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Abstract: NiTi (nickel-titanium) stents are nowadays commonly used for the percutaneous 

treatment of peripheral arterial disease. However, their effectiveness is still debated in the 

clinical field. In fact a peculiar cyclic biomechanical environment is created before and after 

stent implantation, with the risk of device fatigue failure. An accurate study of the device 

fatigue behavior is of primary importance to ensure a successful stenting procedure. Regulatory 

authorities recognize the possibility of performing computational analyses instead of experimental 

tests for the assessment of medical devices. However, confidence in numerical methods is 

only possible after verification and validation of the models used. For the case of NiTi stents, 

mechanical properties are strongly dependent on the device dimensions and the whole 

treatments undergone during manufacturing process. Hence, special attention should be paid 

to the accuracy of the description of the device geometry and the material properties 

implementation into the numerical code, as well as to the definition of the fatigue limit. In 
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this paper, a path for setting up an effective numerical model for NiTi stent fatigue assessment 

is proposed and the results of its application in a specific case study are illustrated.  

Keywords: peripheral arterial diseases; shape memory alloys; cardiovascular devices; 

fatigue failure; finite element analyses 

 

1. Introduction 

Nowadays nickel-titanium (NiTi) is commonly used in the production of medical devices. The material 

capability of undertaking high deformation without residual permanent strain makes NiTi extremely 

advantageous for endovascular applications.  

Referring in particular to the cardiovascular field, NiTi stents are used widely for the treatment of 

peripheral arterial disease, one of the major manifestations of systemic atherosclerosis [1]. Femoro-popliteal 

arteries are subjected to a unique set of biomechanical deformations generated by lower limbs daily 

movements. For example, the superficial femoral artery is exposed to about one million cycles per year 

of large deformations, including axial compression and extension, bending, and torsion, which are 

superimposed to the cyclic loading due to the arterial blood pressure (40 million cycles per year) [2]. 

The introduction of self-expandable stents for the treatment of peripheral arteries has strongly improved 

the efficacy of the interventional procedure: thanks to pseudo-elasticity, NiTi ensures the recovery from 

the expanded configuration at the end of each cyclic deformation and hence the preservation of the 

normal blood stream [3]. However, endovascular treatment success is still undermined by stent long-term 

fatigue failure due to the cyclic loading, possibly leading to re-occlusion of the artery (in-stent restenosis) [4,5]. 

Hence, the assessment of the risk of stent fatigue rupture is of primary importance to ensure the effectiveness 

of stenting procedure. At present, this is commonly performed through in vitro tests. The experimental fatigue 

tests, usually regulated by international standards (e.g., ISO 25539 [6], FDA Guidance [7] and ISO 5840 [8]), 

provide an immediate assessment of durability of the device subjected to a particular cyclic loading 

condition, for a given number of cycles. However, they still suffer from a number of disadvantages. 

 High costs and long duration. A great number of devices must be tested for millions of cycles 

in order to ensure statistically significant results. Moreover, experimental campaigns often require 

expensive instruments to setup external loadings, boundary conditions and measurements of the 

quantities of interest. 

 Difficulty in reproducing the in vivo environment. Physical reality has a high complexity, in 

terms of anatomical features, material properties of biological tissue and cyclic loading 

conditions, which is known to change from patient to patient. For those reasons, experimental 

tests are usually simplified and poorly representative of the real conditions. 

 Difficulty in assessment the biomechanical quantities. Measurement is always a critical point 

in experimental tests due to challenging calibration of the instruments and measurement errors 

(bias, sensor resolution, and accuracy). Moreover, fatigue tests give only the final result (safety 

or failure), often missing the exact number of cycles and any information on the stress state in 

the device.  
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During the last decades, numerical simulations, in particular by means of the finite element (FE) 

method, have become a well-recognized and widely adopted tool to investigate biomechanical issues. 

This is mainly due to their advantages in terms of reduced costs, high flexibility and ability of assessing 

important biomechanical quantities. The creation of virtual geometrical models of the real biological 

environment (by means of CAD software or image-based reconstructions from medical images) allows 

one to easily and quickly modify some parameters, for instance geometrical features, boundary 

conditions and external loadings. Moreover, numerical models provide direct and continuous access to 

many quantities (such as stress/strain field through the device) during the whole test simulation. 

