lower than 
in the previous case because the thermodynamic forces stay in the lower part of the limit curve, where 
the normal is practically parallel to the X axis. 

At lower temperature (37 °C), the model correctly predicts a decrease in the plateau stress.  
With the same parameter set, we have performed temperature loops at constant load simulations and 

these are compared to experimental results in Figure 3. The model transformation strain is in this case 
slightly overestimated. However, the model succeed in correctly predicting the transformation temperature 
shift with load and the residual strain. 

4. Conclusions 

We have described a modification of the Souza-Auricchio model accounting for the residual phase 
transformation occurring after the main plateau of polycrystalline Nitinol. This phase transformation 
involves unfavorably oriented grains and it is rendered by introducing a second hardening coefficient in 
the transformation energy component of the pseudo-potential. 

This modification can be easily implemented also in the model version contemplating permanent 
inelasticity. The modified model has been tested by comparing simulated and experimental uniaxial 
tests, with satisfactory agreement. 

Further investigations are needed in order to investigate the model behavior in more complex  
loading conditions.  
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