Regulatory authorities acknowledge the possibility of performing FE analyses instead of experimental 

tests for the assessment of medical devices. However, the quality of the numerical results is not 

automatically ensured and great caution must be taken during the implementation of such models as well 

as during the interpretation of the outputs. Beside the aforementioned benefits, confidence in 

computational methods is only possible after the verification of the mathematical foundation of the 

model and the validation of the results against experimental data. In particular, when the aim of 

simulations is the assessment of NiTi device fatigue resistance, a special attention should be paid to the 

correctness of the device geometry description and of the material properties implementation into the 

FE code, as well as to the material fatigue limit. Indeed, NiTi elastic and fatigue properties are strongly 

dependent on the device dimensions and on the whole treatments (thermal and surface finishing) 

undergone by the device during the manufacturing process.  

In this paper we propose a path, combining experimental and numerical tests, which can be followed 

to set up an effective FE model of a NiTi stent suitable for fatigue assessment. We focus on those steps 

that precede the proper device fatigue FE analyses, but are fundamental for getting reliable results from 

them. These steps are: (i) development of the FE stent model; (ii) set-up of experimental tests for material 

mechanical parameter identification and preliminary validation of the stent model; (iii) characterization 

of the material fatigue behavior; and (iv) definition of the fatigue criterion and validation. In the 

following Section, the proposed path is described in detail, while in the “Results” Section, it is applied 

to a specific commercial stent.  

For the numerical simulations the commercial FE code ANSYS Mechanical APDL (Ansys Inc., 

Canonsburg, PA, USA) was used.  

2. Materials and Methods  

2.1. Development of NiTi Stent FE Model 

The accuracy in the reconstruction of the stent geometry is one of the basic points for a good fatigue 

numerical prediction. NiTi stents are manufactured in a fully-expanded configuration, with a diameter 

larger than that of the target anatomical site (i.e., oversizing). Therefore, they are compressed through 

the crimping procedure and inserted into a retractable sheath. As a consequence, the FE analyses should 

reproduce the whole implantation procedure, without neglecting the residual stress and strain fields 

induced by the crimping phase. Accordingly, the device model could be built in two different ways, 

depending on the acquired data. The former approach consists of obtaining directly geometrical data 

from the device in the fully expanded configuration. Precise measurements of V-strut thickness, width, 
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length and opening angle can be taken from optical images using stereo microscopy [9] or from 

microcomputer tomography [10,11]. The advantage of this procedure is that the fully expanded 

configuration is immediately obtained, but errors can be present due to inaccuracy in measures and 

variability related to the single device. 

The latter approach requires that the drawings of the laser cut shape are available. In this case, the 

geometry is simply obtained by extruding the 2D planar sketch for the laser machine input, to a length 

equal to the NiTi tube thickness and then wrapping it by 360°. Although the initial dimensions are now 

exact, the 3D model still needs to be expanded. The annealing process during manufacturing also needs 

to be taken into account, in order to achieve the devices expanded configuration without residual stresses. 

These simulation steps can be additional sources of error.  

In both cases, the geometrical model has to be discretized in finite elements. This is an important step 

because mesh density can strongly influence the analysis results. A high-quality mesh is obtained firstly 

by partitioning the stent volume, dividing the curved and the straight regions, thus facilitating its regular 

discretization; and secondly, subdividing the device cross-section by means of a 2D quadrilateral regular 

mesh and dragging the mesh along the strut surface to create 3D solid elements. Due to stress 

concentrations and high stress gradients in the curved portions, they are usually more finely discretized, 

while a coarser mesh to decrease the computational cost of the analyses characterizes the straight regions. 

The optimal mesh, corresponding to the best compromise between accuracy in the results and computational 

costs, can be selected through a sensitivity analysis. 

2.2. Specimens for NiTi Mechanical Parameter Identification 

Experimental characterization of NiTi mechanical properties is a delicate problem. Indeed, the small 

dimensions of the stent struts (few hundreds of microns) as well as the whole procedure for producing 

the stent may strongly influence the NiTi performance. Heat treatments modify the mechanical 

properties and chemical etching/electropolishing change the surface and hence the fatigue behavior. 

Accordingly, particular attention has to be devoted to the definition of the specimen geometry that must 

satisfy different requirements. 

 Reproducing the size of the stents struts, since the size effect is relevant in determining the 

fatigue properties. 

 Having a gauge length in which a uniform deformation occurs; in this way stress and strain can 

be calculated analytically or by means of a simple FE analysis. 

 Allowing a high number of fatigue results for each experimental condition to perform a 

statistical analysis. 

After preliminary calculations, a tubular specimen was selected as the final design for axial tensile or 

positive sinusoidal (non-zero mean strain) deformation, with wires cut in parallel along the circumference, 

and exhibiting the typical “dog bone” shape of specimens for tensile tests (Figure 1). The tubular ends 

allow a precise axial positioning into the grips of the testing machine. The cross-section dimensions, 

gauge length and number of wires along the circumference can be chosen by considering the stent strut 

dimensions and limits related to the full scale force range of the testing machine. The dimensions of the 
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fillet zone between each wire have to be selected to ensure that the whole force applied to the specimen 

ends is transferred on its gauge length. 

 

Figure 1. Specimen designed for mechanical tests. 

2.3. Static Tests for Material Characterization and Validation 

The use of NiTi constitutive models in numerical simulations requires the identification of material 

properties expressed through a set of parameters. Hence different experimental tests have to be 

performed. In the case of the NiTi model implemented in ANSYS [12], simple static tensile tests are 

sufficient. In this work, they were performed using a closed-loop, servo-hydraulic, testing machine 

(Figure 2a) according to the methodology prescribed in the standard ASTM F 2516-07 [13] (tension 

loading up to 6% of strain, unloading up to initial configuration and again tension loading up to fracture). 

Because of the NiTi temperature-depending mechanical behavior, a temperature control system was 

used. It consisted of a hydraulic system composed of a roller pump, an upstream reservoir controlling 

water temperature, a Plexiglass® chamber connected to the testing machine and provided with a terminal 

jaw that grips the specimen, as well as connecting pipes among each component (Figure 2b).  

 
(a) (b) 

Figure 2. The closed-loop testing machine used for mechanical tests (a) with a particular of 

the temperature control system (b). 
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Once the material parameters for the computational analyses are identified, a validation of the 

constitutive relationship should be conducted. An effective way is by comparing numerical and 

experimental results of a crimping test.  

In this work, three cycles of crimping and release in a temperature-controlled environment (37 °C, 

through hot air flux), from stent fully expanded configuration up to a defined diameter, were 

accomplished using radial expansion force testing equipment (displacement resolution 0.01 mm; force 

transducer 11.25/22.5 N). The output measurement was the radial force. In the computational analyses, 

the crimping was simulated by means of a cylindrical rigid surface, placed along the axis of the stent 

and then contracted in the radial direction, imposing a negative radial displacement on its nodes, while 

keeping fixed axial and circumferential directions. A rigid surface-to-surface contact was created 

between the two surfaces, with a normal stiffness set equal to 0.01 and a low value of friction, equal to 0.05.  

It is worth noting that it is sometimes difficult to have the NiTi stent specimens as previously 

described. One possible way to overcome this limitation, provided samples of the final device are 

available, is to perform simple experimental tests (such as axial tensile tests) on the device, to identify 

the material parameters and then perform separate additional tests (such as crimping tests) to validate 

the model. This approach was followed to study the Zilver™ peripheral stent from Cook Medical.  

The results of a static tensile (80%) and compression (20%) axial test were used to calibrate the material 

parameters starting from literature values. Then a crimping test was performed for validation. 

2.4. Cyclic Tests for Material Fatigue Characterization 

The fatigue characterization of NiTi is of primary importance for the design assessment of cardiovascular 

devices that experience millions of in vivo loading cycles. Moreover, the strong non-linearity of the material 

pseudo-elastic stress/strain curve, characterized by two different plateau regions, requires that the whole 

deformation history experienced by the device and a strain-based approach should be taken into account 

in designing the testing protocol.  

During the stenting procedure, the crimping and the following self-expansion produce mainly bending 

deformations, having their maximum at the apex of the V strut of each ring. Assuming that tensile strain 

is the most dangerous solicitation for fatigue behavior and that the material is free from residual strain 

at the end of the production phase, the most critical points during crimping are subjected to tension and 

they partially recover the initial configuration because of the self-expansion during deployment.  

As shown in Figure 3, during the crimping and subsequent self-expansion phases, each stent point ideally 

describes a / curve up to an unloading strain value indicated as m. The cyclic forces, following  

the deployment, superimpose an alternate strain (a) to m and induce small, mainly elastic loops. 

Accordingly, the following testing protocol for fatigue tensile tests on NiTi specimens was defined:  

(i) tensile force at a velocity of 0.8 mm/min up to 6%–7% strain, to replicate the stress-strain state 

experienced by devices during the crimping process; (ii) unloading at 0.8 mm/min up to a predefined 

value of mean strain, representative of device deployment inside an artery. Values in the range 1%–6% 

were chosen, according to different stent oversizing; and (iii) cyclic forces, at 50 Hz frequency, with 

different amplitude strains defined according to literature data [14]. The tests were conducted undern 

displacement control, in a temperature-controlled environment, using the same set-up described for the 

static tensile tests.  
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Figure 3. Sketch of the fatigue testing condition adopted, reproducing the strain history that 

NiTi is subjected during stenting.  

The “testing for survival” approach was adopted, up to a maximum number of cycles equal to 107 cycles, 

corresponding to 10 years of usage. The material fatigue strain limit for 107 cycles was obtained plotting 

the results of fatigue tests in the constant life diagram (mean strain versus strain amplitude) and 

distinguishing among fractured and survived specimens. 

During the fatigue tests, a peak-to-valley acquisition was used: for each loading cycle, the maximum 

and minimum values of the axial force were acquired and stored in a data file in order to evaluate its 

trend for the whole testing duration as a function of number of cycles. Since a wire fracture determines 

a decrease in the specimen resistant section, the force signal acquired shows an evident drop, greater 

than the minimum force resolution of the testing machine. Therefore, this method allowed the detection 

of the exact number of cycles for each wire fracture (Figure 4). This information is useful for defining 

material limit curves for a number of cycles lower than 107. 

 

Figure 4. Example of detection of mean axial force drops at different number of cycles, 

corresponding to fracture of wires. Each line represents one loop of acquired data, made at 

8000 cycles. 
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2.5. NiTi Fatigue Criterion 

Cyclic loadings (axial force, bending or torsion) cause multi-axial strain states in peripheral stents. 

Accordingly, for the fatigue assessment of these devices, it is necessary to define a fatigue criterion to 

compare the multi-axial strain state with the material fatigue limit, obtained by uniaxial tests.  

The common approach followed by several authors [15–19], and also proposed within this work, is to 

express the NiTi fatigue criterion in terms of the first principal value of the mean and amplitude strain 

(I 
m, I 

a ), assuming the tensile strain as the most critical condition for fatigue failure. A procedure was 

implemented in the FE code to get these data when stent fatigue simulations are performed. It consists 

of: (i) extracting the strain tensors at the maximum and minimum values of the cyclic force, at each 

Gauss point; (ii) calculating mean and alternate strain tensors using an APDL script; and (iii) obtaining 

the first principal strains for mean and amplitude strain tensors by using classical eigenvalue analysis. 

The choice of the fatigue criterion is a fundamental step in the stent fatigue assessment procedure. 

Hence, a validation of the criterion would be desirable. To accomplish this, (i) perform some 

experimental tests on real devices, that are easily reproducible by numerical simulations and are able to 

give different results (fracture/safety); (ii) simulate the same tests with the FE code and compare the first 

principal strains for each Gauss point with the limit fatigue curve; and (iii) verify that simulations predict 

fracture for the same loading cases and in the same positions of experimental tests.  

Indeed, a fatigue criterion based on principal strain values is suitable for stents having classical design 

with V-shaped rings connected by links and subjected to axial and bending forces. In this case, stent 

struts mainly work in bending and compression/tension strains (diagonal terms in the strain tensor) are 

predominant. However, medical devices may be subjected to more complex modes of loading in the 

body (a combination of axial and radial compression, bending and torsion) and may have different 

designs such that all strain tensor components have comparable values. Under these conditions, the 

principal strain criterion may be too simplistic and hence not accurate enough. In the literature, some 

authors suggest using different criteria, such as Von Mises criterion for ductile materials [20] or  

Smith-Watson-Topper criterion [21], which take into account the influence on fatigue life prediction of 

all strain tensor components and of stress, respectively. Lastly, it is the opinion of these authors that the 

principal strain criterion may be used with proper attention paid, however a study comparing different 

fatigue criteria may be useful to improve NiTi stent assessment.   

3. Results  

In the following, the results obtained applying the described procedure to the case of the Maris Plus™ 

peripheral stent from Medtronic Endovascular Therapies are summarized. For confidentiality reasons, 

some data are not reported; however, this does not invalidate the efficacy of the reported examples. 

3.1. Development of NiTi Stent FE Model 

To create the geometrical model of Maris Plus™ stent, the CAD software ProENGINEER Wildfire 4.0™ 

was used, after the acquisition of physical model dimensions. In order to fasten the creation of the model, 

the symmetries of the stents were acknowledged and a repetitive unit was identified, consisting of one 

third of three V-strut crowns. The starting point was the 2D sketch of the repetitive unit (Figure 5a):  
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it was first extruded in the radial direction with an offset equal to the stent thickness (0.2 mm)  

(Figure 5b), and then rotated by 120° in order to achieve the 3D geometry of the stent repetitive unit 

(Figure 5c). Once we obtained the repetitive unit, the whole stent was generated by replicating the 

desired number of such units in the circumferential (Figure 5d) and axial directions (Figure 5e). 

 

Figure 5. Development of the geometric model for finite element (FE) analyses of a 

commercial stent: (a) the 2D sketch of the repetitive unit is first (b) extruded in the radial 

direction and then (c) rotated by 120° to build the 3D geometry of the stent repetitive unit; 

then the unit is copied in (d) circumferential and (e) axial directions, obtaining the whole stent. 

The mesh used in this particular case consisted of three elements in the width and four elements in 

the thickness of the stent cross-section and resulted in a total amount of 277,000 solid elements with 

eight nodes and full integration algorithm (Figure 6).  
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Figure 6. Detail of the stent model mesh. 

3.2. Specimen for NiTi Mechanical Parameter Identification 

A specimen having nine wires along the circumference with cross-section of 0.2 mm × 0.2 mm and 

gauge length equal to 10 mm was designed (Figure 7a), considering that the load full-scale range of the 

testing machine was 1500 N. 

 

Figure 7. (a) CAD model of NiTi specimen for static and fatigue characterization. The 

significant dimension of gauge length (L), wires width (W) and thickness (Th) are reported. 

(b) Symmetrical FE model of a tensile test up to 5%: the total maximum strain, uniform and 

distributed along each wire, is equal to 4.459%, which means that almost the whole load 

applied to the specimen is transferred on its gauge length. 

The capability of the specimen to ensure that the whole deformation applied to the specimen ends is 

almost totally transferred to its gauge length was assessed by FE analyses. Results (Figure 7b) show that 

the maximum strain is uniform and localized in the gauge length once an axial load is applied.  

Specimens with the described design were laser cut from the same tubes and according the same 

procedure used for stent production. 
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3.3. Static Tests for Material Characterization and Validation 

Tensile tests at controlled temperature (37 ± 2 °C), corresponding to the in vivo condition, were 

performed. Thanks to the designed specimen shape, it was easy to convert the force/displacement result 

into a / relationship and calculate the material parameters for ANSYS constitutive model (Figure 8).  

 

Figure 8. Experimental and numerical stress-strain curve for NiTi specimens. 

To validate the numerical model, crimping tests and simulations were performed as described in 

Section 2.3. In particular, four specimens composed of eight rings each were tested, starting from a fully 

expanded diameter of 8 mm up to a diameter of 3 mm. In the FE analysis only a repetitive unit was 

considered, taking advantage of the Maris Plus™ repetitive axial pattern (Figure 9). The whole hoop 

force was then calculated by multiplying the numerical force obtained on the reduced model for a number 

of times (8) allowing the reproduction of the whole device tested. 

 
(a) (b) 

Figure 9. Numerical (half) model of the simplified crimping simulation on one ring of 

peripheral stent. This is performed through a rigid contact, defined between the stent outer 

surface and the external cylinder one: starting from the fully-expanded configuration (a), the 

cylindrical rigid surface moves in negative radial direction until the stent reaches its final 

crimped shape (b). 
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A good agreement can be noticed between experimental and computational results of crimping test 

in terms of hoop force (Figure 10), with small differences that might be related to friction effects. 

The effectiveness of the identification procedure proposed in Section 2.3, for cases where ad hoc 

specimens cannot be produced, is evident in Figure 11a where the experimental hoop force-radial 

displacement curve of Zilver™ stent (black line) is compared with numerical results obtained using 

calibrated parameters (blue line) and literature data (green line) for the material constitutive model.  

The comparison of the corresponding stress-strain curves (Figure 11b) highlights the necessity of 

performing material characterization for each stent type. 

 

Figure 10. Comparison between experimental and numerical hoop force-diameter curves for 

the stent. The reported experimental curve represents the mean curve between all the 

performed tests (4).  

 

Figure 11. (a) Comparison between experimental and numerical hoop force-diameter curves 

for Zilver™ peripheral stent. In the finite element analyses, material parameters were set 

using literature data (green curve) and calibrated data (blue line) obtained from an identification 

procedure based on experimental tests on the whole device. (b) Plot of the numerical  

stress-strain curves obtained from literature data (green curve) and calibrated data (blue line). 
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3.4. Cyclic Tests for Material Fatigue Characterization 

In the following, the results of fatigue characterization for NiTi specimens is described. The protocol 

was applied to 189 wires (corresponding to 21 specimens) that were tested cyclically at various 

combinations of mean and amplitude strain up to 107 cycles. The results were plotted as mean strain 

versus strain amplitude as a constant life diagram (Figure 12). In the diagram, the specimens that 

survived 107 cycles are shown as solid black squares, whereas those specimens that fractured are shown 

as open squares; the red dotted line between failure and safety points represents the fatigue strain limit 

for the material. The limit curve trend is coherent with literature data [14], showing two horizontal 

plateaus for mean strains ranging between 1%–2% and 3%–6%, and a rising line between 2% and 3% 

of mean strain. The results confirm the improvement of the NiTi fatigue limit for greater mean strain 

values, while the plateau values in terms of amplitude strain were found to be strongly dependent on 

surface finishing and manufacturing processes. 

 

Figure 12. Constant life diagram for NiTi specimens for N = 107. 

Some authors [16,22] suggest simplifying the fatigue limit curve with a constant line corresponding 

to the lower value. This approach makes the fatigue analyses easier, but it is too conservative and may 

lead to an incorrect interpretation of the stent in vivo behavior. Indeed, mean amplitude mainly depends 

on oversizing, thus, the fatigue risk for the stent is greater where the oversizing is less, i.e., where plaque 

has a small thickness or is even absent [23]. 

3.5. NiTi Fatigue Criterion 

The NiTi fatigue criterion, based on mean and amplitude first principal strains, was selected in view 

of FEA for fatigue assessment. The suitability of this choice was verified applying the procedure 

proposed in Section 2.5 to Maris Plus™ stents. The same set-up of static tests for material 

characterization (Section 2.3) was adopted. Experimental cyclic axial tests on stents in their fully 

expanded configuration were performed considering two different lengths for the specimens, equal to 

eight rings (L = 22.6 mm) and four rings (L = 11.3 mm), respectively. Several simple axial fatigue tests 

in displacement control and temperature-controlled environment (37 ± 2 °C) were conducted, each time 

changing the imposed mean and alternate displacement, in order to obtain safe and unsafe conditions. 

The testing procedure consisted of an initial elongation up to 80%, unloading up to a defined displacement, 
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and cyclic loading phase at a frequency of 20 Hz. The testing conditions in terms of mean and alternate 

displacement values (um, ua) and final results (fracture or survival of the stent after 107 cycles) are listed in 

Table 1, for both eight-ring and four-ring stents. 

Table 1. Cyclic axial tests on peripheral stents: testing conditions in terms of mean and 

alternate displacement values (um, ua) expressed in mm and final results after 107 cycles.  

Tests 
8 Rings 4 Rings 

um ua Fracture um ua Fracture 

Test 1 11.05 ±2.55 Yes 5.525 ±1.275 Yes 
Test 2 8.4 ±2.2 Yes 4.2 ±1.1 Yes 
Test 3 8.55 ±2.55 Yes 4.275 ±1.275 Yes 
Test 4 11.5 ±2 No 5.75 ±1 Yes 
Test 5 −2.39 ±2.15 Yes 6 ±1.28 Yes 
Test 6 – – – 4 ±0.25 No 

FE simulations reproducing the same experimental conditions were performed. The previously 

described numerical stent model (geometry and material parameters) was used. Displacement boundary 

conditions were applied by means of Multi-points Constraints Elements (MPC184), connecting an 

external master node to the nodes of each stent end; displacements in axial direction were imposed to 

one master node, while the other was kept fixed. Each FE analysis allowed us to determine the highly 

stressed zone of the stent in terms of mean and amplitude values of the first principal strain. For example, 

the mean and amplitude strain distributions for test 1 condition and eight-ring stent are shown in  

Figure 13: the most stressed zones are always located in two areas, identified as the link and the V-strut 

directly connected to the link.  

 

Figure 13. Contour map of mean and amplitude strain values due to the cyclic loading 

condition defined for test 1 on an eight-ring stent; in the red boxes, magnifications are shown 

of the most stressed areas. 

For each FE analysis, the values (I 
m, I 

a), related to the elements belonging to the two highly stressed 

zones were plotted on the constant-life diagram and compared with the material fatigue limit at 107 cycles in 
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order to find the most critical point for fatigue failure in terms of distance from the limit curve. Figure 14 

shows how the criterion indicates the V-strut as the most critical area for fatigue failure in test 1 condition 

for eight-ring stent. Even if the amplitude strain in the two highly stressed zones (red and violet dots) is 

the same, the distance from the material fatigue limit is greater for the V-strut, due to its low mean  

strain value.  

 
(a) (b) 

Figure 14. Test 1 condition on eight-ring stent: mean and amplitude strain values in the link 

and in the V-strut are plotted on the constant-life diagram. Red and violet dots (a) include 

pairs of mean and amplitude values of all the finite elements belonging to the two most 

stressed zones (b). 

The comparison between computational and experimental results showed the good ability of the finite 

element model to predict the fatigue behavior of all the tested devices, also locating fracture position 

when fractures occurred (Figure 15). Moreover, a perfect overlay was obtained for the experimental  

stent axial fatigue-life data on the dog bone fatigue-life data (Figure 16). These findings allow the  

validation of the fatigue resistance criterion adopted for Maris Plus™ stent, at least in the case of simple  

loading conditions. 

 

Figure 15. Cont.  
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Figure 15. Agreement between numerical and experimental results of preliminary tests on 

stents for NiTi fatigue criterion validation. Red circles indicate the most critical areas for 

fatigue fracture predicted by the numerical model that coincide with the experimental 

fracture point. 

 

Figure 16. Constant-life diagram from fatigue tests on NiTi dog bone specimens and cyclic 

axial tests on peripheral stents for different conditions of mean and amplitude strain. 

4. Conclusions  

The complexity of cardiovascular device applications, together with the complexity of NiTi behavior, 

requires particular attention in the assessment of the fatigue fracture risk of NiTi stents. Numerical 

simulations are a valuable support for the fatigue analysis of NiTi cardiovascular devices and provide 

quantitative information about the stress/strain field caused by an imposed load, which could hardly be 

investigated with analytical or experimental methods. 

In order to make reliable numerical predictions from fatigue analyses, it is fundamental to represent 

the device under study as accurately as possible, in terms of geometry and material properties, both from 

a static and a cyclic point of view. In this paper, we suggest and describe in detail a possible path to 

obtain an accurate and validated stent computational model suitable for FEA fatigue assessment. For the 

construction of the CAD model, it is necessary that real devices are available (and can be easily measured) 

or post-laser cutting drawings are accessible. The material properties knowledge is a non-trivial issue to 
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solve. The most efficient way to get a more thorough understanding of NiTi mechanical behavior is to 

perform an accurate experimental campaign of material characterization on dog-bone specimens, 

designed according to proper shape and dimensional constraints, and subjected to the same 

manufacturing treatments of the final device. In this paper, an example is described for an ad hoc 

developed specimen, together with its use in static and fatigue tests for material characterization. 

Moreover, an alternative procedure is proposed to obtain the mechanical parameters directly from 

devices in the absence of specific specimens. Once the material parameters for the computational 

analyses are identified, we suggest validating the constitutive relationship by comparing numerical and 

experimental results of a crimping test.  

The selection of the material fatigue criterion is another crucial point and its validation is fundamental. 

Our proposal is to perform a number of simple axial fatigue tests on stents in their fully expanded 

configuration, easy to reproduce by numerical simulations and able to give different results (fracture/safety).  

Once all these preliminary steps have been performed, the stent model is ready to be used in FEA 

fatigue analyses. Clearly, appropriate boundary conditions, loads and other model parts (e.g., tubes, vessels, 

crimping surfaces) will be added according to the situations (in vivo or in vitro) that have to be simulated. 
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